
Zeitschrift für Analysis und ihre Anwendungen
Journal for Analysis and its Applications

Volume 20 (2001), No. 2, 281–293

Characterization of the Maximal Ideal
of Operators Associated to the

Tensor Norm Defined by an Orlicz Function

Abstract. Given an Orlicz function H satisfying the ∆2 property at zero, one can use the
Orlicz sequence space `H to define a tensor norm gc

H and the minimal (Hc-nuclear) and maximal
(Hc-integral) operator ideals associated to gc

H in the sense of Defant and Floret. The aim of
this paper is to characterize Hc-integral operators by a factorization theorem.
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1. Introduction

The Orlicz theory of function and sequence spaces appears in the literature as a natural
attempt to generalize the classical theory of the Lp(µ) and `p spaces. In these spaces the
role of the function tp is essential and it is quite natural to try to replace this function
by a more general one. Moreover, the Orlicz theory has been very fruitful in some basic
areas of analysis.

One of the problems in the theory of tensor products and operator ideals in normed
spaces is the definition of suitable corresponding norms. In this way, the `p spaces play
a central role in the definition of interesting topologies in tensor products and operator
ideals. In [6, 7] we study the tensor norm with respect to an Orlicz function H and
some operator ideals associated to this tensor norm. The so-called ”local theory” in
Banach spaces, i.e. the study in terms of finite-dimensional subspaces, has so much
enriched our understanding of Banach spaces. The ultraproducts technique allows to
study some operators in terms of their finite-dimensional parts. In the factorization
theorem of p-integral operators, which is the key in the proof of many metric properties
of the involved tensor norms and operator ideals, the lattice isomorphism between an
ultraproduct of `p spaces and some Lp(µ) spaces is essential. The structure of the
Orlicz sequence spaces is not as simple as that of `p spaces; for instance, in general an
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ultraproduct of Orlicz sequence spaces does not have a useful representation. The aim
of this paper is to obtain a factorization theorem for integral operators of our setting
using only ”local theory” techniques.

The notation is standard. All the spaces considered are Banach spaces over the real
field, since we shall use results in the theory of Banach lattices.

2. On the norm gcH associated to an Orlicz function H
and Hc-nuclear operators

A non-degenerated Orlicz function H is a continuous, non-decreasing and convex func-
tion defined in R+ such that H(t) = 0 if and only if t = 0 and limt→∞H(t) = ∞.
All the Orlicz functions H in this paper are non-degenerated and normalized so that
H(1) = 1. The Orlicz sequence space `H is the space of all scalar sequences a = (ai)∞i=1

such that
∑∞

i=1 H
( |ai|

c

)
< ∞ for some c > 0. The functional

ΠH(a) = inf
{

c > 0
∣∣∣∣
∞∑

i=1

H
( |ai|

c

)
≤ 1

}

is a norm in `H and (`H ,ΠH(·)) is a Banach space.
An Orlicz function H satisfies the ∆2 property at zero if the ratio H(2t)/H(t) is

bounded in a neighborhood of t = 0. Many properties of `H show the importance of
the behavior of H in a zero neighborhood. For example, generally, the sequence of unit
vectors (en)∞n=1 is not a basis for (`H , ΠH(·)), and if the closure of the linear span of
(en)∞n=1 in `H is denoted by hH , it is known that `H = hH if and only if H satisfies the
∆2 property at zero.

In the duality theory of Orlicz spaces, the notion of a function complementary to an
Orlicz function H is essential. An Orlicz function H∗ is said to be the complementary
of H if

H∗(u) = max
{
ut−H(t) : 0 < t < ∞}

.

Moreover, H∗∗ = H. With the aid of H∗ we can introduce another equivalent norm in
`H defined as

‖a‖H = sup
{ ∞∑

n=1

anbn

∣∣∣∣ ΠH((bn)) ≤ 1
}

if a = (an)∞n=1, having the property that (hH , ΠH(·))′ = (`H∗ , ‖ · ‖H∗) as isometric
spaces. Moreover, `H is reflexive if and only if both H and H∗ satisfy the ∆2-property
at zero. For more information on Orlicz functions and Orlicz sequence spaces the reader
is referred to [5].

