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1. Introduction and Preliminaries

A C∗-seminorm p on a locally convex ∗-algebra A is a seminorm enjoying the so-called
C∗-property p(x∗x) = p(x)2 (x ∈ A). They have been extensively studied in the
literature (see, e.g., [9 - 13, 19]). One of the main points of the theory is that every
∗-representation of the completion (A, p) is bounded.

Generalizations of this notions have led Bhatt, Ogi and one of us [11] to consider so-
called unbounded C∗-seminorms on ∗-algebras. Their main feature is that they need not
be defined on the whole A but only on a ∗-subalgebra of it. This fact allows the existence
of unbounded representations of A (and motivates the adjective ”unbounded” used to
name them). But it is not only for need of mathematical generalization that it makes
sense to consider unbounded C∗-seminorms but also because of it appearance in some
subject of mathematical physics [1, 15, 18]. However, when considering unbounded C∗-
seminorms on a locally convex ∗-algebra A whose multiplication is not jointly continuous
one is naturally led to consider partial algebraic structures: in that case in fact the
completion of A is no longer, in general, a locally convex ∗-algebra but only a topological
quasi ∗-algebra [16, 17]. Quasi ∗-algebras are a particular case of partial ∗-algebras [3].
Roughly speaking, a partial ∗-algebra A is a linear space with involution and a partial
multiplication defined on a subset Γ of A × A enjoying some of the usual properties
of multiplication, with the very relevant exception of associativity. Of course, as one
of the main tools in the study of ∗-algebras is the theory of ∗-representations, partial
∗-algebras of operators (so-called partial O∗-algebras) have been considered as the main
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instance of these new algebraic structures and a systematic study has been undertaken
[3 - 6]. From a more abstract point of view, the possibility of introducing topologies
compatible with the structure of a partial ∗-algebra has been investigated in [2].

The present paper is organized as follows.
In Section 2, starting from a C∗-seminorm p on a partial ∗-algebra A, we prove the

existence of quasi ∗-representations of A induced by p; they are named in this way since
the usual rule for the multiplication holds in a sense that remind the multiplication in
quasi ∗-algebras. These quasi ∗-representations depend essentially on a certain subspace
Np of the domain D(p) of the C∗-seminorm p. Of course, by adding assumptions on
Np we are led to consider a variety of situations of some interest. In this perspective,
we introduce the notions of finite and (weakly-) semifinite C∗-seminorms and study in
detail the quasi ∗-representations that they induce.

In Section 3 we consider the problem as to whether a ∗-representation of A, in
the sense of [5], does really exist or in other words if the quasi ∗-representation, whose
existence has been proved in Section 2, is indeed a ∗-representation.

In Section 4, we reverse the point of view: starting from a ∗-representation π of a
partial ∗-algebra, we construct an unbounded C∗-seminorm rπ on A which turns out
to admit a ∗-representation πN

rπ
called natural. We then investigate the relationship

between πN
rπ

and the ∗-representation π where we had started with.
Section 5 is devoted to the discussion of some examples.

Before going forth, we shortly give some definitions needed in the sequel.
A partial ∗-algebra is a complex vector space A, endowed with an involution x 7→ x∗

(that is, a bijection such that x∗∗ = x) and a partial multiplication defined by a set
Γ ⊂ A×A (a binary relation) such that:

(i) (x, y) ∈ Γ implies (y∗, x∗) ∈ Γ.
(ii) (x, y1), (x, y2) ∈ Γ implies (x, λy1 + µy2) ∈ Γ for all λ, µ ∈ C.
(iii) For any (x, y) ∈ Γ, there is defined a product x y ∈ A, which is distributive with

respect to addition and satisfies the relation (x y)∗ = y∗x∗.
The element e of the partial ∗-algebra A is called a unit if e∗ = e, (e, x) ∈ Γ for all
x ∈ A and e x = x e = x for all x ∈ A.

Given the defining set Γ, spaces of multipliers are defined in the obvious way:

(x, y) ∈ Γ ⇐⇒ x ∈ L(y) or x is a left multiplier of y

⇐⇒ y ∈ R(x) or y is a right multiplier of x.

For a subset B of A, we write

L(B) = ∩x∈BL(x), R(B) = ∩x∈BR(x).

Notice that the partial multiplication is not required to be associative (and often it is
not). The following weaker notion is therefore in use: a partial ∗-algebra A is said to
be semi-associative if y ∈ R(x) implies y · z ∈ R(x) for every z ∈ R(A) and

(x · y) · z = x · (y · z).
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Let A[τ ] be a partial ∗-algebra, which is a topological vector space for the locally
convex topology τ . Then A[τ ] is called a topological partial ∗-algebra if the following
two conditions are satisfied [2]:

(i) The involution a 7→ a∗ is τ -continuous.
(ii) The maps a 7→ xa and a 7→ ay are τ -continuous for all x ∈ L(A) and y ∈ R(A).

A quasi ∗-algebra (A,A0) is a partial ∗-algebra where the multiplication is defined via
the ∗-algebra A0 ⊂ A by taking Γ as

Γ =
{

(a, b) ∈ A×A : a ∈ A0 or b ∈ A0

}
.

If A is endowed with a locally convex topology which makes it into a topological partial
∗-algebra and A0 is dense in A, then (A,A0) is said to be a topological quasi ∗-algebra.

We turn now to partial O∗-algebras. LetH be a complex Hilbert space andD a dense
subspace of H. We denote by L†(D,H) the set of all (closable) linear operators X such
that D(X) = D and D(X∗) ⊇ D. The set L†(D,H) is a partial ∗-algebra with respect
to the following operations: the usual sum X1 + X2, the scalar multiplication λX, the
involution X 7→ X† = X∗ ¹D and the (weak) partial multiplication X1utX2 = X1

†∗X2,
defined whenever X2 is a weak right multiplier of X1 (equivalently, X1 is a weak left
multiplier of X2), that is, if and only if X2D ⊂ D(X1

†∗) and X∗
1D ⊂ D(X∗

2 ) (we write
X2 ∈ Rw(X1) or X1 ∈ Lw(X2)). When we regard L†(D,H) as a partial ∗-algebra with
those operations, we denote it by L†w(D,H).

