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Some Series over the
Product of Two Trigonometric Functions and

Series Involving Bessel Functions

M. S. Stanković, M. V. Vidanović and S. B. Tričković

Abstract. The sum of the series
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�
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involving the product of two trigonometric functions is obtained using the sum of the series

∞X
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=

cπ

2Γ(α)f(πα
2

)
xα−1 +

∞X
i=0

(−1)i F (α− 2i− δ)

(2i + δ)!
x2i+δ

whose terms involve one trigonometric function. The first series is represented as series in
terms of the Riemann zeta and related functions, which has a closed form in certain cases.
Some applications of these results to the summation of series containing Bessel functions are
given. The obtained results also include as special cases formulas in some known books. We
further show how to make use of these results to obtain closed form solutions of some boundary
value problems in mathematical physics.
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1. Introduction and preliminaries

In the paper [7] author considered trigonometric functions series containing coefficients
which are reciprocal powers of n or 2n − 1 where n ∈ N. The representations of those
series are given in [10] in the general form
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where α ∈ R+, a = {1
2}, b = {0

1}, s = 1 or s = −1, f = { sin
cos}, δ = { 1

0} and where all
relevant parameters are given in Table I wherein ζ, η, λ and β are the Riemann zeta
function and other sums of reciprocal powers defined by

ζ(α) =
∞∑

k=1

k−α

η(α) =
∞∑

k=1

(−1)k−1k−α = (1− 21−α)ζ(α)

λ(α) =
∞∑

k=0

(2k + 1)−α = (1− 2−α)ζ(α)

β(α) =
∞∑

k=0

(−1)k(2k + 1)−α

(see [1, 3]). Note that when f(x) = sin x and α → 2m or f(x) = cos x and α →
2m + 1 (m ∈ N0), the limiting value of the right-hand side of (1) should be taken into
account [5, 7]. In some cases, listed in Table II, when the right-hand side series truncate
due to vanishing of F functions, representation (1) takes the closed form

∞∑
n=1

(s)n−1f((an− b)x)
(an− b)α

= (−1)
α−δ

2
cπ

2(α− 1)!
xα−1 +

M∑

i=0

(−1)i F (α− 2i− δ)
(2i + δ)!

x2i+δ,

(2)

where α ∈ N, M = α−1
2 for α odd and M = α

2 − δ for α even. This is a generalization
of the results in [8]. Some particular cases of (2) can be found in [1, 4, 6, 13].

Using (1) and (2), in [9, 10] the sums of some series over Bessel functions are given,
expressed in terms of the Riemann zeta numbers and other sums of reciprocal powers.

Table I: Corresponding F and c Table II: Closed form cases

In this paper, for α ∈ R+, we evaluate and represent series over the product of trigono-
metric functions

Sα = Sα

(
s, a, b, f(y), g(x)

)
=

∞∑
n=1

(s)n−1f
(
(an− b)y

)
g
(
(an− b)x

)

(an− b)α
(3)

where the parameters a, b, s are as in Table I, and f and g denote sin or cos, as series in
terms of the Riemann zeta and related functions, which become closed form formulas
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under some restrictions. Further, we illustrate applications of these results both to
the summation of series over the product of Bessel and trigonometric functions and
to obtaining closed form solutions of some boundary value problems in mathematical
physics.

2. Outline of the method and a general result

We explain the procedure of determining the sum of the series (3) for α = 2m−r (r = 0
or r = 1, m ∈ N), by using the series

S2m−1 = S2m−1(1, 1, 0, sin y, cosx) =
∞∑

n=1

sin ny cosnx

n2m−1
(m ∈ N). (4)

We start with m = 1, i.e. the series S1 = S1(1, 1, 0, sin y, cos x),

S1 =
∞∑

n=1

sinny cos nx

n
.

Using the relation sin ny cosnx = 1
2

(
sin(n(y − x)) + sin(n(y + x))

)
we obtain

S1 = 1
2

∞∑
n=1

sin(n(y − x))
n

+ 1
2

∞∑
n=1

sin(n(y + x))
n

.