Given a Banach space E, a sequence (xn)∞n=1 ⊂ E is
– strongly H-summing if π((xn)) = ΠH((‖xn‖)) < ∞
– weakly H-summing if ε((xn)) = sup‖x′‖≤1 ‖(|〈xn, x′〉|)‖H < ∞.

If Γ is a set, `H(Γ) denotes the set of elements a = (aγ)γ∈Γ with aγ ∈ R for every γ ∈ Γ,
so that there is a sequence S = {γn}n≥1 in Γ with aγ = 0 if γ 6∈ S, endowed with the
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norm ΠH(a) = ΠH((aγn
)). If {Xγ}γ∈Γ is a family of Banach spaces, `H{((Xγ)γ∈Γ)}

denotes the Bochner space of elements x = (xγ)γ∈Γ with xγ ∈ Xγ for every γ ∈ Γ, such
that (‖xγ‖)γ∈Γ ∈ `H(Γ), with the norm πH(x) = ΠH((‖xγ‖)γ∈Γ). If Xγ = X for each
γ ∈ Γ, we write `H{Γ, X} instead of `H{((Xγ)γ∈Γ)}. If Γ = N, then `H{(Xn)} and
`H{X} are written instead of `H{(Xn)n∈N} and `H{N, X}, respectively.

The definitions and results in the theory of tensor norms and operator ideals involved
in this paper are exposed in [1]. Given a pair of Banach spaces E and F and a tensor
norm α, E ⊗α F represents the space E ⊗ F endowed with the α-normed topology.
The completion of E ⊗α F is denoted by E⊗̂αF , and the norm of z in E⊗̂αF by
α(z; E ⊗ F ). If there is no risk of mistake we write α(z) instead of α(z;E ⊗ F ). This
is recalled from the metric mapping property: if Ai ∈ L(Ei1, Ei2) (i = 1, 2), then
A1 ⊗A2 ∈ L(E11 ⊗α E21, E12 ⊗α E22) with ‖A1 ⊗A2‖ ≤ ‖A1‖ ‖A2‖.

Definition 1. Let E and F be Banach spaces. For every z ∈ E ⊗ F we define

gH(z) = inf
{

πH((xn))εH∗((yn))
∣∣∣∣ z =

m∑
n=1

xn ⊗ yn

}
.

It is possible that for some Orlicz function H the functional gH does not satisfy
the triangular inequality, but it is always a quasi-norm for E ⊗ F to posses the metric
mapping property. In order to get a tensor norm it is necessary to do the convexification
gc

H of gH , so that

gc
H(z) = inf

{ n∑

i=1

πH((xij))εH∗((yij))
∣∣∣∣ z =

n∑

i=1

m∑

j=1

xij ⊗ yij

}
.

A suitable representation of the elements of a completed tensor product is a basic
tool in the study of the involved operator ideals. The reader is referred to [6], to prove
that if a Orlicz function H satisfies the ∆2 property at zero and z ∈ E⊗̂gc

H
F , there are

{(xij)∞j=1}i∈N ⊂ EN and {(yij)∞j=1}i∈N ⊂ FN such that

∞∑

i=1

πH((xij))εH∗((yij)) < ∞ and z =
∞∑

i,j=1

xij ⊗ yij .

Moreover,

gc
H(z) = inf

∞∑

i=1

πH((xij))εH∗((yij))

where the infimum is taken over all such representations of z.

From now on the Orlicz function H satisfies the ∆2 property at zero.