A partial O∗-algebra on D is a (partial) ∗-subalgebra M of L†w(D,H), that is, M
is a subspace of L†w(D,H) containing the identity and such that X† ∈ M whenever
X ∈M and X1utX2 ∈M for any X1, X2 ∈M such that X2 ∈ Rw(X1). Thus L†w(D,H)
itself is the largest partial O∗-algebra on the domain D.

Given a †-invariant subset N of L†(D,H), the familiar weak bounded commutant
is defined as

N ′
w =

{
C ∈ B(H) : (CXξ|η) = (Cξ|X†η) for each ξ, η ∈ D and X ∈ N

}
.

The last definitions we need are related with representations.
A ∗-representation of a partial ∗-algebra A is a ∗-homomorphism of A into L†w(D(π),

Hπ), for some pair D(π) ⊂ Hπ, that is, a linear map π : A → L†w(D(π),Hπ) such that
(i) π(x∗) = π(x)† for every x ∈ A.
(ii) x ∈ L(y) in A implies π(x) ∈ Lw(π(y)) and π(x) utπ(y) = π(xy).

If π is a ∗-representation of the partial ∗-algebra A into L†w(D(π),Hπ), we define D̃(π)
as the completion of D(π) with respect to the graph topology defined by π(A). Fur-
thermore, we put

D̂(π) = ∩x∈AD(π(x))

D(π)∗ = ∩x∈AD(π(x)∗).

We say that π is

-closed if D(π) = D̃(π)
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-fully-closed if D(π) = D̂(π)
s -self-adjoint if D(π) = D(π)∗.

Let π1 and π2 be ∗-representations of A. With the notation π1 ⊂ π2 we mean that
Hπ1 ⊆ Hπ2 , D(π1) ⊆ D(π2) and π1(a)ξ = π2(a)ξ for each ξ ∈ D(π1).

By considering the identical ∗-representations, the terms fully-closed, self-adjoint
etc. can also be referred to a partial O∗-algebra on a given domain D and then gener-
alized, in obvious way, to an arbitrary †-invariant subset of L†(D,H).

2. Representations induced by unbounded C∗-seminorms

In this section we construct (quasi) ∗-representations of partial ∗-algebras from un-
bounded C∗-seminorms. Throughout this paper we treat only with partial ∗-algebras
whose partial multiplication satisfies the property

(A)
{

y∗(ax) = (y∗a)x
a(xy) = (ax)y for all a ∈ A and all x, y ∈ R(A).

We remark that if A is semi-associative, then it satisfies Property (A).

Definition 2.1. A mapping p of a (partial) ∗-subalgebra D(p) of A into R+ is said
to be an unbounded m∗-(semi)norm on A if

(i) p is a (semi) norm on D(p).
(ii) p(x∗) = p(x) for all x ∈ D(p).
(iii) p(xy) ≤ p(x)p(y) for all x, y ∈ D(p) such that x ∈ L(y).

An unbounded m∗-(semi)norm p on A is said to be an unbounded C∗-(semi)norm if

(iv) p(x∗x) = p(x)2 for all x ∈ D(p) such that x∗ ∈ L(x).

An unbounded m∗-(semi)norm or C∗-(semi)norm on A is said to be a m∗-(semi)norm
or C∗-(semi)norm, respectively, if D(p) = A.

An (unbounded) m∗-seminorm p on A is said to have Property (B) if it satisfies the
following basic density-condition:

(B) R(A) ∩ D(p) is total in D(p) with respect to p.

Lemma 2.2. Let p be an m∗-seminorm on A having Property (B), that is, R(A) is
p-dense in A. We denote by Â the set of all Cauchy sequences in A with respect to the
seminorm p and define an equivalent relation ∼ in Â by {an} ∼ {bn} if limn→∞ p(an−
bn) = 0. Then the following statements hold:

(1) The quotient space Â/∼ is a Banach ∗-algebra under the following operations,
involution and norm:

{an}∼ + {bn}∼ ≡ {an + bn}∼
λ{an}∼ ≡ {λan}∼

{an}∼{bn}∼ ≡ {xnyn}∼
({xn}∼, {yn}∼ ∈ R(A), {xn}∼ ≡ {an}∼, {yn}∼ ≡ {bn}∼

)

{an}∼∗ ≡ {a∗n}∼
‖{an}∼‖p ≡ lim

n→∞
p(an).
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(2) For each a ∈ A we put ã = {an}∼ (an = a, n ∈ N) and Ã = {ã : a ∈ A}. Then
Ã is a dense ∗-invariant subspace of Â/∼ satisfying ãb̃ = (ab)∼ whenever a ∈ L(b).

(3) Suppose p is a C∗-seminorm on A. Then Â/∼ is a C∗-algebra.

Proof. As in the usual construction of the completion of a normed space, it can be
shown that Â/∼ is a Banach space.

We first show that {an}∼{bn}∼ is well-defined and the relation defines a multiplica-
tion of Â/∼. Since R(A) is p-dense in A, for each {an}, {bn} ∈ Â there exist sequences
{xn}, {yn} ∈ R(A) such that {an}∼ = {xn}∼ and {bn}∼ = {yn}∼. Then it follows from
the submultiplicativity of p that {xnyn}∼ ∈ Â and {an}∼{bn}∼ is independent of the
choice of the equivalent sequences {xn} and {yn}. Further, the relation {an}∼{bn}∼
defines a multiplication of Â/∼. In fact, the associativity follows from the equalities

{an}∼({bn}∼{cn}∼) = {xn}∼({ynzn}∼)

= {xn(ynzn)}∼
= {(xnyn)zn}∼
= ({an}∼{bn}∼){cn}∼

where {xn}, {yn}, {zn} ⊂ R(A) such that {xn}∼ = {an}∼, {yn}∼ = {bn}∼ and {zn}∼ =
{cn}∼, and the other properties can be proved in a similar way. Thus Â/∼ is a usual
algebra.

