Unbounded C*-Seminorms and *-Representations of Partial *-Algebras

F. Bagarello, A. Inoue and C. Trapani

Abstract. The main purpose of this paper is to construct *-representations from unbounded C^* -seminorms on partial *-algebras and to investigate their *-representations.

Keywords: Partial *-algebras, quasi *-algebras, unbounded C^* -seminorms, (unbounded) *-representations

AMS subject classification: 46K70, 46L05

1. Introduction and Preliminaries

A C^* -seminorm p on a locally convex *-algebra \mathcal{A} is a seminorm enjoying the so-called C^* -property $p(x^*x) = p(x)^2$ ($x \in \mathcal{A}$). They have been extensively studied in the literature (see, e.g., [9 - 13, 19]). One of the main points of the theory is that every *-representation of the completion (\mathcal{A}, p) is bounded.

Generalizations of this notions have led Bhatt, Ogi and one of us [11] to consider socalled *unbounded* C^* -seminorms on *-algebras. Their main feature is that they need not be defined on the whole \mathcal{A} but only on a *-subalgebra of it. This fact allows the existence of unbounded representations of \mathcal{A} (and motivates the adjective "unbounded" used to name them). But it is not only for need of mathematical generalization that it makes sense to consider unbounded C^* -seminorms but also because of it appearance in some subject of mathematical physics [1, 15, 18]. However, when considering unbounded C^* seminorms on a locally convex *-algebra \mathcal{A} whose multiplication is not jointly continuous one is naturally led to consider partial algebraic structures: in that case in fact the completion of \mathcal{A} is no longer, in general, a locally convex *-algebra but only a topological quasi *-algebra [16, 17]. Quasi *-algebras are a particular case of partial *-algebras [3]. Roughly speaking, a partial *-algebra \mathcal{A} is a linear space with involution and a partial multiplication defined on a subset Γ of $\mathcal{A} \times \mathcal{A}$ enjoying some of the usual properties of multiplication, with the very relevant exception of associativity. Of course, as one of the main tools in the study of *-algebras is the theory of *-representations, partial *-algebras of operators (so-called partial O^* -algebras) have been considered as the main

F. Bagarello: Univ. of Palermo, Dept. Math. & Appl., IT-90128 Palermo, Italy

A. Inoue: Fukuoka University, Dept. Appl. Math., 814-0180, Fukuoka, Japan

C. Trapani: Univ. of Palermo, Dept. Phys. Sci. & Astr., IT-90123 Palermo, Italy

instance of these *new* algebraic structures and a systematic study has been undertaken [3 - 6]. From a more abstract point of view, the possibility of introducing topologies compatible with the structure of a partial *-algebra has been investigated in [2].

The present paper is organized as follows.

In Section 2, starting from a C^* -seminorm p on a partial *-algebra \mathcal{A} , we prove the existence of quasi *-representations of \mathcal{A} induced by p; they are named in this way since the usual rule for the multiplication holds in a sense that remind the multiplication in quasi *-algebras. These quasi *-representations depend essentially on a certain subspace \mathcal{N}_p of the domain $\mathcal{D}(p)$ of the C^* -seminorm p. Of course, by adding assumptions on \mathcal{N}_p we are led to consider a variety of situations of some interest. In this perspective, we introduce the notions of *finite* and (*weakly*-) semifinite C^* -seminorms and study in detail the quasi *-representations that they induce.

In Section 3 we consider the problem as to whether a *-representation of \mathcal{A} , in the sense of [5], does really exist or in other words if the quasi *-representation, whose existence has been proved in Section 2, is indeed a *-representation.

In Section 4, we reverse the point of view: starting from a *-representation π of a partial *-algebra, we construct an unbounded C^* -seminorm r_{π} on \mathcal{A} which turns out to admit a *-representation $\pi_{r_{\pi}}^N$ called *natural*. We then investigate the relationship between $\pi_{r_{\pi}}^N$ and the *-representation π where we had started with.

Section 5 is devoted to the discussion of some examples.

Before going forth, we shortly give some definitions needed in the sequel.

A partial *-algebra is a complex vector space \mathcal{A} , endowed with an involution $x \mapsto x^*$ (that is, a bijection such that $x^{**} = x$) and a partial multiplication defined by a set $\Gamma \subset \mathcal{A} \times \mathcal{A}$ (a binary relation) such that:

- (i) $(x, y) \in \Gamma$ implies $(y^*, x^*) \in \Gamma$.
- (ii) $(x, y_1), (x, y_2) \in \Gamma$ implies $(x, \lambda y_1 + \mu y_2) \in \Gamma$ for all $\lambda, \mu \in \mathbb{C}$.
- (iii) For any $(x, y) \in \Gamma$, there is defined a product $x y \in \mathcal{A}$, which is distributive with respect to addition and satisfies the relation $(x y)^* = y^* x^*$.

The element e of the partial *-algebra \mathcal{A} is called a *unit* if $e^* = e$, $(e, x) \in \Gamma$ for all $x \in \mathcal{A}$ and ex = xe = x for all $x \in \mathcal{A}$.