On the basis of (2) we have

∞∑
n=1

sin nt

n
= 1

2 (π − t) (0 < t < 2π) (5)

and find ∞∑
n=1

sin(n(y − x))
n

= 1
2

(
π − (y − x)

)
(0 < y − x < 2π)

∞∑
n=1

sin(n(y + x))
n

= 1
2

(
π − (y + x)

)
(0 < y + x < 2π).

Therefore, in the domain

K1 =
{

(x, y) ∈ R2
∣∣∣ 0 < y ± x < 2π

}

i.e.
K1 =

{
(x, y) ∈ R2

∣∣∣ − π < x < π and |x| < y < 2π − |x|
}

we have S1 = 1
2 (π − y). Setting t = y in (5) we obtain

S1 =
∞∑

n=1

sinny cos nx

n
=

∞∑
n=1

sinny

n

(
(x, y) ∈ K1

)
. (6)
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Integrating this equality with respect to x in K1, interchanging the order of integration
and summation, i.e.

∞∑
n=1

sin ny

n

∫ x

0

cos nx dx =
∞∑

n=1

sinny

n

∫ x

0

dx,

we have ∞∑
n=1

sin ny sinnx

n2
= x

∞∑
n=1

sin ny

n

(
(x, y) ∈ K1

)

including boundaries. Repeating this procedure several times in succession, we find for-
mulas for the sums S3, S5, . . . etc. So we may assume that after repeating this procedure
2m times the final formula will have the form

S2m−1 =
∞∑

n=1

sin ny cos nx

n2m−1
=

m−1∑

i=0

(−1)i x2i

(2i)!

∞∑
n=1

sin ny

n2m−2i−1
, (7)

for (x, y) ∈ K1 including boundaries, except for m = 1.
Whe shall prove formula (7) using the method of mathematical induction. As (6)

shows, formula (7) is true for m = 1. Further, assuming its validity for m = k > 1 (k ∈
N), it has to be proven that it is valid for m = k + 1, too. Integration of the assumed
equality

∞∑
n=1

sin ny cos nx

n2k−1
=

k−1∑

i=0

(−1)i x2i

(2i)!

∞∑
n=1

sin ny

n2k−2i−1

gives
∞∑

n=1

sin ny

n2k−1

∫ x

0

cosnx dx =
∫ x

0

k−1∑

i=0

(−1)i x2i

(2i)!

∞∑
n=1

sin ny

n2k−2i−1
dx,

i.e.
∞∑

n=1

sin ny sin nx

n2k
=

k−1∑

i=0

(−1)i x2i+1

(2i + 1)!

∞∑
n=1

sin ny

n2k−2i−1
.

Repeating integration,

∞∑
n=1

sin ny

n2k

∫ x

0

sin nx dx =
∫ x

0

k∑

i=1

(−1)i−1 x2i−1

(2i− 1)!

∞∑
n=1

sin ny

n2k−2i+1
dx

where the sum on the right-hand side is shifted, we obtain

−
∞∑

n=1

sin ny cos nx

n2k+1
+

∞∑
n=1

sin ny

n2k+1
= −

k∑

i=1

(−1)i x2i

(2i)!

∞∑
n=1

sin ny

n2k−2i+1

and finally
∞∑

n=1

sin ny cosnx

n2k+1
=

k∑

i=0

(−1)i x2i

(2i)!

∞∑
n=1

sin ny

n2k−2i+1
,

and that is formula (7) for m = k + 1. Thus, (7) is proven
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In a similar way we obtain sixteen formulas which may be represented by the general
formula

S2m−r

(
s, a, b, f(y), g(x)

)

=
∞∑

n=1

(s)n−1f((an− b)y) g((an− b)x)
(an− b)2m−r

=
m−1−dδ∑

i=0

(−1)i x2i+δ

(2i + δ)!