Similarly it is shown that {an}∼ 7→ {a∗n}∼ is an involution of the algebra Â/∼, and

‖{an}∼{bn}∼‖p ≤ ‖{an}∼‖p‖{bn}∼‖p, ‖{an}∼∗‖p = ‖{an}∼‖p

for each {an}, {bn} ∈ Â, which implies statement (1), i.e. that Â/∼ is a Banach
∗-algebra. Statements (2) and (3) can be proved in a similar way

From now on we denote by

Σ(A) the set of all unbounded C∗-seminorms on A
ΣB(A) the subset of Σ(A) consisting of those satisfying Property (B).

Let p be an unbounded C∗-seminorm on A having Property (B), i.e. p ∈ ΣB(A).
By Lemma 2.2, Ap ≡ D̂(p)/∼ is a C∗-algebra. We denote by Rep(Ap) the set of all
∗-representations Πp of the C∗-algebra Ap on Hilbert space HΠp and put

FRep(Ap) =
{

Πp ∈ Rep(Ap) : Πp is faithful
}

.

Then we have the following

Proposition 2.3. For any Πp ∈ Rep(Ap) we put

π◦p(x) = Πp(x̃) (x ∈ D(p)).

Then π◦p is a ∗-representation of D(p) on HΠp .
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This proposition provides the most natural way to define a ∗-representation of D(p).
However, π◦p cannot be extended to the whole A. The construction of ∗-representations
of A requires a more detailed analysis. This will be the content of the next propositions.

To begin with, we put

Np =
{

x ∈ D(p) ∩R(A) : ax ∈ D(p) for all a ∈ A
}

.

Then we have the following

Lemma 2.4.

(1) Np is an algebra satisfying (D(p) ∩R(A))Np ⊂ Np.

(2) We denote by Tp the closure of Ñp in the C∗-algebra Ap. Then Tp is a closed
left ideal of Ap.

(3) Πp(Ñp

2
)HΠp is dense in Πp(Ñp)HΠp .

Proof. Statement (1) follows from the semi-associativity (A).

Statement (2): Since D(p) ∩ R(A) is p-dense in D(p) and the above property (1),
it follows that D(p)∼N∼

p ⊂ Tp, and so D(p)∼Tp ⊂ Tp. Since D(p)∼ is dense in the
C∗-algebra Ap, we have ApTp ⊂ Tp.

Statement (3): It is clear that Πp(Ñp

2
)HΠp is dense in Πp(ÑpTp)HΠp . Since Tp is

a closed left ideal of the C∗-algebra Ap, there exists a direct net {Uλ} in Tp such that
limλ ‖AUλ − A‖p = 0 for each A ∈ Tp, which implies that Πp(ÑpTp)HΠp is dense in

Πp(Ñp)HΠp . Hence Πp(Ñp

2
)HΠp is dense in Πp(Ñp)HΠp

Let now
D(πp) = Lin

{
Πp((xy)∼)ξ : x, y ∈ Np and ξ ∈ HΠp

}

and Hπp be the closure of D(πp) in HΠp . We define

πp(a)
(∑

kΠp((xkyk)∼)ξk

)
=

∑
kΠp((axk)∼ỹk)ξk

for a ∈ A and
∑

k Πp((xkyk)∼)ξk ∈ D(πp).

Remark. By Lemma 2.4/(3) we have

Hπp ≡ Lin
{

Πp(x̃1x̃2)ξ : x1, x2 ∈ Np and ξ ∈ HΠp

}

= Lin
{

Πp(x̃)ξ : x ∈ Np and ξ ∈ HΠp

}
.

In general, it may happen that Hπp is very ’small’ compared to HΠp . This point will
be considered at the end of this section, where well-behaved representations related to
unbounded C∗-seminorms will be introduced.

Now, we prove the following
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Lemma 2.5. πp is a linear map of A into L†(D(πp),Hπp
) satisfying the following

properties:

(i) πp(a∗) = πp(a)† (a ∈ A).

(ii) πp(ax) = πp(a) utπp(x)
(
a ∈ A, x ∈ R(A)

)
.

(iii) ‖πp(x)‖ ≤ p(x) (x ∈ D(p)). Further, if πp ∈ FRep(Ap), then ‖πp(x)‖ = p(x)
(x ∈ Np).

Proof. By Lemma 2.4/(2)-(3) we have

Πp((ax)∼ỹ)ξ ∈ Πp(Tp)HΠp
⊂ Hπp

for each a ∈ A, x, y ∈ Np and ξ ∈ HΠp , and further by Property (A)

(
Πp((ax1)∼ỹ1)ξ|Πp(x̃2ỹ2)η

)

=
(
Πp(ỹ1)ξ|Πp(((ax1)∗x2)∼)Πp(ỹ2)η

)

=
(
Πp(ỹ1)ξ|Πp((x∗1(a

∗x2))∼)Πp(ỹ2)η
)

=
(
Πp(x̃1ỹ1)ξ|Πp((a∗x2)∼ỹ2)η

)

for each a ∈ A, x1, y1, x2, y2 ∈ Np and ξ, η ∈ HΠp , which implies that πp(a) is a well-
defined linear map from D(πp) to Hπp satisfying πp(a∗) = πp(a)†. It is clear that πp is
a linear map of A into L†(D(πp),Hπp).

We next show statement (ii). Take arbitrary a ∈ A and x ∈ R(A). By Property
(A) we have

z∗((ax)y) = (z∗(ax))y = ((z∗a)x)y

for each a ∈ A, x ∈ R(A) and y, z ∈ Np, and hence it follows from Lemma 2.2/(2) that

(
πp(ax)Πp(ỹ1ỹ2)ξ|Πp(z̃1z̃2)η

)

=
(
Πp((ax)y1)∼)Πp(ỹ2)ξ|Πp(z̃1)Πp(z̃2)η

)

=
(
Πp(((z∗1a)x)∼ỹ1)Πp(ỹ2)ξ|Πp(z̃2)η

)

=
(
Πp(ỹ1ỹ2)ξ|Πp(x̃∗(z∗1a)∗∼)Πp(z̃2)η

)

=
(
Πp(x)Πp(ỹ1ỹ2)ξ|πp(a)†Πp(z̃1z̃2)η

)

=
(
πp(x)Πp(ỹ1ỹ2)ξ|πp(a)†Πp(z̃1z̃2)η

)

for each y1, y2, z1, z2 ∈ Np and ξ, η ∈ HΠp , which implies statement (ii).