Given the defining set Γ , spaces of multipliers are defined in the obvious way:

$$\begin{array}{rcl} (x,y)\in\Gamma & \iff & x\in L(y) \text{ or } x \text{ is a left multiplier of } y \\ & \iff & y\in R(x) \text{ or } y \text{ is a right multiplier of } x. \end{array}$$

For a subset \mathcal{B} of \mathcal{A} , we write

$$L(\mathcal{B}) = \cap_{x \in \mathcal{B}} L(x), \qquad R(\mathcal{B}) = \cap_{x \in \mathcal{B}} R(x).$$

Notice that the partial multiplication is *not* required to be associative (and often it is not). The following weaker notion is therefore in use: a partial *-algebra \mathcal{A} is said to be *semi-associative* if $y \in R(x)$ implies $y \cdot z \in R(x)$ for every $z \in R(\mathcal{A})$ and

$$(x \cdot y) \cdot z = x \cdot (y \cdot z).$$

Let $\mathcal{A}[\tau]$ be a partial *-algebra, which is a topological vector space for the locally convex topology τ . Then $\mathcal{A}[\tau]$ is called a *topological partial* *-algebra if the following two conditions are satisfied [2]:

- (i) The involution $a \mapsto a^*$ is τ -continuous.
- (ii) The maps $a \mapsto xa$ and $a \mapsto ay$ are τ -continuous for all $x \in L(\mathcal{A})$ and $y \in R(\mathcal{A})$.

A quasi *-algebra $(\mathcal{A}, \mathcal{A}_0)$ is a partial *-algebra where the multiplication is defined via the *-algebra $\mathcal{A}_0 \subset \mathcal{A}$ by taking Γ as

$$\Gamma = \Big\{ (a,b) \in \mathcal{A} \times \mathcal{A} : a \in \mathcal{A}_0 \text{ or } b \in \mathcal{A}_0 \Big\}.$$

If \mathcal{A} is endowed with a locally convex topology which makes it into a topological partial *-algebra and \mathcal{A}_0 is dense in \mathcal{A} , then $(\mathcal{A}, \mathcal{A}_0)$ is said to be a *topological* quasi *-algebra.

We turn now to partial O^* -algebras. Let \mathcal{H} be a complex Hilbert space and \mathcal{D} a dense subspace of \mathcal{H} . We denote by $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ the set of all (closable) linear operators X such that $D(X) = \mathcal{D}$ and $D(X^*) \supseteq \mathcal{D}$. The set $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ is a partial *-algebra with respect to the following operations: the usual sum $X_1 + X_2$, the scalar multiplication λX , the involution $X \mapsto X^{\dagger} = X^* \upharpoonright \mathcal{D}$ and the (*weak*) partial multiplication $X_1 \square X_2 = X_1^{\dagger *} X_2$, defined whenever X_2 is a weak right multiplier of X_1 (equivalently, X_1 is a weak left multiplier of X_2), that is, if and only if $X_2\mathcal{D} \subset D(X_1^{\dagger *})$ and $X_1^*\mathcal{D} \subset D(X_2^*)$ (we write $X_2 \in R^w(X_1)$ or $X_1 \in L^w(X_2)$). When we regard $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ as a partial *-algebra with those operations, we denote it by $\mathcal{L}^{\dagger}_w(\mathcal{D}, \mathcal{H})$.

A partial O^* -algebra on \mathcal{D} is a (partial) *-subalgebra \mathcal{M} of $\mathcal{L}^{\dagger}_{w}(\mathcal{D},\mathcal{H})$, that is, \mathcal{M} is a subspace of $\mathcal{L}^{\dagger}_{w}(\mathcal{D},\mathcal{H})$ containing the identity and such that $X^{\dagger} \in \mathcal{M}$ whenever $X \in \mathcal{M}$ and $X_1 \square X_2 \in \mathcal{M}$ for any $X_1, X_2 \in \mathcal{M}$ such that $X_2 \in R^w(X_1)$. Thus $\mathcal{L}^{\dagger}_{w}(\mathcal{D},\mathcal{H})$ itself is the largest partial O^* -algebra on the domain \mathcal{D} .

Given a [†]-invariant subset \mathcal{N} of $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$, the familiar weak bounded commutant is defined as

$$\mathcal{N}'_{w} = \Big\{ C \in \mathcal{B}(\mathcal{H}) : (CX\xi|\eta) = (C\xi|X^{\dagger}\eta) \text{ for each } \xi, \eta \in \mathcal{D} \text{ and } X \in \mathcal{N} \Big\}.$$

The last definitions we need are related with representations.

A *-representation of a partial *-algebra \mathcal{A} is a *-homomorphism of \mathcal{A} into $\mathcal{L}_{w}^{\dagger}(\mathcal{D}(\pi), \mathcal{H}_{\pi})$, for some pair $\mathcal{D}(\pi) \subset \mathcal{H}_{\pi}$, that is, a linear map $\pi : \mathcal{A} \to \mathcal{L}_{w}^{\dagger}(\mathcal{D}(\pi), \mathcal{H}_{\pi})$ such that

- (i) $\pi(x^*) = \pi(x)^{\dagger}$ for every $x \in \mathcal{A}$.
- (ii) $x \in L(y)$ in \mathcal{A} implies $\pi(x) \in L^{w}(\pi(y))$ and $\pi(x) \Box \pi(y) = \pi(xy)$.