∞∑
n=1

(s)n−1f((an− b)y)
(an− b)2m−2i−δ−r

+ (−1)m−δ(b− 1)sd
x2m−δ

2(2m− δ)!

(8)

where m ∈ N, g = { sin
cos}, δ = { 1

0}, r = { d
1−d} and, independently of that, the rest of the

parameters we read from Table III. The domains Ki (i = 1, 2, 3, 4) are closed for any
2m− r > 1.

Applying (2), formula (8) takes the closed form

S2m−r =
m−1−dδ∑

i=0

(−1)i x2i+δ

(2i + δ)!

(
(−1)m−i−1+d−dδc

πy2m−2i−δ−r−1

2(2m− 2i− δ − r − 1)!

+
M∑

j=0

(−1)j F (2m− 2i− 2j − δ − r − t)
(2j + t)!

y2j+t

)

+ (−1)m−δ(b− 1)sd
x2m−δ

2(2m− δ)!

(9)

where g = { sin
cos}, δ = { 1

0}, r = { d
1−d} and, independently of that, f = { sin

cos} and t = { 1
0};

the rest of the parameters are given in Table III. This formula contains sixteen formulas
as special cases.

Table III

It should be mentioned that by using the other formula

sin ny cos nx = 1
2

(
sin n(x + y)− sin(n(x− y))

)

at start of the described procedure for series (4) we obtain the formula

∞∑
n=1

sin ny cos nx

n2m−1
=

m−2∑

i=0

(−1)i y2i+1

(2i + 1)!

∞∑
n=1

cos nx

n2m−2i−2
− (−1)m−1 y2m−1

2(2m− 1)!
(10)
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which is different from formula (7). This is because (10) is valid in the domain K ′
1, dual

to K1. Namely,

K ′
1 =

{
(x, y)

∣∣∣ − π ≤ y ≤ π and |y| ≤ x ≤ 2π − |y|
}
.

However, the same formula (10) holds true in K1 when we interchange the variables x
and y in series (4), but this is the formula

∞∑
n=1

cosny sin nx

n2m−1
=

m−2∑

i=0

(−1)i x2i+1

(2i + 1)!

×
(

(−1)m−i−1 πy2m−2i−3

2(2m− 2i− 3)!
+

m−i−1∑

j=0

(−1)j ζij

(2j)!
y2j

)

− (−1)m−1 x2m−1

2(2m− 1)!

where ζij = ζ(2m− 2i− 2j− 2)
(
(x, y) ∈ K1

)
which is obtained from (7) for a suitable

choice of the functions f and g. This consideration shows that there is no need to
establish formulas for dual domains.

For α ∈ R+ series (3) can be represented as series in terms of the Riemann zeta and
related functions. We explain the procedure for obtaining this result by using the series

Sα = Sα(s, a, b, sin y, cos x) =
∞∑

n=1

(s)n−1 sin((an− b)y) cos((an− b)x)
(an− b)α

. (11)

Considering that

sin((an− b)y) cos(an− b)x = 1
2

(
sin((an− b)(y − x)) + sin((an− b)(y + x))

)

we obtain

Sα = 1
2

∞∑
n=1

(s)n−1 sin((an− b)(y − x))
(an− b)α

+ 1
2

∞∑
n=1

(s)n−1 sin((an− b)(y + x))
(an− b)α

.

Applying (1) to the both series, this equality can be written as

Sα = cπ
(y − x)α−1 + (y + x)α−1

4Γ(α) sin πα
2

+ 1
2

∞∑

i=0

(−1)i F (α− 2i− 1)
(2i + 1)!