Take an arbitrary x ∈ D(p). Since πp(x) = Πp(x̃)¹Hπp , it follows that ‖πp(x)‖ ≤
‖Πp(x̃)‖ = p(x). Suppose Πp ∈ FRep(Ap). Take an arbitrary x ∈ Np. It is sufficient
to show ‖πp(x)‖ ≥ p(x). If p(x) = 0, then this is obvious. Suppose p(x) 6= 0. We put
y = x

p(x) . Since

‖Πp(ỹ)ξ‖ ≤ ‖Πp(ỹ)‖ ‖ξ‖ = p(y)‖ξ‖ ≤ 1
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for each ξ ∈ HΠp
such that ‖ξ‖ ≤ 1 and Πp(Ñp)HΠp

is total in Hπp
(by Lemma 2.4/(3)

and Remark thereafter), it follows that

‖πp(y)‖ = ‖πp(y∗)‖
≥ sup

{‖πp(y∗)Πp(ỹ)ξ‖ : ξ ∈ HΠp with ‖ξ‖ ≤ 1
}

= sup
{‖Πp((y∗y)∼)ξ‖ : ξ ∈ HΠp

with ‖ξ‖ ≤ 1
}

= ‖Πp((y∗y)∼)‖
= p(y∗y)

= p(y)2

= 1

which implies that ‖πp(x)‖ ≥ p(x)

Remark. If, instead of following the above procedure, we would have taken

D(π) = Lin
{
Πp(x̃)ξ : x ∈ Np and ξ ∈ HΠp

}

Hπ = closure of D(π) in HΠp

and

π(a)
(∑

kΠp(x̃k)ξk

)
=

∑
kΠp((axk)∼)ξk

for a ∈ A and
∑

k Πp(x̃k)ξk ∈ D(π), then we could not conclude that π(a) belongs to
L†(D(π),Hπ) for each a ∈ A.

So far, we do not know whether πp is a ∗-representation of A for the lack of semi-
associativity of partial multiplication, and so we define the following notion:

Definition 2.6. A linear map π of A into L†(D(π),Hπ) is said to be a quasi ∗-
representation if

(i) π(a∗) = π(a)† for all a ∈ A

(ii) π(ax) = π(a) utπ(x) for all a ∈ A and all x ∈ R(A).

By Lemma 2.5, for each p ∈ ΣB(A), every πp is a quasi ∗-representation of A, and
it is said to be a quasi ∗-representation of A induced by p.

We summerize in the following scheme the method of construction πp from an
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unbounded C∗-seminorm p described above:

Here the arrow A - - - → B means that B is constructed from A.
We put

QRep(A, p) =
{
πp : Πp ∈ Rep(Ap)

}

Rep(A, p) =
{
πp ∈ QRep(A, p) : πp is a ∗-representation

}

FQRep(A, p) =
{
πp : Πp ∈ FRep(Ap)

}
.

Definition 2.7. Let p ∈ ΣB(A). We say that p is representable if

FRep(A, p) ≡
{

πp ∈ FQRep(A, p) : πp is a ∗-representation of A
}
6= ∅.

It is natural to look for conditions for p to be representable. We shall consider this
problem in Section 3.

We define the notions of semifiniteness and weak semifiniteness of unbounded C∗-
seminorms, and study (quasi) ∗-representations induced by them.

Definition 2.8. An unbounded m∗-seminorm p on A is said to be

-finite if D(p) = Np

-semifinite if Np is p-dense in D(p).

An unbounded C∗-seminorm p on A having Property (B) is said to be

-weakly semifinite if QRepWB(A, p) ≡ {
π ∈ FQRep(A, p) : Hπp = HΠp

} 6= ∅
and an element πp of QRepWB(A, p) is said to be a

-well-behaved quasi ∗-representation of A in QRep(A, p).

A representable unbounded C∗-seminorm p on A having Property (B) is said to be

-weakly semifinite if RepWB(A, p) ≡ QRepWB(A, p) ∩ Rep(A, p) 6= ∅.
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We remark that semifinite unbounded m∗- or C∗-seminorms automatically satisfy Prop-
erty (B).

Let π be a (quasi) ∗-representation of A. We put

Aπ
b =

{
x ∈ A : π(x) ∈ B(Hπ)

}

Nπ ≡
{
x ∈ Aπ

b ∩R(A) : ax ∈ Aπ
b for all a ∈ A}

.

Definition 2.9. If π(A)D(π) is total in Hπ, then π is said to be non-degenerate.
If π(Nπ)D(π) is total in Hπ, then π is said to be strongly non-degenerate.

Proposition 2.10. Let p be an unbounded C∗-seminorm on A having Property
(B). Then the following statements hold:

(1) We have

QRepWB(A, p) ⊂
{

πp ∈ QRep(A, p) : Πp is non-degenerate
}

RepWB(A, p) ⊂
{

πp ∈ Rep(A, p) : Πp is non-degenerate
}

.

In particular, if p is semifinite, then it is weakly semifinite and

QRepWB(A, p) =
{

πp ∈ QRep(A, p) : Πp is non-degenerate
}

RepWB(A, p) =
{

πp ∈ Rep(A, p) : Πp is non-degenerate
}

.

(2) Suppose πp ∈ QRepWB(A, p). Then:
(i) πp(Np)D(πp) is total in Hπp , and so πp is strongly non-degenerate.

(ii) ‖πp(x)‖ = p(x) for each x ∈ D(p).

(iii) πp(A)′w = πp(D(p))
′
and πp(A)′wD(πp) ⊂ D(πp).

Conversely, suppose πp ∈ QRep(A, p) or πp ∈ Rep(A, p) satisfy conditions (i) and (ii)
above. Then there exists an element πWB

p of QRepWB(A, p) or RepWB(A, p), respec-
tively, which is a restriction of πp.

Proof.
Statement (1): Take an arbitrary πp ∈ QRepWB(A, p). Then since

D(πp) ⊂ LinΠp(Ap)HΠp ⊂ HΠp = Hπp

it follows that Πp is non-degenerate. Suppose p is semifinite. Let Πp ∈ Rep(Ap) be
non-degenerate. Since p is semifinite, it follows that {Πp(x̃) : x ∈ Np} is uniformly
dense in the C∗-algebra Πp(Ap), which implies HΠp = Hπp .