If π is a *-representation of the partial *-algebra \mathcal{A} into $\mathcal{L}^{\dagger}_{w}(\mathcal{D}(\pi), \mathcal{H}_{\pi})$, we define $\mathcal{D}(\pi)$ as the completion of $\mathcal{D}(\pi)$ with respect to the graph topology defined by $\pi(\mathcal{A})$. Furthermore, we put

$$\widehat{\mathcal{D}(\pi)} = \bigcap_{x \in \mathcal{A}} \mathcal{D}(\overline{\pi(x)})$$
$$\mathcal{D}(\pi)^* = \bigcap_{x \in \mathcal{A}} \mathcal{D}(\pi(x)^*).$$

We say that π is

-closed if $\mathcal{D}(\pi) = \widetilde{\mathcal{D}(\pi)}$

-fully-closed if $\mathcal{D}(\pi) = \widehat{\mathcal{D}}(\pi)$ s -self-adjoint if $\mathcal{D}(\pi) = \mathcal{D}(\pi)^*$.

Let π_1 and π_2 be *-representations of \mathcal{A} . With the notation $\pi_1 \subset \pi_2$ we mean that $\mathcal{H}_{\pi_1} \subseteq \mathcal{H}_{\pi_2}, \mathcal{D}(\pi_1) \subseteq \mathcal{D}(\pi_2)$ and $\pi_1(a)\xi = \pi_2(a)\xi$ for each $\xi \in \mathcal{D}(\pi_1)$.

By considering the identical *-representations, the terms fully-closed, self-adjoint etc. can also be referred to a partial O^* -algebra on a given domain \mathcal{D} and then generalized, in obvious way, to an arbitrary [†]-invariant subset of $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$.

2. Representations induced by unbounded C^* -seminorms

In this section we construct (quasi) *-representations of partial *-algebras from unbounded C*-seminorms. Throughout this paper we treat only with partial *-algebras whose partial multiplication satisfies the property

(A)
$$\begin{cases} y^*(ax) = (y^*a)x \\ a(xy) = (ax)y \end{cases} \text{ for all } a \in \mathcal{A} \text{ and all } x, y \in R(\mathcal{A}). \end{cases}$$

We remark that if \mathcal{A} is semi-associative, then it satisfies Property (A).

Definition 2.1. A mapping p of a (partial) *-subalgebra $\mathcal{D}(p)$ of \mathcal{A} into \mathbb{R}^+ is said to be an *unbounded* m^* -(*semi*)norm on \mathcal{A} if

- (i) p is a (semi) norm on $\mathcal{D}(p)$.
- (ii) $p(x^*) = p(x)$ for all $x \in \mathcal{D}(p)$.

(iii) $p(xy) \le p(x)p(y)$ for all $x, y \in \mathcal{D}(p)$ such that $x \in L(y)$.

An unbounded m^* -(semi)norm p on \mathcal{A} is said to be an unbounded C^* -(semi)norm if

(iv) $p(x^*x) = p(x)^2$ for all $x \in \mathcal{D}(p)$ such that $x^* \in L(x)$.

An unbounded m^* -(semi)norm or C^* -(semi)norm on \mathcal{A} is said to be a m^* -(semi)norm or C^* -(semi)norm, respectively, if $\mathcal{D}(p) = \mathcal{A}$.

An (unbounded) m^* -seminorm p on \mathcal{A} is said to have *Property* (B) if it satisfies the following basic density-condition:

(B) $R(\mathcal{A}) \cap \mathcal{D}(p)$ is total in $\mathcal{D}(p)$ with respect to p.

Lemma 2.2. Let p be an m^* -seminorm on \mathcal{A} having Property (B), that is, $R(\mathcal{A})$ is p-dense in \mathcal{A} . We denote by $\hat{\mathcal{A}}$ the set of all Cauchy sequences in \mathcal{A} with respect to the seminorm p and define an equivalent relation \sim in $\hat{\mathcal{A}}$ by $\{a_n\} \sim \{b_n\}$ if $\lim_{n\to\infty} p(a_n - b_n) = 0$. Then the following statements hold:

(1) The quotient space $\hat{\mathcal{A}}/\sim$ is a Banach *-algebra under the following operations, involution and norm:

$$\{a_n\}^{\sim} + \{b_n\}^{\sim} \equiv \{a_n + b_n\}^{\sim} \lambda \{a_n\}^{\sim} \equiv \{\lambda a_n\}^{\sim} \{a_n\}^{\sim} \{b_n\}^{\sim} \equiv \{x_n y_n\}^{\sim} (\{x_n\}^{\sim}, \{y_n\}^{\sim} \in R(\mathcal{A}), \{x_n\}^{\sim} \equiv \{a_n\}^{\sim}, \{y_n\}^{\sim} \equiv \{b_n\}^{\sim}) \{a_n\}^{\sim*} \equiv \{a_n^*\}^{\sim} \|\{a_n\}^{\sim}\|_p \equiv \lim_{n \to \infty} p(a_n).$$

(2) For each $a \in \mathcal{A}$ we put $\tilde{a} = \{a_n\}^{\sim}$ $(a_n = a, n \in \mathbb{N})$ and $\tilde{\mathcal{A}} = \{\tilde{a} : a \in \mathcal{A}\}$. Then $\tilde{\mathcal{A}}$ is a dense *-invariant subspace of $\hat{\mathcal{A}}/\sim$ satisfying $\tilde{a}\tilde{b} = (ab)^{\sim}$ whenever $a \in L(b)$.

(3) Suppose p is a C^{*}-seminorm on \mathcal{A} . Then $\hat{\mathcal{A}}/\sim$ is a C^{*}-algebra.

Proof. As in the usual construction of the completion of a normed space, it can be shown that $\hat{\mathcal{A}}/\sim$ is a Banach space.