Every representation of z ∈ E′⊗̂gHc F ,

z =
∞∑

i,j=1

x′ij ⊗ yij with
∞∑

i=1

πH((x′ij))εH∗((yij)) < ∞
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defines an operator Tz ∈ L(E, F ) such that

Tz(x) =
∞∑

i,j=1

〈x′ij , x〉yij (x ∈ E).

We remark that all possible representations of z define the same map Tz. Let ΦEF :
E′⊗̂gc

H
F → L(E, F ) with ΦEF (z) = Tz.

Definition 2. Let E and F be Banach spaces. An operator T : E → F is said to
be Hc-nuclear if T = ΦEF (z) for some z ∈ E′⊗̂gc

H
F .

NHc(E,F ) denotes the space of Hc-nuclear operators T : E → F endowed with the
topology of the norm

NHc(T ) = inf
{ ∞∑

i=1

πH((x′ij))εH∗((yij))
∣∣∣∣ ΦEF (z) = T, z =

∞∑

i,j=1

x′ij ⊗ yij

}
.

For every pair of Banach spaces E and F ,
(NHc(E,F ),NHc

)
is a component of the

minimal operator ideal (NHc ,NHc) associated to gc
H , called the ideal of Hc-nuclear

operators.

The following characterization of Hc-nuclear operators is proved in [7]:

Theorem 3. For every pair of Banach spaces E and F , let T be an operator in
L(E, F ). Then the following assertions are equivalent:

1) T is Hc-nuclear.

2) T factors in the following way:

where B is a diagonal multiplication operator defined by a positive sequence ((bij)) ∈
`1{`H}.

Furthermore, NHc(T ) = inf{‖D‖ ‖B‖ ‖A‖}, taking the infimum over all such fac-
tors.
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3. Hc-integral operators

According to the general theory of tensor norms and operator ideals, the ideal (IHc , IHc)
of Hc-integral operators is the maximal operator ideal associated to that of Hc-nuclear
operators. According to [1], for every pair of Banach spaces E and F , an operator
T : E → F is Hc-integral if and only if JF T ∈ (E ⊗(gc

H
)′ F ′)′, where JF : F → F ′′ is

the canonical isometric map. The aim of this paper is to obtain the characterization of
Hc-integral operators by means of a factorization theorem.

Theorem 4. Let G be an abstract M -space. Then every positive operator T : G →
`1{`H(Γi)} is Hc-integral.

Proof. As `1{`H(Γi)} = (c0{hH∗(Γi)})′, then `1{`H(Γi)} is complemented in its
bidual space (`1{`H(Γi)})′′ with a positive projection P : (`1{`H(Γi)})′′ → `1{`H(Γi)}.
In consequence, the map PT ′′ : G′′ → `1{`H(Γi)} is positive. As G is an abstract M -
space, then G′ is lattice isomorphic to L1(µ) for some measure space (Ω, Σ, µ) (see [9:
Theorem 8.5]), hence G′′ is lattice isomorphic to L∞(µ). Let B : G′′ → L∞(µ) denote
the corresponding positive isometric map and IG : G → G′′ the canonical inclusion
map. But T = PT ′′B−1BIG with PT ′′B−1 : L∞(µ) → `1{`H(Γi)}, hence we only have
to see that every positive map S : L∞(µ) → `1{`H(Γi)} is Hc-integral. But as the unit
vectors system {eig}g∈Γi (i∈N) is a basis for `1{`H(Γi)}, if S(χΩ) =

∑∞
r,s=1 wrsei(r)g(s),

then {ei(r)g(s)}r,s∈N is a basis for the space image and so it is enough to see that every
positive operator S : L∞(µ) → `1{`H} is Hc-integral.

Let T denote the linear span of {eij}i,j∈N, which is dense in c0{hH∗}. From the
density lemma we only have to see that S ∈ (L∞(µ) ⊗(gc

H
)′ T )′. Given an arbi-

trary element z ∈ L∞(µ) ⊗(gc
H

)′ T , let X and Y be finite-dimensional subspaces of
L∞(µ) and T , respectively. If the system {gs}m

s=1 is a basis for Y such that gs =∑k
u=1

∑r
v=l csuvei(su)j(sv), every g ∈ Y can be expressed as g =

∑n
h=1

∑t
w=1 bhweihjw .