Statement (2): Let πp ∈ QRepWB(A, p). Since Hπp = HΠp and πp(x) = Πp(x̃) ¹
D(πp) for each x ∈ D(p), it follows that πp(Np)D(πp) is total in Πp(Ñp)HΠp and
Np ⊂ Nπp , which implies by Lemma 2.4/(3) that statement (i) holds. Further, we have

πp(x) = Πp(x̃) (x ∈ D(p)) (2.2)
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and hence
‖πp(x)‖ = ‖Πp(x̃)‖ = p(x) (x ∈ D(p)).

We next show statement (iii). Take an arbitrary C ∈ πp(D(p))
′
. By (2.1) we have

CΠp(x̃) = Cπp(x) = πp(x)C = Πp(x̃)C (x ∈ D(p))

which implies that CΠp(x̃1x̃2)ξ ∈ D(πp) for each x1, x2 ∈ Np and ξ ∈ HΠp
and

πp(a)CΠp(x̃1x̃2)ξ = πp(a)Πp(x̃1x̃2)Cξ

= Πp((ax1)∼)CΠp(x̃2)ξ

= CΠp((ax1)∼)Πp(x̃2)ξ

= Cπp(a)Πp(x̃1x̃2)ξ

for each a ∈ A, x1, x2 ∈ Np and ξ ∈ HΠp . Hence C ∈ πp(A)′w and CD(πp) ⊂ D(πp).

The converse inclusion πp(A)′w ⊂ πp(D(p))
′
is trivial. Thus statement (iii) holds.

Conversely, suppose that πp ∈ QRep(A, p) satisfies conditions (i) and (ii). We put

ΠWB
p (x̃) = πp(x) (x ∈ D(p)).

Then it follows from (ii) that

‖ΠWB
p (x̃)‖ = ‖πp(x)‖ = p(x) = ‖x̃‖p (x ∈ D(p))

and hence ΠWB
p can be extended to a faithful ∗-representation of the C∗-algebra Ap on

the Hilbert space HΠWB
p

= Hπp . We denote it by the same symbol ΠWB
p and denote

by πWB
p the quasi ∗-representation of A induced by ΠWB

p . Then it follows from Lemma
2.4/(3) and statement (i) that

HπWB
p

= LinΠWB
p (Ñp)HΠWB

p
= Linπp(Np)Hπp = Hπp = HΠWB

p

so that πWB
p ∈ QRepWB(A, p). Further, since

ΠWB
p (x̃) = πp(x) = Πp(x̃)¹HπWB

p
(x ∈ D(p))

it follows that πWB
p is a restriction of πp. Suppose πp ∈ Rep(A, p). Then, since πWB

p is
a restriction of πp, it follows that πWB

p is a ∗-representation of A
The set ΣB(A) of all unbounded C∗-seminorms on A having Property (B) is an

ordered set with respect to the order relation ⊂ defined by

p ⊂ q ⇐⇒ D(p) ⊂ D(q) and p(x) = q(x) ∀x ∈ D(p).

Proposition 2.11. Let p and q be in ΣB(A). Suppose p ⊂ q. Then, for any
πp ∈ QRep(A, p) there exists an element πq of QRep(A, q) such that πp ⊂ πq.



306 F. Bagarello et. al.

Proof. Let Aq be the C∗-algebra constructed applying Lemma 2.2 to D(q). Then
it follows from p ⊂ q that for each x ∈ D(p) we can define

Φ : x̃ ∈ D̃(p) 7→ x̃ ∈ D̃(q).

Then Φ is an isometric ∗-isomorphism of the dense subspace D̃(p) of the C∗-algebra Ap

into the C∗-algebra Aq, and so it can be extended to a ∗-isomorphism of the C∗-algebra
Ap into the C∗-algebra Aq; we denote this extension by the same symbol Φ.

Take an arbitrary Πp ∈ Rep(Ap). Since Πp ◦ Φ−1 is a faithful ∗-representation of
the C∗-algebra Φ(Ap) on HΠp

and every C∗-algebra is stable [14: Proposition 2.10.2],
it follows that Πp ◦Φ−1 can be extended to a ∗-representation Πq of the C∗-algebra Aq

on HΠq
, that is, HΠp

is a closed subspace of HΠq
and Πq(Φ(A))¹HΠp

= Πp(A) for each
A ∈ Ap. Let πq denote the element of QRep(A, q) induced by Πq. Then we have

πp(a)Πp(x̃1x̃2)ξ = Πp((ax1)∼)Πp(x̃2)ξ

= Πq(Φ((ax1)∼))Πq(Φ(x̃2))ξ

= Πq((ax1)∼x̃2)ξ

= πq(a)Πq(x̃1x̃2)ξ

= πq(a)Πp(x̃1x̃2)ξ

for each a ∈ A, x1, x2 ∈ Np and ξ ∈ HΠp , and so πp ⊂ πq

3. Representability of unbounded C∗-seminorms

Let A be a partial ∗-algebra and p an unbounded C∗-seminorm on A. In this section
we give some conditions under which the equality Rep(A, p) = QRep(A, p) holds. The
first case we consider is that of a semi-associative partial ∗-algebra A.

Lemma 3.1. Suppose A is a semi-associative partial ∗-algebra and p ∈ ΣB(A).
Then Rep(A, p) = QRep(A, p).

Proof. Since A is semi-associative, it follows that

y∗((ab)x) = y∗(a(bx)) = (y∗a)(bx)

for each a ∈ L(b) and x, y ∈ Np which implies

(
πp(ab)Πp(x̃1x̃2)ξ|Πp(ỹ1ỹ2)η

)

=
(
Πp((y∗1((ab)x1))∼)Πp(x̃2)ξ|Πp(ỹ2)η

)

=
(
Πp((y∗1a)∼(bx1)∼)Πp(x̃2)ξ|Πp(ỹ2)η

)

=
(
πp(b)Πp(x̃1x̃2)ξ|πp(a∗)Πp(ỹ1ỹ2)η

)

for each x1, x2, y1, y2 ∈ Np and ξ, η ∈ HΠp . Hence πp is a ∗-representation of A
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We next consider the case of (everywhere defined) C∗-seminorms. Semi-associativity
of A is no more needed.