(
(y − x)2i+1 + (y + x)2i+1

)
(
(x, y) ∈ Ki

)
,

where the domains Ki (i = 1, 2, 3, 4), without boundaries, and c, F depend on the
parameters s, a, b, as in Table III. Using the binomial formula, we finally obtain

Sα = cπ
(y − x)α−1 + (y + x)α−1

4Γ(α) sin πα
2

+
∞∑

i=0

i∑

j=0

(−1)iF (α− 2i− 1)
x2jy2i−2j+1

(2i− 2j + 1)! (2j)!
.
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The general formula can be stated as

Sα

(
s, a, b, f(y), g(x)

)

=
∞∑

n=1

(s)n−1f
(
(an− b)y

)
g
(
(an− b)x

)

(an− b)α

= (−1)dδcπ
(y + x)α−1 + (−1)δ(y − x)α−1

4Γ(α)h(πα
2 )

+
∞∑

i=0

i∑

j=0

(−1)iF (α− 2i− d− δ)
x2j+δy2i−2j+d

(2i− 2j + d)! (2j + δ)!

(α ∈ R+) (12)

where f = { sin
cos}, d = { 1

0} and, independently of that, g = { sin
cos}, δ = {1

0}, h = { f
f }, and

c, F and the domains Ki we read from Table III. Note that, for f = { sin
cos}, f = { cos

sin }.

3. Some series involving Bessel functions

In this section we shall illustrate the application of the obtained sum of series over the
product of two trigonometric functions (9) to the summation of series over the product
of Bessel and trigonometric functions.

3.1. Let us consider the series

S =
∞∑

n=1

J2k(nx)
n2m

cos ny (m ∈ N, k ∈ N0) (13)

where Jn are Bessel functions of the first kind of order n [12]. In order to obtain the sum
of this series, we shall use the well known integral representation of Bessel functions

Jn(z) = 1
π

∫ π

0

cos(z sin θ − nθ) dθ (n ∈ N0). (14)

Substituting (14) into (13) and interchanging the orders of summation and integration
we get

S = 1
π

∫ π

0

cos 2kθ

∞∑
n=1

cos(nx sin θ) cos ny

n2m
dθ.

For a suitable choice of the parameters a, b, s, f, g formula (9) becomes

∞∑
n=1

cos ny cosnx

n2m
=

m−1∑

i=0

x2i

(2i)!

(
(−1)m πy2m−2i−1

2(2m− 2i− 1)!
+

m−i∑

j=0

(−1)i+j ζij

(2j)!
y2j

)

− (−1)m x2m

2(2m)!
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where ζij = ζ(2m− 2i− 2j)
(
(x, y) ∈ K1

)
, and putting x sin θ in place of x we evaluate

S. The further procedure leads to integrals of the type
∫ π

0

sinµ xf(νx) dx =
π

2µ
f

(νπ

2

) Γ(µ + 1)
Γ(µ+ν

2 + 1)Γ(µ−ν
2 + 1)

for f = { sin
cos} and Reµ > −1 (see [2]) and finally to the result (in the domain K1)

S =
m−1∑

i=k

(−1)k (x
2 )2i

(i + k)! (i− k)!

(
(−1)m πy2m−2i−1

2(2m− 2i− 1)!
+

m−i∑

j=0

(−1)i+j ζijy
2j

(2j)!

)

− (−1)m+k (x
2 )2m

2(m + k)! (m− k)!

for m ≥ k, but S = 0 for m < k.

3.2 Let us consider now the series

S1 =
∞∑

n=1

(−1)n−1 Jν((2n− 1)x)
(2n− 1)α

sin((2n− 1)y) (15)

where α ∈ R+ and Jν are the Bessel functions of the first kind and order ν. In order
to obtain the sum of this series we shall use the well known integral representation of
Bessel functions

Jν(x) =
2(x

2 )ν

Γ( 1
2 )Γ(ν + 1

2 )

∫ π/2

0

sin2ν θ cos(x cos θ) dθ (Re ν > − 1
2 ). (16)

Substituting (16) into (15) and interchanging the order of summation and integration
we get

S1 =
2(x

2 )ν

Γ( 1
2 )Γ(ν + 1

2 )

∫ π/2

0

sin2ν θ

∞∑
n=1

(−1)n−1 cos
(
(2n− 1)x cos θ

)
sin(2n− 1)y

(2n− 1)α−ν
dθ.