Once g ∈ Y and f ∈ X have been fixed, we have

〈S, f ⊗ g〉 = 〈S(f), g〉

= 〈f, S′(g)〉

=
〈

f,

m∑

h=1

t∑
w=1

bhwS′(eihjw)
〉

=
〈

f,

n∑

h=1

t∑
w=1

bhw〈eihjw , eihjw〉S′(eihjw)
〉

=
〈

f ⊗ g,

n∑

h=1

t∑
w=1

S′(eihjw)⊗ eihjw

〉

so that

U =
n∑

h=1

t∑
w=1

S′(eihjw)⊗ eihjw ∈ L∞(µ)⊗ `1{`H}.
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Then for linearity, 〈z, S〉 = 〈U, z〉 for every z ∈ X ⊗ Yi. But

gHc

(
U ;L∞(µ)⊗ `1{`H}

)

≤
n∑

h=1

πH

(
(S′(eihjw

))
)
εH∗((eihjw

))

=
n∑

h=1

inf
{

ρ > 0
∣∣∣∣

t∑
w=1

H
(‖S′(eihjw

)‖
ρ

)
≤ 1

}
sup

‖h∗‖H∗≤1

‖(〈h∗, eihjw)〉)‖H∗

≤
n∑

h=1

inf
{

ρ > 0
∣∣∣∣

t∑
w=1

H
( |〈S′(eihjw

), χΩ〉|
ρ

)
≤ 1

}

=
n∑

h=1

inf
{

ρ > 0
∣∣∣∣

t∑
w=1

H
( |〈eihjw

, S(χΩ)〉|
ρ

)
≤ 1

}

≤ ‖S(χΩ)‖`1{`H}

≤ ‖S‖
and then S is Hc-integral, with an integral norm smaller than or equal to ‖S‖

Definition 5.
a) A Banach space X is said to be finitely representable in a family of Banach spaces

{Xi}i∈I if, for every finite-dimensional subspace M of X and for every ε > 0, there are
an index i ∈ I and a finite-dimensional subspace N of Xi such that the Banach-Mazur
distance d(M,N) ≤ 1 + ε.

b) A Banach lattice X is said to be lattice finitely representable in a family of
Banach lattices {Xi}i∈I if, for every finite-dimensional sublattice M of X and for every
ε > 0, there are an index i ∈ I, a finite-dimensional sublattice N of Xi and a lattice
isomorphism J : M → N so that ‖J‖ ‖J−1‖ ≤ 1 + ε.

If for every i ∈ I the space Xi is a subspace (sublattice) of a Banach space (lattice)
Y , then X is said to be (lattice) finitely representable in Y .

The main result achieved in this paper is as follows.

Theorem 6. Let G and X be Banach lattices such that G is an abstract M -space
and X is lattice finitely representable in `1{`H}. Then every lattice homomorphism
T : G → X is Hc-integral.

To obtain this theorem, we must first consider the result given in [2: Lemma 4.4]:

Lemma 7. Let G be an order complete Banach lattice and let X be a finite-
dimensional Banach subspace of G. Then for every ε > 0 there is a finite-dimensional
Banach sublattice Y of G and an operator A : X → Y such that ‖A(x) − x‖ ≤ ε ‖x‖
for all x ∈ X.

Remark 8. The inequalities ‖A‖ ≤ 1 + ε and ‖A − idX‖ ≤ ε are easily demon-
strated.

Definition 9. A Banach space E is said to be a Lp,λ-space (1 ≤ p ≤ ∞ and
1 ≤ λ < ∞), if for every finite-dimensional subspace P of E and for every ε > 0 there is
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a finite-dimensional subspace Q of E containing P such that the Banach-Mazur distance
d(Q, `

dim(Q)
p ) < λ.