We first show that $\{a_n\}^{\sim}\{b_n\}^{\sim}$ is well-defined and the relation defines a multiplication of $\hat{\mathcal{A}}/\sim$. Since $R(\mathcal{A})$ is *p*-dense in \mathcal{A} , for each $\{a_n\}, \{b_n\} \in \hat{\mathcal{A}}$ there exist sequences $\{x_n\}, \{y_n\} \in R(\mathcal{A})$ such that $\{a_n\}^{\sim} = \{x_n\}^{\sim}$ and $\{b_n\}^{\sim} = \{y_n\}^{\sim}$. Then it follows from the submultiplicativity of *p* that $\{x_ny_n\}^{\sim} \in \hat{\mathcal{A}}$ and $\{a_n\}^{\sim}\{b_n\}^{\sim}$ is independent of the choice of the equivalent sequences $\{x_n\}$ and $\{y_n\}$. Further, the relation $\{a_n\}^{\sim}\{b_n\}^{\sim}$ defines a multiplication of $\hat{\mathcal{A}}/\sim$. In fact, the associativity follows from the equalities

$$\{a_n\}^{\sim}(\{b_n\}^{\sim}\{c_n\}^{\sim}) = \{x_n\}^{\sim}(\{y_nz_n\}^{\sim})$$

= $\{x_n(y_nz_n)\}^{\sim}$
= $\{(x_ny_n)z_n\}^{\sim}$
= $(\{a_n\}^{\sim}\{b_n\}^{\sim})\{c_n\}^{\sim}$

where $\{x_n\}, \{y_n\}, \{z_n\} \subset R(\mathcal{A})$ such that $\{x_n\}^{\sim} = \{a_n\}^{\sim}, \{y_n\}^{\sim} = \{b_n\}^{\sim}$ and $\{z_n\}^{\sim} = \{c_n\}^{\sim}$, and the other properties can be proved in a similar way. Thus $\hat{\mathcal{A}}/\sim$ is a usual algebra.

Similarly it is shown that $\{a_n\}^{\sim} \mapsto \{a_n^*\}^{\sim}$ is an involution of the algebra $\hat{\mathcal{A}}/\sim$, and

$$\|\{a_n\}^{\sim}\{b_n\}^{\sim}\|_p \le \|\{a_n\}^{\sim}\|_p\|\{b_n\}^{\sim}\|_p, \qquad \|\{a_n\}^{\sim*}\|_p = \|\{a_n\}^{\sim}\|_p$$

for each $\{a_n\}, \{b_n\} \in \hat{\mathcal{A}}$, which implies statement (1), i.e. that $\hat{\mathcal{A}}/\sim$ is a Banach *-algebra. Statements (2) and (3) can be proved in a similar way

From now on we denote by

 $\Sigma(\mathcal{A})$ the set of all unbounded C^* -seminorms on \mathcal{A}

 $\Sigma_B(\mathcal{A})$ the subset of $\Sigma(\mathcal{A})$ consisting of those satisfying Property (B).

Let p be an unbounded C^* -seminorm on \mathcal{A} having Property (B), i.e. $p \in \Sigma_B(\mathcal{A})$. By Lemma 2.2, $\mathcal{A}_p \equiv \widehat{\mathcal{D}}(p)/\sim$ is a C^* -algebra. We denote by $\operatorname{Rep}(\mathcal{A}_p)$ the set of all *-representations Π_p of the C^* -algebra \mathcal{A}_p on Hilbert space \mathcal{H}_{Π_p} and put

$$\operatorname{FRep}(\mathcal{A}_p) = \Big\{ \Pi_p \in \operatorname{Rep}(\mathcal{A}_p) : \Pi_p \text{ is faithful} \Big\}.$$

Then we have the following

Proposition 2.3. For any $\Pi_p \in \operatorname{Rep}(\mathcal{A}_p)$ we put

$$\pi_p^{\circ}(x) = \Pi_p(\tilde{x}) \qquad (x \in \mathcal{D}(p)).$$

Then π_p° is a *-representation of $\mathcal{D}(p)$ on \mathcal{H}_{Π_p} .

This proposition provides the most natural way to define a *-representation of $\mathcal{D}(p)$. However, π_p° cannot be extended to the whole \mathcal{A} . The construction of *-representations of \mathcal{A} requires a more detailed analysis. This will be the content of the next propositions.

To begin with, we put

$$\mathcal{N}_p = \left\{ x \in \mathcal{D}(p) \cap R(\mathcal{A}) : ax \in \mathcal{D}(p) \text{ for all } a \in \mathcal{A} \right\}$$

Then we have the following

Lemma 2.4.

- (1) \mathcal{N}_p is an algebra satisfying $(\mathcal{D}(p) \cap R(\mathcal{A}))\mathcal{N}_p \subset \mathcal{N}_p$.
- (2) We denote by \mathcal{T}_p the closure of $\widetilde{\mathcal{N}_p}$ in the C^{*}-algebra \mathcal{A}_p . Then \mathcal{T}_p is a closed left ideal of \mathcal{A}_p .
- (3) $\Pi_p(\widetilde{\mathcal{N}_p}^2)\mathcal{H}_{\Pi_p}$ is dense in $\Pi_p(\widetilde{\mathcal{N}_p})\mathcal{H}_{\Pi_p}$.

Proof. Statement (1) follows from the semi-associativity (A).