Now we use formula (12) for s = −1, a = 2, b = 1, f = sin, g = cos and then an integral
of the type

∫ π/2

0

sinµ−1 x cosν−1 x dx = 1
2B

(
1
2µ, 1

2ν
)

(Re µ > 0, Re ν > 0).

Without going into details we obtain the final formula

S1 =
∞∑

i=0

i∑

j=0

(−1)i β(α− ν − 2i− 1) (x
2 )ν+2jy2i−2j+1

Γ(j + ν + 1) j! (2i− 2j + 1)!
(α, ν ∈ R)

in the domain K4, for α > 0 and α > ν > − 1
2 .
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4. Discussion and applications

In this section we show that the obtained results include as special cases formulas in [6,
13]. Also, we show how to make use of those results to obtain closed form solutions of
some boundary value problems in mathematical physics.

For certain values of x or y, the obtained formula (9) reduces to formula (2). For
instance, formula (9) for a = 2, b = 1, s = −1, c = 0, F = β, d = 0, f = cos, t = 0, g =
sin, δ = 1, r = 0 becomes

∞∑
n=1

(−1)n−1 cos((2n− 1)y) sin((2n− 1)x)
(2n− 1)2m

=
m−1∑

i=0

(−1)i x2i+1

(2i + 1)!

m−i−1∑

j=0

(−1)j βij

(2j)!
y2j

where βij = β(2m− 2i− 2j − 1) and (x, y) ∈ K4. This formula for y = 0 becomes

∞∑
n=1

(−1)n−1 sin((2n− 1)x)
(2n− 1)2m

=
m−1∑

i=0

(−1)i x
2i+1β(2m− 2i− 1)

(2i + 1)!

and that is exactly formula (2) for f = sin, α = 2m, s = −1, a = 2, b = 1.
On the other hand, for f = g = cos, α = 2m − 1, s = −1, c = 0, a = 2, b = 1, d =

0, r = 1, t = 0, δ = 0 (βij is the same as above) formula (9) gives

∞∑
n=1

(−1)n−1 cos((2n− 1)y) cos((2n− 1)x)
(2n− 1)2m−1

=
m−1∑

i=0

(−1)i x2i

(2i)!

m−i−1∑

j=0

(−1)j βij

(2j)!
y2j .

For x = y = 0 it turns to β(2m− 1).
Further, the obtained general formula (9) comprises some known results. Note that

our formula (9) is valid for α = 2m − r (r = 0 or r = 1, m ∈ N), whereas in [6, 13]
there are cases only for α = 1 or 2 (α = 3 in one case). In addition, the domains in [6,
13] are only subsets of our domains Ki (i = 1, 2, 3, 4) or possibly equal to them. For
example, formula (8) in [6: p. 743] is

∞∑

k=1

(−1)k+1 sin kx cos ky

k3
= 1

12 x(π2 − x2 − 3y2) (|x± y| ≤ π).

This domain is equal to our K2, and the formula

∞∑
n=1

(−1)n−1 cos ny sin nx

n2m−1

=
m−2∑

i=0

(−1)i x2i+1

(2i + 1)!

m−i−1∑

j=0

(−1)j ηij

(2j)!
y2j + (−1)m−1 x2m−1

2(2m− 1)!

obtained as a particular case of (9) for the chosen parameters, where ηij = η(2m− 2i−
2j − 2) and (x, y) ∈ K2, for m = 1 gives the same result.
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As another example consider formula 4Γ3 in [13: p. 435]

∞∑
n=1

sin((2n− 1)y) cos((2n− 1)x)
2n− 1

=
{

π
4 for −y < x < y
0 for y < x < π − y

(0 < y ≤ π
2 ).

The first domain is one half of our K3, and the formula

∞∑
n=1

sin((2n− 1)y) cos((2n− 1)x)
(2n− 1)2m−1

(17)

=
m−1∑

i=0

(−1)i x2i

(2i)!