It is known that Lp(µ) are Lp,λ-spaces for every λ > 1. The next proposition
involving L∞,λ spaces is an extension of a well known result of Hollstein [4: Proposition
2.2]. For every Banach space F and for every closed subspace F0 of F , KF0 : F → F/F0

represents the canonical quotient map, and the open unit ball in F is denoted by B̊F .

Proposition 10. Let E be a L∞,λ-space. Then, for every finitely generated tensor
norm α, E ⊗α · isomorphically respects quotients. More precisely, for every Banach
space F and for every closed subspace F0 of F ,

B̊E⊗αF/F0 ⊂ λ(idE ⊗KF0)(B̊E⊗αF ).

Proof. We have to see that for every v ∈ E ⊗ F/F0 there is u ∈ E ⊗ F so that

(idE ⊗KF0)(u) = v and α(u;E ⊗ F ) ≤ λα(v; E ⊗ F/F0).

Given v ∈ E ⊗ F/F0 and ε > 0, let

v =
n∑

i=1

xi ⊗ zi ∈ E ⊗ F/F0

a representation of v ∈ E ⊗ F/F0 such that the vectors zi (i = 1, . . . , n) are linearly
independent in F/F0. Let M and P be finite-dimensional subspaces of E and F/F0,
respectively, so that

α(v; M ⊗ P ) ≤ α(v; E ⊗ F/F0) + ε. (1)

We remark that p = dim(P ) ≥ n. For each j = 1, 2, ..., p there is yj ∈ F such that
{KF0(yj)}p

j=1 is a basis for P , KF0(yj) = zj , and ‖yj‖ ≤ ‖zj‖ + 1 if 1 ≤ j ≤ n.
Let N ⊂ F be the linear subspace of F generated by the linearly independent system
{yj}p

j=1. The map R = (KF0)|N , R : N → P is bijective and continuous with a norm
value less or equal to one. But also for every ŷ ∈ P ′,

‖R′(ŷ)‖N ′ = sup
‖n‖N <1

|〈R′(ŷ), n〉| = sup
‖n‖N <1

|〈ŷ, KF0(n)〉| = ‖ŷ‖P ′

because KF0 is a quotient map and then KF0(B̊N ) = B̊P , hence R′ and R are isometric
maps.

We consider the tensor

u =
n∑

j=1

xj ⊗ yj ∈ M ⊗N ⊂ E ⊗ F.

It is clear that
(IE ⊗R)(u) = v ∈ E ⊗ F/F0. (2)

As E is an L∞,λ-space, there is a finite-dimensional subspace M1 ⊂ E such that

M ⊂ M1 (3)
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and an isomorphism T : M1 → `m1∞ (where m1 = dim(M1)) such that

‖T‖ ‖T−1‖ ≤ λ. (4)

From Lemma 7, as `m1∞ is an order continuous Banach lattice, there is a sublattice
M2 ⊂ `m1∞ and an operator A : T (M) → M2 so that

‖A(x)− x‖ ≤ ε ‖x‖ (x ∈ T (M)). (5)

Then we have

α(u; E ⊗ F )

≤ α(u; M1 ⊗N)

= α
(
(T−1 ⊗ idN )(T ⊗ idN )(u); M1 ⊗N

)

≤ ‖T−1‖α(
(T ⊗ idN )(u) : `m1∞ ⊗N

)

≤ ‖T−1‖
(
α
((

(idT (M) −A)T ⊗ idN

)
(u); `m1∞ ⊗N

)
+ α

(
(AT ⊗ idN )(u); `m1∞ ⊗N

))

≤ ‖T−1‖
(
α
((

(idT (M) −A)T ⊗ idN

)
(u); M2 ⊗N

)
+ α

(
(AT ⊗ idN )(u); M2 ⊗N

))

= ‖T−1‖
(
α
((

(idT (M) −A)T ⊗R
)
(u); M2 ⊗ P

)
+ α

(
(AT ⊗R)(u); M2 ⊗ P

))

= ‖T−1‖
(
α
((

(idT (M) −A)T ⊗ idP )(v); M2 ⊗ P
)

+ α
(
(AT ⊗ idP )(v); M2 ⊗ P

))
.