Statement (2): Since $\mathcal{D}(p) \cap R(\mathcal{A})$ is *p*-dense in $\mathcal{D}(p)$ and the above property (1), it follows that $\mathcal{D}(p)^{\sim}\mathcal{N}_{p}^{\sim} \subset \mathcal{T}_{p}$, and so $\mathcal{D}(p)^{\sim}\mathcal{T}_{p} \subset \mathcal{T}_{p}$. Since $\mathcal{D}(p)^{\sim}$ is dense in the C^{*} -algebra \mathcal{A}_{p} , we have $\mathcal{A}_{p}\mathcal{T}_{p} \subset \mathcal{T}_{p}$.

Statement (3): It is clear that $\Pi_p(\widetilde{\mathcal{N}_p}^2)\mathcal{H}_{\Pi_p}$ is dense in $\Pi_p(\widetilde{\mathcal{N}_p}\mathcal{T}_p)\mathcal{H}_{\Pi_p}$. Since \mathcal{T}_p is a closed left ideal of the C^* -algebra \mathcal{A}_p , there exists a direct net $\{U_\lambda\}$ in \mathcal{T}_p such that $\lim_{\lambda} \|AU_{\lambda} - A\|_p = 0$ for each $A \in \mathcal{T}_p$, which implies that $\Pi_p(\widetilde{\mathcal{N}_p}\mathcal{T}_p)\mathcal{H}_{\Pi_p}$ is dense in $\Pi_p(\widetilde{\mathcal{N}_p})\mathcal{H}_{\Pi_p}$. Hence $\Pi_p(\widetilde{\mathcal{N}_p}^2)\mathcal{H}_{\Pi_p}$ is dense in $\Pi_p(\widetilde{\mathcal{N}_p})\mathcal{H}_{\Pi_p}$.

Let now

$$\mathcal{D}(\pi_p) = \operatorname{Lin}\left\{ \Pi_p((xy)^{\sim})\xi : x, y \in \mathcal{N}_p \text{ and } \xi \in \mathcal{H}_{\Pi_p} \right\}$$

and \mathcal{H}_{π_p} be the closure of $\mathcal{D}(\pi_p)$ in \mathcal{H}_{Π_p} . We define

$$\pi_p(a) \left(\sum_k \Pi_p((x_k y_k)^{\sim}) \xi_k \right) = \sum_k \Pi_p((a x_k)^{\sim} \widetilde{y_k}) \xi_k$$

for $a \in \mathcal{A}$ and $\sum_k \prod_p ((x_k y_k)^{\sim}) \xi_k \in \mathcal{D}(\pi_p)$.

Remark. By Lemma 2.4/(3) we have

$$\mathcal{H}_{\pi_p} \equiv \overline{\mathrm{Lin}} \Big\{ \Pi_p(\tilde{x_1} \tilde{x_2}) \xi : x_1, x_2 \in \mathcal{N}_p \text{ and } \xi \in \mathcal{H}_{\Pi_p} \Big\}$$
$$= \overline{\mathrm{Lin}} \Big\{ \Pi_p(\tilde{x}) \xi : x \in \mathcal{N}_p \text{ and } \xi \in \mathcal{H}_{\Pi_p} \Big\}.$$

In general, it may happen that \mathcal{H}_{π_p} is very 'small' compared to \mathcal{H}_{Π_p} . This point will be considered at the end of this section, where *well-behaved* representations related to unbounded C^* -seminorms will be introduced.

Now, we prove the following

Lemma 2.5. π_p is a linear map of \mathcal{A} into $\mathcal{L}^{\dagger}(\mathcal{D}(\pi_p), \mathcal{H}_{\pi_p})$ satisfying the following properties:

(i)
$$\pi_p(a^*) = \pi_p(a)^{\dagger} \ (a \in \mathcal{A}).$$

- (ii) $\pi_p(ax) = \pi_p(a) \square \pi_p(x) \quad (a \in \mathcal{A}, x \in R(\mathcal{A})).$
- (iii) $\|\overline{\pi_p(x)}\| \le p(x)$ $(x \in \mathcal{D}(p))$. Further, if $\pi_p \in \operatorname{FRep}(\mathcal{A}_p)$, then $\|\overline{\pi_p(x)}\| = p(x)$ $(x \in \mathcal{N}_p)$.

Proof. By Lemma 2.4/(2)-(3) we have

$$\Pi_p((ax)^{\sim}\tilde{y})\xi \in \Pi_p(\mathcal{T}_p)\mathcal{H}_{\Pi_p} \subset \mathcal{H}_{\pi_p}$$

for each $a \in \mathcal{A}, x, y \in \mathcal{N}_p$ and $\xi \in \mathcal{H}_{\Pi_p}$, and further by Property (A)

$$\begin{aligned} \left(\Pi_p((ax_1)^{\sim} \tilde{y_1}) \xi | \Pi_p(\tilde{x_2} \tilde{y_2}) \eta \right) \\ &= \left(\Pi_p(\tilde{y_1}) \xi | \Pi_p(((ax_1)^* x_2)^{\sim}) \Pi_p(\tilde{y_2}) \eta \right) \\ &= \left(\Pi_p(\tilde{y_1}) \xi | \Pi_p((x_1^* (a^* x_2))^{\sim}) \Pi_p(\tilde{y_2}) \eta \right) \\ &= \left(\Pi_p(\tilde{x_1} \tilde{y_1}) \xi | \Pi_p((a^* x_2)^{\sim} \tilde{y_2}) \eta \right) \end{aligned}$$

for each $a \in \mathcal{A}$, $x_1, y_1, x_2, y_2 \in \mathcal{N}_p$ and $\xi, \eta \in \mathcal{H}_{\Pi_p}$, which implies that $\pi_p(a)$ is a welldefined linear map from $\mathcal{D}(\pi_p)$ to \mathcal{H}_{π_p} satisfying $\pi_p(a^*) = \pi_p(a)^{\dagger}$. It is clear that π_p is a linear map of \mathcal{A} into $\mathcal{L}^{\dagger}(\mathcal{D}(\pi_p), \mathcal{H}_{\pi_p})$.