(
(−1)m−i−1 πy2m−2i−2

4(2m− 2i− 2)!
+

m−i−1∑

j=0

(−1)j λij

(2j + 1)!
y2j+1

)
,

where λij = λ(2m − 2i − 2j − 2) and (x, y) ∈ K3, which is a special case of (9), for
m = 1 gives π

4 . The second domain is half of the dual domain K ′
3, and the formula

∞∑
n=1

cos((2n− 1)y) sin((2n− 1)x)
(2n− 1)2m−1

=
m−2∑

i=0

(−1)i x2i+1

(2i + 1)!

(
(−1)m−i−1 πy2m−2i−3

4(2m− 2i− 3)!
+

m−i−1∑

j=0

(−1)j λij

(2j)!
y2j

)
,

where λij = λ(2m − 2i − 2j − 2) and (x, y) ∈ K3, as a special case of (9), for m = 1
gives 0, too, as above.

Finally, it should be noted that some results in the cited books are not valid. Namely,
formula (3) in [6: p. 743] should have the result −x

2 instead of − 1
2 , and formula 337 in

[13: p. 445] should have the result −π
4 y instead of π

4 y. In the formula 38 in [13: p.
443] the results or domains are wrong because the sum

∞∑
n=1

(−1)n−1 cos(2n− 1)y sin((2n− 1)x)
(2n− 1)2

equals 0 for x = 0, whilst that formula gives π2

8 (1 − y) in the domain 0 < y ≤ π
2 ,

−y ≤ x ≤ π
2 + y.

It is known that the solution of the boundary value problem

Utt = a2Uxx

U(x, 0) = 4hx(L−x)
L2

Ut(x, 0) = 0





for 0 ≤ x ≤ L, t ≥ 0 is given by (see [11])

U(x, t) = 32h
π3

∞∑
n=1

cos π(2n−1)at
L sin (2n−1)πx

L

(2n− 1)3
.
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Using formula (17) for m = 2, we obtain that in the domain 0 ≤ a
L t ≤ 1

2 , | aL t| ≤ 1
Lx ≤

1− | aL t| the solution is in the closed form

U(x, t) = 4h
L2 (xL− x2 − a2t2)

in which form it is easier to use. Similarly, the solution of the boundary value problem

Utt = Uxx + x(x− L)

U(x, 0) = Ut(x, 0) = 0

U(0, t) = U(L, t) = 0





for 0 ≤ x ≤ L, t ≥ 0 is (see [11])

U(x, t) = 8L4

π5

∞∑
m=1

cos (2m−1)πt
L sin (2m−1)πx

L

(2m− 1)5
− 1

12 x(x3 − 2x2L + L3).

Applying (17) for m = 3, this solution becomes in the closed form

U(x, t) = 1
2x2t2 − 1

2Lxt2 + 1
12 t4

for 0 ≤ t ≤ L
2 , t ≤ x ≤ L− t.
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Editorial Remark

– We recommend to formulate the Abstract in self-contained manner!

– Tables I - III we will setted in later.

– It seems to us not in any case clear enough what all constitute the argument of the
functions cos and sin. For example, in the formula for Sα after (11) we have sin(an −
b) (y−x) or sin

�
(an− b)(y−x)

�
? Analogously in other cases. Thus to clear the writing,

use brackets or space in between.

– After (1), the symbol a = { 1
2
} means that a = 1 or a = 2? Please explain! If so, then

why you write out in the same line s = 1 or s = −1?

– In alternating series, for more clarity, we recommend to separate terms like (−1)i. Anal-

ogously, maybe it should be recommended to separate also terms like (s)(n−1) because, as
I understand, s = 1 or s = −1? Additionally, it is not right understandable why you clip
here the exponent n− 1.

– As usual, in the boundary value problems on pp. 10 – 11 the derivatives are sufficient to
write like Uxx instead U ′′xx.

– [8] and [9] seem to be Proceedings. If so, then concretize the coordinates, especially quote
the editors.

– It seemed to us that the English was not the best. Please check it (we allowed our-selfes
to make already some changes).