As M2 is a complemented subspace `m1∞ with projection S : `m1∞ → M2 such that
‖S‖ ≤ 1 (see [5: p. 162]), using Remark 8 and (3), then

α(u; E ⊗ F )

≤ ‖T−1‖
(
α
((

(idT (M) −A)T ⊗ idP

)
(v); M2 ⊗ P

)
+ α

(
(AT ⊗ idP )(v); M2 ⊗ P

))

≤ ‖T−1‖ ‖S‖
(
α
((

(idT (M) −A)T ⊗ idP

)
(v); `m1∞ ⊗ P

)
+ α

(
(AT ⊗ idP )(v); `m1∞ ⊗ P

))

≤ ‖T−1‖
(
‖idT (M) −A‖ ‖T‖α(v;M1 ⊗ P ) + ‖A‖ ‖T‖α(v; M1 ⊗ P )

)

≤ ‖T−1‖ ‖T‖(1 + ε)α(v; M1 ⊗ P )

≤ λ(1 + ε)
(
α(v;E ⊗ F/F0) + ε

)
.

Hence α(u;E ⊗ F ) ≤ λα(v; E ⊗ F/F0)

Proof of Theorem 6. As G is an abstract M -space, then G′′ is lattice isomorphic
to L∞(µ) for some measure space (Ω, Σ, µ). Let B : G → L∞(µ) denote the correspond-
ing positive isometric map. Hence JXT = T ′′B, where JX : X → X ′′ is the canonical
isometric map. Then we only have to see that T ′′ ∈ (L∞(µ)⊗(gc

H
)′ X ′)′.

Given z ∈ L∞(µ)⊗X ′ and ε > 0, let M ⊂ L∞(µ) and N ⊂ X ′ be finite-dimensional
subspaces and let z =

∑n
i=1 fi ⊗ x′i be a fixed representation of z with fi ∈ M and

x′i ∈ N (i = 1, ..., n) such that (gc
H)′(z;M ⊗ N) ≤ (gc

H)′(z;L∞(µ) ⊗ X ′) + ε. Let M1
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be a finite-dimensional sublattice of L∞(µ) and A : M → M1 an operator so that, for
every f ∈ M , ‖A(f)− f‖ ≤ ε‖f‖. Then

|〈T ′′, z〉| =
∣∣∣∣

n∑

i=1

〈T ′′(fi), x′i〉
∣∣∣∣

≤
∣∣∣∣

n∑

i=1

〈
T ′′(idL∞(µ) −A)(fi), x′i

〉∣∣∣∣ +
∣∣∣∣

n∑

i=1

〈T ′′(A(fi)), x′i〉
∣∣∣∣

≤ ε ‖T‖
n∑

i=1

‖fi‖ ‖x′i‖+
∣∣∣∣

n∑

i=1

〈T ′′(A(fi)), x′i〉
∣∣∣∣.

As T is a lattice homomorphism, according to Ando (see [8: Theorem 1.4.19]) T ′′ is
also a lattice homomorphism, and X1 = T ′′(M1) is a finite-dimensional sublattice of
X ′′. From the theorem of Conroy and Moore (see [2: Lemma 4.3]), X ′′ is lattice finitely
representable in X, and then there is a finite-dimensional sublattice X2 of X and a
lattice isomorphism C : X1 → X2 such that ‖C‖ ‖C−1‖ ≤ 1+ ε. As X is lattice finitely
representable in `1{`H}, there is a finite-dimensional sublattice Z of `1{`H} and an
lattice isomorphism D : X2 → Z such that ‖D‖ ‖D−1‖ ≤ 1 + ε. Let R : M1 → Z
denote the map R = DCT ′′ and IZ the inclusion of Z in `1{`H}. Then

n∑

i=1

〈
T ′′(A(fi)), x′i

〉
=

n∑

i=1

〈(
(DC)−1(DC)T ′′

)
(A(fi)), x′i

〉

=
n∑

i=1

〈
((DC)−1)(R(A(fi))), x′i

〉

=
n∑

i=1

〈
R(A(fi)), ((DC)−1)′(x′i)