Lemma 3.2. Let A be a partial ∗-algebra. Suppose p is a semifinite C∗-seminorm
on A. Then Rep(A, p) = QRep(A, p) and every πp in Rep(A, p) is bounded.

Proof. Since p is a C∗-seminorm on A, we have D(p) = A and Np = R(A). For
any a ∈ A we have πp(a) = Πp(ã)¹ D(πp), and so πp(a) is bounded. Take arbitrary
a, b ∈ A such that a ∈ L(b). Then there exist sequences {xn}, {yn} ∈ R(A) such that
{xn}∼ = ã and {yn}∼ = b̃, and hence it follows from Lemma 2.2/(2) and Property (A)
that (

πp(ab)Πp(x̃1x̃2)ξ|Πp(ỹ1ỹ2)η
)

=
(
Πp({xnyn}∼x̃1)Πp(x̃2)ξ|Πp(ỹ1ỹ2)η

)

=
(
Πp({xn}∼)Πp({yn}∼)Πp(x̃1x̃2)ξ|Πp(ỹ1ỹ2)η

)

=
(
πp(b)Πp(x̃1x̃2)ξ|πp(a∗)Πp(ỹ1ỹ2)η

)

for each x1, x2, y1, y2 ∈ Np and ξ, η ∈ HΠp . Hence πp is a ∗-representation of A
Lemma 3.3. Let A be a partial ∗-algebra A and p ∈ ΣB(A). Assume there exists

a semifinite C∗-seminorm p̂ on A such that p ⊂ p̂. Then Rep(A, p) = QRep(A, p).

Proof. Take an arbitrary πp ∈ QRep(A, p). By Proposition 2.11 and Lemma 3.2
there exists an element πp̂ of QRep(A, p̂) = Rep(A, p̂) such that πp ⊂ πp̂ which implies
πp ∈ Rep(A, p)

We consider now the special case of topological partial ∗-algebras. The simplest
situation is of course that of topological quasi ∗-algebras, where we start from.

Lemma 3.4. Suppose A is a topological quasi ∗-algebra over A0 and p is an un-
bounded C∗-seminorm on A having Property (B). Then Rep(A, p) = QRep(A, p).

Proof. Since every topological quasi ∗-algebra A over A0 is semi-associative and
R(A) = A0, it follows from Lemma 3.1 that Rep(A, p) = QRep(A, p)

Let A[τ ] be a topological partial ∗-algebra and p an unbounded C∗-seminorm on A.
For any x ∈ Np we define a seminorm px on A by

px(a) = p(ax) (a ∈ A).

We denote by τp the locally convex topology on A defined by the family {px : x ∈ Np}
of seminorms. If τp ≺ τ , then p is said to be locally continuous.

Lemma 3.5. Let A[τ ] be a topological partial ∗-algebra satisfying the following
condition

(C) For any a ∈ A, the map La : R(a) → A, x 7→ ax is continuous.

Suppose p is a locally continuous unbounded C∗-seminorm on A having Property (B)
and R(A) ∩ D(p) is τ -dense in A. Then Rep(A, p) = QRep(A, p).

Proof. Take arbitrary a, b ∈ A such that a ∈ L(b). Since R(A) ∩ D(p) is τ -dense
in A, there exists a net {yβ} in R(A) ∩ D(p) such that τ − limβ yβ = b. Further, since
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A satisfies condition (C) we have τ − limβ ayβ = ab, and since p is locally continuous,
it follows that limβ p(yβx − bx) = 0 and limβ p((ayβ)x − (ab)x) = 0 for each x ∈ Np.
Hence we have

(
πp(b)Πp(x̃1x̃2)ξ|πp(a∗)Πp(ỹ1ỹ2)η

)

= (Πp((bx1)∼x̃2)ξ|πp(a∗)Πp(ỹ1ỹ2)η
)

= lim
β

(
Πp((yβ

x1)∼x̃2)ξ|πp(a∗)Πp(ỹ1ỹ2)η
)

= lim
β

(
Πp(ỹβ

x̃1)Πp(x̃2)ξ|πp(a∗)Πp(ỹ1ỹ2)η
)

= lim
β

(
Πp((ay

β
)∼x̃1)Πp(x̃2)ξ|Πp(ỹ1ỹ2)η

)

=
(
Πp(((ab)x1)∼)Πp(x̃2)ξ|Πp(ỹ1ỹ2)η

)

=
(
πp(ab)Πp(x̃1x̃2)ξ|Πp(ỹ1ỹ2)η

)

for each x1, x2, y1, y2 ∈ Np and ξ, η ∈ HΠp , which implies πp is a ∗-representation of A

4. Unbounded C∗-seminorms defined by ∗-representations

In the previous sections we constructed ∗-representations of a partial ∗-algebra A from
a representable unbounded C∗-seminorm on A having Property (B). Now, starting from
a ∗-representation π of A, we try to construct a representable unbounded C∗-seminorm
rπ ∈ ΣB(A). When this is possible, it makes sense to investigate on the relation between
π and the natural ∗-representation πN

rπ
of A induced by rπ

Let π be a ∗-representation of A on a Hilbert space Hπ. We put, as above,

Aπ
b =

{
x ∈ A : π(x) ∈ B(Hπ)

}

and
πb(x) = π(x) (x ∈ Aπ

b ).

Then Aπ
b is a partial ∗-subalgebra of A and πb is a bounded ∗-representation of Aπ

b on
Hπ. An unbounded C∗-seminorm rL

π on A is defined by

D(rL
π ) = Aπ

b and rL
π (x) = ‖πb(x)‖ (x ∈ D(rL

π )).

But rL
π does not necessarily have Property (B). For this reason, we consider the family

of all unbounded C∗-seminorms on A having Property (B) which are restrictions of
rL
π . We denote this family by ΣB(π) and call it the family of unbounded C∗-seminorms

induced by π.

Definition 4.1. If ΣB(π) 6= {0}, then π is said to have Property (B).