We next show statement (ii). Take arbitrary $a \in \mathcal{A}$ and $x \in R(\mathcal{A})$. By Property (A) we have

$$z^*((ax)y) = (z^*(ax))y = ((z^*a)x)y$$

for each $a \in \mathcal{A}, x \in R(\mathcal{A})$ and $y, z \in \mathcal{N}_p$, and hence it follows from Lemma 2.2/(2) that

$$\begin{aligned} \left(\pi_{p}(ax)\Pi_{p}(\tilde{y}_{1}\tilde{y}_{2})\xi|\Pi_{p}(\tilde{z}_{1}\tilde{z}_{2})\eta\right) \\ &= \left(\Pi_{p}((ax)y_{1})^{\sim}\right)\Pi_{p}(\tilde{y}_{2})\xi|\Pi_{p}(\tilde{z}_{1})\Pi_{p}(\tilde{z}_{2})\eta\right) \\ &= \left(\Pi_{p}(((z_{1}^{*}a)x)^{\sim}\tilde{y}_{1})\Pi_{p}(\tilde{y}_{2})\xi|\Pi_{p}(\tilde{z}_{2})\eta\right) \\ &= \left(\Pi_{p}(\tilde{y}_{1}\tilde{y}_{2})\xi|\Pi_{p}(\tilde{x^{*}}(z_{1}^{*}a)^{*\sim})\Pi_{p}(\tilde{z}_{2})\eta\right) \\ &= \left(\Pi_{p}(x)\Pi_{p}(\tilde{y}_{1}\tilde{y}_{2})\xi|\pi_{p}(a)^{\dagger}\Pi_{p}(\tilde{z}_{1}\tilde{z}_{2})\eta\right) \\ &= \left(\pi_{p}(x)\Pi_{p}(\tilde{y}_{1}\tilde{y}_{2})\xi|\pi_{p}(a)^{\dagger}\Pi_{p}(\tilde{z}_{1}\tilde{z}_{2})\eta\right) \end{aligned}$$

for each $y_1, y_2, z_1, z_2 \in \mathcal{N}_p$ and $\xi, \eta \in \mathcal{H}_{\Pi_p}$, which implies statement (ii).

Take an arbitrary $x \in \mathcal{D}(p)$. Since $\overline{\pi_p(x)} = \prod_p(\tilde{x}) \upharpoonright \mathcal{H}_{\pi_p}$, it follows that $\|\overline{\pi_p(x)}\| \le \|\prod_p(\tilde{x})\| = p(x)$. Suppose $\prod_p \in \operatorname{FRep}(\mathcal{A}_p)$. Take an arbitrary $x \in \mathcal{N}_p$. It is sufficient to show $\|\overline{\pi_p(x)}\| \ge p(x)$. If p(x) = 0, then this is obvious. Suppose $p(x) \ne 0$. We put $y = \frac{x}{p(x)}$. Since

$$\|\Pi_p(\tilde{y})\xi\| \le \|\Pi_p(\tilde{y})\| \, \|\xi\| = p(y)\|\xi\| \le 1$$

for each $\xi \in \mathcal{H}_{\Pi_p}$ such that $\|\xi\| \leq 1$ and $\Pi_p(\tilde{\mathcal{N}}_p)\mathcal{H}_{\Pi_p}$ is total in \mathcal{H}_{π_p} (by Lemma 2.4/(3) and Remark thereafter), it follows that

$$\|\overline{\pi_{p}(y)}\| = \|\overline{\pi_{p}(y^{*})}\|$$

$$\geq \sup \{\|\pi_{p}(y^{*})\Pi_{p}(\tilde{y})\xi\| : \xi \in \mathcal{H}_{\Pi_{p}} \text{ with } \|\xi\| \leq 1\}$$

$$= \sup \{\|\Pi_{p}((y^{*}y)^{\sim})\xi\| : \xi \in \mathcal{H}_{\Pi_{p}} \text{ with } \|\xi\| \leq 1\}$$

$$= \|\Pi_{p}((y^{*}y)^{\sim})\|$$

$$= p(y^{*}y)$$

$$= p(y)^{2}$$

$$= 1$$

which implies that $\|\overline{\pi_p(x)}\| \ge p(x) \blacksquare$

Remark. If, instead of following the above procedure, we would have taken

$$\mathcal{D}(\pi) = \operatorname{Lin} \left\{ \Pi_p(\tilde{x})\xi : x \in \mathcal{N}_p \text{ and } \xi \in \mathcal{H}_{\Pi_p} \right\}$$
$$\mathcal{H}_{\pi} = \text{closure of } \mathcal{D}(\pi) \text{ in } \mathcal{H}_{\Pi_p}$$

and

$$\pi(a)\left(\sum_{k} \prod_{p}(\tilde{x_{k}})\xi_{k}\right) = \sum_{k} \prod_{p}((ax_{k})^{\sim})\xi_{k}$$

for $a \in \mathcal{A}$ and $\sum_k \prod_p(\tilde{x_k})\xi_k \in \mathcal{D}(\pi)$, then we could not conclude that $\pi(a)$ belongs to $\mathcal{L}^{\dagger}(\mathcal{D}(\pi), \mathcal{H}_{\pi})$ for each $a \in \mathcal{A}$.