〉

=
〈

R,

n∑

i=1

A(fi)⊗ ((DC)−1)′(x′i)
〉

with
n∑

i=1

A(fi)⊗ ((DC)−1)′(x′i) ∈ M1 ⊗ Z ′.

The map I ′Z : (`1{`H})′ → Z ′ is a canonical quotient map and M1 is a L∞,1+ε

space. Then after Proposition 10, there is u ∈ M1 ⊗ (`1{`H})′ with a representation
u =

∑m
j=1 gj ⊗ aj so that

(idM1 ⊗ I ′Z)(u) =
n∑

i=1

A(fi)⊗ ((DC)−1)′(x′i)

(gc
H)′

(
u; M1 ⊗ (`1{`H})′

) ≤ (1 + ε)(gc
H)′

( n∑

i=1

A(fi)⊗ ((DC)−1)′(x′i); M1 ⊗ Z ′
)

.
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Then 〈
R,

n∑

i=1

A(fi)⊗ ((DC)−1)′(x′i)
〉

=
〈
R, (idM1 ⊗ I ′Z)(u)

〉

=
m∑

j=1

〈
R(gj), I ′Z(aj)

〉

=
m∑

j=1

〈
(IZR)(gj), aj

〉

= 〈IZR, u〉.
But IZR : M1 → `1{`H} is a positive map. Then from Theorem 4, IZR is Hc-integral.
Accordingly,

|〈IZR, u〉| ≤ ‖IZR‖(gc
H)′

(
u; M1 ⊗ (`1{`H})′

)

≤ (1 + ε)‖R‖(gc
H)′

( n∑

i=1

A(fi)⊗ ((DC)−1)′(x′i); M1 ⊗ Z ′
)

≤ (1 + ε)‖D‖ ‖C‖ ‖T ′′‖ ‖(DC)−1‖(gc
H)′

( n∑

i=1

A(fi)⊗ x′i;M1 ⊗N

)

≤ (1 + ε)3‖T‖ ‖A‖(gc
H)′(z; M ⊗N)

≤ (1 + ε)4‖T‖(gc
H)′(z; M ⊗N)

≤ (1 + ε)4‖T‖((gc
H)′(z; L∞(µ)⊗X ′) + ε

)
.

In consequence,

|〈T ′′, z〉| ≤ ε ‖T‖
n∑

i=1

‖fi‖ ‖x′i‖+ (1 + ε)4‖T‖((gc
H)′(z; L∞(µ)⊗X ′) + ε

)
.

Then as ε is arbitrary,

|〈T ′′, z〉| ≤ ‖T‖(gc
H)′(z; L∞(µ)⊗X ′)

hence

T ′′ ∈ (L∞(µ)⊗(gc
H

)′ X ′)′ with ‖T ′′‖(L∞(µ)⊗(gc
H

)′X′)′ ≤ ‖T‖ = ‖T ′′‖.