Suppose that π has Property (B) and rπ ∈ ΣB(π). We put

Π(x̃) = π(x) (x ∈ D(rπ)).
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Then since
‖Π(x̃)‖ = rπ(x) = ‖x̃‖rπ (x ∈ D(rπ))

it follows that Π can be extended to a faithful ∗-representation ΠN
rπ

of the C∗-algebra

Arπ
≡ D̂(rπ)/∼ on the Hilbert space Hπ, and ΠN

rπ
(Arπ

) = π(D(rπ))
‖ ‖

. We denote
by πN

rπ
the quasi ∗-representation of A constructed by ΠN

rπ
. This is called the natural

representation of A induced by π. Since HΠN
rπ

= Hπ, it follows that HπN
rπ

is a closed
subspace of Hπ.

Proposition 4.2. Suppose that π is a ∗-representation of A having Property (B)
and rπ ∈ ΣB(π). Then rπ is representable, πN

rπ
∈ Rep(A, rπ) and π̂¹D(πN

rπ
) = πN

rπ
.

Proof. Since

D(πN
rπ

) = Lin
{
ΠN

rπ
(x̃1x̃2)ξ : x1, x2 ∈ Nrπ , ξ ∈ Hπ

}

= Lin{π(x1x2)ξ : x1, x2 ∈ Nrπ , ξ ∈ Hπ

}

it follows that (
π(a)∗η|ΠN

rπ
(x̃1x̃2)ξ

)
=

(
π(a)∗η|π(x1x2)ξ

)

=
(
π((ax1)∗)η|π(x2)ξ

)

=
(
η|π((ax1)x2)ξ

)

=
(
η|πN

rπ
(a)ΠN

rπ
(x̃1x̃2)ξ

)

for each a ∈ A, η ∈ D(π(a)∗), x1, x2 ∈ Nrπ and ξ ∈ Hπ, which implies that

ΠN
rπ

(x̃1x̃2)ξ ∈ D(π(a))

π(a)ΠN
rπ

(x̃1x̃2)ξ = πN
rπ

(a)ΠN
rπ

(x̃1x̃2)ξ.

Hence, D(πN
rπ

) ⊂ D(π̂) and π̂¹D(πN
rπ

) = πN
rπ

, which implies since π̂ is a ∗-representation
of A that πN

rπ
is a ∗-representation of A and rπ is representable

We summarize in the following scheme the method of construction of πN
rπ

described
above:

Proposition 4.3. Suppose p is a representable weakly semifinite unbounded C∗-
seminorm on A having Property (B). Then every πp of RepWB(A, p) has Property (B).
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Take an arbitrary rπp
∈ ΣB(πp) which is an extension of p. Then πp ⊂ πN

rπp
and

π̂p = π̂rN
πp

.

Proof. Since p ∈ ΣB(A) and p ⊂ rπp
⊂ rN

πp
, it follows that πp has Property (B)

and Np ⊂ Nrπp
⊂ Aπp

b , which implies

D(πp) = Lin
{
πp(x1x2)ξ : x1, x2 ∈ Np and ξ ∈ Hπp

}

⊂ Lin
{
πp(x1x2)ξ : x1, x2 ∈ Nrπp

and ξ ∈ Hπp

}

= D(πN
πp

)

⊂ Hπp

and πp = πN
rπp

¹D(πp). On the other hand, it follows from Proposition 4.2 that πN
rπp

⊂ π̂p.
Hence it follows that Hπp = HπN

rπp
, πp ⊂ πN

rπp
and π̂p = π̂N

rπp

5. Examples

In this section we give some examples of unbounded C∗-seminorms on partial ∗-algebras
having Property (B).

Example 5.1. Let S be a vector space of complex sequences containing l∞. Sup-
pose that {xn}∗ ≡ {xn} ∈ S if {xn} ∈ S and S is l∞-module. Then S is a partial
∗-algebra under the following partial multiplication and involution: {xn} ∈ L({yn}) if
and only if {xnyn} ∈ S and {xn}∗ = {xn}, and it has Property (A) and R(S) ⊃ l∞.
We define an unbounded C∗-norm on S having Property (B) by

D(r∞) = l∞ and r∞({xn}) = ‖{xn}‖∞ ({xn} ∈ D(r∞)).

For any {xn} ∈ l∞ we put

Πr∞({xn}){yn} = {xnyn} ({yn} ∈ l2).

Then Πr∞ is a faithful ∗-representation of the C∗-algebra l∞ on the Hilbert space l2

and since
Nr∞ ⊃

{
{xn} ∈ S : xn 6= 0 for only finite numbers n

}

it follows that Πr∞(N 2
r∞)HΠr∞ is total in HΠr∞ . Hence r∞ is weakly semifinite.

Example 5.2. Let C(R) be a ∗-algebra of all continuous complex-valued functions
on R equipped with the usual operations f + g, λf, fg and the involution f∗ : f∗(t) =
f(t) (t ∈ R). Let A be a ∗-vector subspace of C(R). Then A is a partial ∗-algebra
having Property (A) under the following partial multiplication: f ∈ L(g) if and only if
fg ∈ A. Concrete examples of partial ∗-algebras of this kind are, for instance:

(1) A = C(R) ∩ Lp(R) (1 ≤ p < ∞).
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We here define an unbounded C∗-norm on A by

D(r∞) = Cc(R) ≡
{

f ∈ C(R) : suppf compact
}

and
r∞(f) = sup

t∈R
|f(t)| (f ∈ D(r∞)).

Then since D(r∞) ⊂ R(A), it follows that r∞ has Property (B). Further,

Ar∞ = C0(R) ≡
{

f ∈ C(R) : lim
|t|→∞

|f(t)| = 0
}

and a faithful ∗-representation Πr∞ of the C∗-algebra C0(R) on L2(R) is defined by

Πr∞(f)g = fg (f ∈ C0(R), g ∈ L2(R)).

Since Nr∞ ⊃ Cc(R), it follows that Πr∞(N 2
r∞)L2(R) is total in L2(R), which means

that r∞ is weakly semifinite.

(2) A = An ≡ {f ∈ C(R) : supt∈R
|f(t)|

(1+t2)n < ∞} (n ∈ N).