So far, we do not know whether π_p is a *-representation of \mathcal{A} for the lack of semiassociativity of partial multiplication, and so we define the following notion:

Definition 2.6. A linear map π of \mathcal{A} into $\mathcal{L}^{\dagger}(\mathcal{D}(\pi), \mathcal{H}_{\pi})$ is said to be a quasi *representation if

(i)
$$\pi(a^*) = \pi(a)^{\dagger}$$
 for all $a \in \mathcal{A}$

(ii) $\pi(ax) = \pi(a) \square \pi(x)$ for all $a \in \mathcal{A}$ and all $x \in R(\mathcal{A})$.

By Lemma 2.5, for each $p \in \Sigma_B(\mathcal{A})$, every π_p is a quasi *-representation of \mathcal{A} , and it is said to be a quasi *-representation of \mathcal{A} induced by p.

We summerize in the following scheme the method of construction π_p from an

unbounded C^* -seminorm p described above:

Here the arrow $A \dashrightarrow B$ means that B is constructed from A. We put

$$QRep(\mathcal{A}, p) = \left\{ \pi_p : \Pi_p \in Rep(\mathcal{A}_p) \right\}$$
$$Rep(\mathcal{A}, p) = \left\{ \pi_p \in QRep(\mathcal{A}, p) : \pi_p \text{ is a *-representation} \right\}$$
$$FQRep(\mathcal{A}, p) = \left\{ \pi_p : \Pi_p \in FRep(\mathcal{A}_p) \right\}.$$

Definition 2.7. Let $p \in \Sigma_B(\mathcal{A})$. We say that p is representable if

$$\operatorname{FRep}(\mathcal{A}, p) \equiv \left\{ \pi_p \in \operatorname{FQRep}(\mathcal{A}, p) : \pi_p \text{ is a *-representation of } \mathcal{A} \right\} \neq \emptyset.$$

It is natural to look for conditions for p to be representable. We shall consider this problem in Section 3.

We define the notions of semifiniteness and weak semifiniteness of unbounded C^* seminorms, and study (quasi) *-representations induced by them.

Definition 2.8. An unbounded m^* -seminorm p on \mathcal{A} is said to be

-finite if $\mathcal{D}(p) = \mathcal{N}_p$ -semifinite if \mathcal{N}_p is p-dense in $\mathcal{D}(p)$.

An unbounded C^* -seminorm p on \mathcal{A} having Property (B) is said to be

-weakly semifinite if $\operatorname{QRep}^{\operatorname{WB}}(\mathcal{A}, p) \equiv \left\{ \pi \in \operatorname{FQRep}(\mathcal{A}, p) : \mathcal{H}_{\pi_p} = \mathcal{H}_{\Pi_p} \right\} \neq \emptyset$ and an element π_p of $\operatorname{QRep}^{\operatorname{WB}}(\mathcal{A}, p)$ is said to be a

-well-behaved quasi *-representation of \mathcal{A} in $\operatorname{QRep}(\mathcal{A}, p)$.

A representable unbounded C^* -seminorm p on \mathcal{A} having Property (B) is said to be

-weakly semifinite if $\operatorname{Rep}^{WB}(\mathcal{A}, p) \equiv \operatorname{QRep}^{WB}(\mathcal{A}, p) \cap \operatorname{Rep}(\mathcal{A}, p) \neq \emptyset$.

We remark that semifinite unbounded m^* - or C^* -seminorms automatically satisfy Property (B).

Let π be a (quasi) *-representation of \mathcal{A} . We put

$$\mathcal{A}_b^{\pi} = \left\{ x \in \mathcal{A} : \, \overline{\pi(x)} \in \mathcal{B}(\mathcal{H}_{\pi}) \right\}$$
$$\mathcal{N}_{\pi} \equiv \left\{ x \in \mathcal{A}_b^{\pi} \cap R(\mathcal{A}) : \, ax \in \mathcal{A}_b^{\pi} \text{ for all } a \in \mathcal{A} \right\}.$$

Definition 2.9. If $\pi(\mathcal{A})\mathcal{D}(\pi)$ is total in \mathcal{H}_{π} , then π is said to be *non-degenerate*. If $\pi(\mathcal{N}_{\pi})\mathcal{D}(\pi)$ is total in \mathcal{H}_{π} , then π is said to be *strongly non-degenerate*.