Then T ′′ is Hc-integral, hence T is also Hc-integral with Hc-integral’s norm being less
or equal to ‖T‖

Let D be an index set and D a non-trivial ultrafilter on D. Given a family of Banach
spaces {Ad}d∈D, (Ad)D denotes the corresponding ultraproduct. If every Ad is a Banach
lattice, (Ad)D has a canonical order which makes it a Banach lattice. If we have another
family of Banach spaces {Bd}d∈D and a family of operators {T d ∈ L(Ad, Bd)}d∈D such
that supd∈D ‖T d‖ < ∞, (T d)D ∈ L

(
(Ad)D, (Bd)D

)
denotes the canonical ultraproduct
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operator. The main ideas on ultraproducts of Banach spaces used in this paper are
stated in [2, 3]. The importance of the ultraproduct construction techniques in operators
theory is well known. Therefore the interest of finite representability in this paper goes
through the fundamental fact that a Banach space (lattice) X is finitely representable
(lattice finitely representable) in the family of Banach spaces (lattices) {Xi}i∈I (in the
Banach space (lattice) Y ), if and only if X is isometric to a subspace (sublattice) of some
ultraproduct (ultrapower) of Banach spaces (lattices) of that family (of Y ). Moreover,
according to Conroy and Moore’s theorem, the bidual E′′ of a Banach lattice E is
lattice finitely representable in E (see [2: Lemma 4.3]). Finally, we have the following
characterization theorem of Hc-integral operators:

Theorem 11. For every pair of Banach spaces E and F , the following statements
are equivalent:

1) T ∈ IHc(E, F ).
2) JF T factors in the following way:

where B is a lattice homomorphism and X a Banch space, which is lattice finitely
representable in `1{`H}. Furthermore, IHc(T ) = inf{‖D‖ ‖B‖ ‖A‖}, taking the infimum
over all such factors.

Proof. The implication 2) ⇒ 1) is evident from the preceding theorem. As to
1) ⇒ 2), we define the set

D =
{

(M,N) : M ∈ FIN(E) and N ∈ FIN(F ′)
}

where FIN(Y ) is the set of finite-dimensional subspaces of a Banach space Y , endowed
with the natural inclusion order

(M1, N1) ≤ (M2, N2) ⇐⇒ M1 ⊂ M2 and N1 ⊂ N2.

For every (M0, N0) ∈ D, set

R(M0, N0) =
{
(M, N) ∈ D : (M0, N0) ⊂ (M, N)

}

R =
{
R(M, N) : (M,N) ∈ D

}
.

R is a filter basis in D, and according to Zorn’s lemma, let D be an ultrafilter on D
containing R. If d ∈ D, Md and Nd denote the finite-dimensional subspaces of E and
F ′, respectively, so that d = (Md, Nd). For every d ∈ D, if z ∈ Md ⊗Nd,

JF T|Md⊗Nd
∈ (Md ⊗(gc

H
)′ Nd)′ = M ′

d ⊗gc
H

N ′
d = NHc(Md, N

′
d).
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Then from the characterization of Hc-nuclear operators, Theorem 3, JF T|Md⊗Nd
factors

in the following way:

where Bd is a positive diagonal with IHc(T|Md⊗Nd
) ≤ IHc(T ). Without loss of generality

we can assume that ‖Ad‖ = ‖Cd‖ = 1 and ‖Cd‖ ≤ IHc(T ). We define WE : E → (Md)D
by WE(x) = (xd)D, so that xd = x if x ∈ Md and xd = 0 if x /∈ Md. In the same way
we define WF ′ : F ′ → (Nd)D by WF ′(a) = (ad)D, so that ad = a if a ∈ Nd and ad = 0
if a /∈ Nd. Then we have the following commutative diagram:

Then with A = (Ad)D, B = (Bd)D, C = (Cd)D, and G = (`∞{`∞(Γd)})D and
Z = (N ′

d)D, we have the following diagram:

As G is an abstract M -space, G′′ is lattice isometric to some L∞(µ). Moreover, F ′′

is complemented in F ′′′′, and if P : F ′′′′ → F ′′ is the projection, then ‖P‖ ≤ 1 and
PJF ′′JF T = JF T . According to this we have the following diagram:

But Z is lattice finitely representable in `1{`H}, and according to the theorem of Conroy
and Moore, Z ′′ is also lattice finitely representable in `1{`H}
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