We define an unbounded C∗-norm r∞ on A by

D(r∞) = Cb(R) ≡
{

f ∈ C(R) : f bounded
}

and
r∞(f) = sup

t∈R
|f(t)| (f ∈ D(r∞)).

Then it is proved similarly to (1) that r∞ is a weakly semifinite unbounded C∗-norm
on A.

Similarly we have the following

Example 5.3.
(1) Let C∞(R) ∩ Lp(R) (1 ≤ p < ∞) where C∞(R) is a ∗-algebra of all infinitely

differentiable complex functions on R. We put

D(r∞) = C∞c (R) and r∞(f) = sup
t∈R

|f(t)| (f ∈ D(r∞)).

Then r∞ is a weakly semifinite unbounded C∗-norm on C∞(R)∩Lp(R) having Property
(B).

(2) Let n ∈ N and An = {f ∈ C∞(R) : supt∈R
|f(t)|

(1+t2)n < ∞}. We put

D(r∞) = C∞b (R) and r∞(f) = sup
t∈R

|f(t)| (f ∈ D(r∞)).

Then An is a partial ∗-algebra having Property (A) and r∞ is a weakly semifinite
unbounded C∗-norm on An having Property (B).
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Example 5.4. Let D be a dense subspace of a Hilbert space H and C(H) the C∗-
algebra of all compact operators on H. Suppose that the maximal partial O∗-algebra
L†(D,H) is self-adjoint. Then L†(D,H) has Property (A) and

Rw(L†(D,H)) =
{

X¹D : X ∈ B(H) and XH ⊂ D
}

.

We now define an unbounded C∗-norm ru on the maximal O∗-algebra L†(D,H) by

D(ru) = C(H)¹D and ru(X) = ‖X‖ (X ∈ D(ru)).

Since
F (D,H) ≡ Lin

{
ξ ⊗ y : ξ ∈ D and y ∈ H} ⊂ Rw(L†(D,H))

where (x ⊗ y)z = (z|y)x for x, y, z ∈ H and F (D,H) is uniformly dense in C(H), it
follows that ru has Property (B). Further, since Nr∞ ⊃ F (D,H), it follows that ru is
semifinite.

Example 5.5. Let M0 be an O∗-algebra on the Schwartz space S(R) and N =∑∞
n=0(n+1)fn⊗fn the number operator, where {fn} ⊂ S(R) is an orthonormal basis in

L2(R) consisting the normalized Hermite functions. Let M be a partial O∗-algebra on
S(R) containing M0 and {fn⊗ fm : m, n ∈ N0}, N0 = N∪{0}. Since M is self-adjoint,
it follows that M has Property (A). We define an unbounded C∗-norm on M by

D(ru) = Lin
{
Afn ⊗Bfm : A,B ∈M and n,m ∈ N0

}

ru(X) = ‖X‖ (X ∈ D(ru)).

Then
Lin

{
fn ⊗Bfm : B ∈M and n, m ∈ N0

}

is contained in Nru and is uniformly dense in D(ru). Hence ru has Property (B) and it
is semifinite.

Example 5.6. Let (A,A0) be a proper CQ∗-algebra [7, 8], i.e. a topological quasi
∗-algebra (A[τ ],A0) such that:

a) A[τ ] is a Banach space under the norm ‖ · ‖.
b) The involution * of A is isometric, i.e. ‖X‖ = ‖X∗‖ for all X ∈ A.

c) ‖X‖0 = max{‖X‖R, ‖X∗‖R} where ‖X‖R = sup{‖AX‖ : ‖A‖ ≤ 1}.
Of course, the C∗-norm on A0 can be viewed as an unbounded C∗-norm r with domain
D(r) = A0. Since R(A) = A0, it is obvious that r satisfies property (B). In order to
apply the results of Section 2 we have to consider the set

Nr =
{
X ∈ A0 : AX ∈ A0 for all A ∈ A}

.

Also in this simple situation, Nr might be trivial. Let us sketch a concrete case, where
this does not happen.
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Let S be an unbounded selfadjoint operator in Hilbert space H, S ≥ 1. The norm

‖X‖S = ‖S−1XS−1‖ (X ∈ B(H))

defines a topology stricly weaker than the one defined by the C∗-norm of B(H). Let

C(S) =
{
X ∈ B(H) : XS−1 = S−1X

}
.

C(S) is a C∗-algebra under the norm of B(H) and its ‖ · ‖S-completion Ĉ(S) is a
CQ∗-algebra on C(S) [8: Proposition 2.6]. Now define

D(r) = C(S) and r(X) = ‖X‖ (X ∈ C(S)).

Then r is an unbounded C∗-norm on Ĉ(S) satisfying property (B). It is easy to check
that

Nr ⊃
{
X ∈ C(S) : X is of finite rank

}
.

So, for instance, if S has the spectral decomposition

S =
∞∑

n=1

λnPn

where the Pn’s are finite rank projections, then Nr is non-trivial and the construction
of Section 2 applies. We remark that r need not be semifinite but, by Lemma 3.4, any
element of QRep(A, p) is indeed a ∗-representation.
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[2] Antoine, J.-P., Bagarello, F. and C. Trapani: Topological partial ∗-algebras: Basic prop-
erties and examples. Rev. Math. Phys. 11 (1999), 267 – 302.

[3] Antoine, J.-P. and W. Karwowski: Partial ∗-algebras of closed linear operators in Hilbert
space. Publ. RIMS, Kyoto Univ. 21 (1985), 205 – 236.

[4] Antoine, J.-P., Inoue, A. and C. Trapani: Partial ∗-algebras of closable operators. Part I:
The basic theory and the abelian case. Publ. RIMS, Kyoto Univ. 26 (1990), 359 – 395.

[5] Antoine, J.-P., Inoue, A. and C. Trapani: Partial ∗-algebras of closable operators. Part
II: States and representations of partial ∗-algebras. Publ. RIMS, Kyoto Univ. 27 (1991),
399 – 430.

[6] Antoine, J.-P., Inoue, A. and C. Trapani: Partial ∗-algebras of closable operators: A
review. Reviews Math. Phys. 8 (1996), 1 – 42.



314 F. Bagarello et. al.

[7] Bagarello, F. and C.Trapani: States and representations of CQ∗-algebras. Ann. Inst. H.
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