Proposition 2.10. Let p be an unbounded C^* -seminorm on \mathcal{A} having Property (B). Then the following statements hold:

(1) We have

$$\begin{aligned} &\operatorname{QRep}^{\operatorname{WB}}(\mathcal{A},p) \subset \Big\{ \pi_p \in \operatorname{QRep}(\mathcal{A},p) : \Pi_p \text{ is non-degenerate} \Big\} \\ &\operatorname{Rep}^{\operatorname{WB}}(\mathcal{A},p) \subset \Big\{ \pi_p \in \operatorname{Rep}(\mathcal{A},p) : \Pi_p \text{ is non-degenerate} \Big\}. \end{aligned}$$

In particular, if p is semifinite, then it is weakly semifinite and

$$QRep^{WB}(\mathcal{A}, p) = \left\{ \pi_p \in QRep(\mathcal{A}, p) : \Pi_p \text{ is non-degenerate} \right\}$$
$$Rep^{WB}(\mathcal{A}, p) = \left\{ \pi_p \in Rep(\mathcal{A}, p) : \Pi_p \text{ is non-degenerate} \right\}.$$

- (2) Suppose $\pi_p \in \text{QRep}^{\text{WB}}(\mathcal{A}, p)$. Then:
- (i) $\pi_p(\mathcal{N}_p)\mathcal{D}(\pi_p)$ is total in \mathcal{H}_{π_p} , and so π_p is strongly non-degenerate.
- (ii) $\|\overline{\pi_p(x)}\| = p(x)$ for each $x \in \mathcal{D}(p)$.

(iii)
$$\pi_p(\mathcal{A})'_{\mathrm{w}} = \overline{\pi_p(\mathcal{D}(p))}'$$
 and $\pi_p(\mathcal{A})'_{\mathrm{w}}\mathcal{D}(\pi_p) \subset \mathcal{D}(\pi_p).$

Conversely, suppose $\pi_p \in \operatorname{QRep}(\mathcal{A}, p)$ or $\pi_p \in \operatorname{Rep}(\mathcal{A}, p)$ satisfy conditions (i) and (ii) above. Then there exists an element π_p^{WB} of $\operatorname{QRep}^{WB}(\mathcal{A}, p)$ or $\operatorname{Rep}^{WB}(\mathcal{A}, p)$, respectively, which is a restriction of π_p .

Proof.

Statement (1): Take an arbitrary $\pi_p \in \text{QRep}^{\text{WB}}(\mathcal{A}, p)$. Then since

$$\mathcal{D}(\pi_p) \subset \operatorname{Lin} \Pi_p(\mathcal{A}_p) \mathcal{H}_{\Pi_p} \subset \mathcal{H}_{\Pi_p} = \mathcal{H}_{\pi_p}$$

it follows that Π_p is non-degenerate. Suppose p is semifinite. Let $\Pi_p \in \operatorname{Rep}(\mathcal{A}_p)$ be non-degenerate. Since p is semifinite, it follows that $\{\Pi_p(\tilde{x}) : x \in \mathcal{N}_p\}$ is uniformly dense in the C^* -algebra $\Pi_p(\mathcal{A}_p)$, which implies $\mathcal{H}_{\Pi_p} = \mathcal{H}_{\pi_p}$.

Statement (2): Let $\pi_p \in \text{QRep}^{\text{WB}}(\mathcal{A}, p)$. Since $\mathcal{H}_{\pi_p} = \mathcal{H}_{\Pi_p}$ and $\pi_p(x) = \Pi_p(\tilde{x}) \upharpoonright \mathcal{D}(\pi_p)$ for each $x \in \mathcal{D}(p)$, it follows that $\pi_p(\mathcal{N}_p)\mathcal{D}(\pi_p)$ is total in $\Pi_p(\widetilde{\mathcal{N}_p})\mathcal{H}_{\Pi_p}$ and $\mathcal{N}_p \subset \mathcal{N}_{\pi_p}$, which implies by Lemma 2.4/(3) that statement (i) holds. Further, we have

$$\overline{\pi_p(x)} = \Pi_p(\tilde{x}) \qquad (x \in \mathcal{D}(p)) \tag{2.2}$$

and hence

$$\|\overline{\pi_p(x)}\| = \|\Pi_p(\tilde{x})\| = p(x) \qquad (x \in \mathcal{D}(p)).$$

We next show statement (iii). Take an arbitrary $C \in \overline{\pi_p(\mathcal{D}(p))}'$. By (2.1) we have

$$C\Pi_p(\tilde{x}) = C\overline{\pi_p(x)} = \overline{\pi_p(x)}C = \Pi_p(\tilde{x})C \qquad (x \in \mathcal{D}(p))$$

which implies that $C\Pi_p(\tilde{x_1}\tilde{x_2})\xi \in \mathcal{D}(\pi_p)$ for each $x_1, x_2 \in \mathcal{N}_p$ and $\xi \in \mathcal{H}_{\Pi_p}$ and

$$\pi_p(a)C\Pi_p(\tilde{x_1}\tilde{x_2})\xi = \pi_p(a)\Pi_p(\tilde{x_1}\tilde{x_2})C\xi$$
$$= \Pi_p((ax_1)^{\sim})C\Pi_p(\tilde{x_2})\xi$$
$$= C\Pi_p((ax_1)^{\sim})\Pi_p(\tilde{x_2})\xi$$
$$= C\pi_p(a)\Pi_p(\tilde{x_1}\tilde{x_2})\xi$$

for each $a \in \mathcal{A}$, $x_1, x_2 \in \mathcal{N}_p$ and $\xi \in \mathcal{H}_{\Pi_p}$. Hence $C \in \pi_p(\mathcal{A})'_w$ and $C\mathcal{D}(\pi_p) \subset \mathcal{D}(\pi_p)$. The converse inclusion $\pi_p(\mathcal{A})'_w \subset \overline{\pi_p(\mathcal{D}(p))}'$ is trivial. Thus statement (iii) holds.

Conversely, suppose that $\pi_p \in \text{QRep}(\mathcal{A}, p)$ satisfies conditions (i) and (ii). We put

$$\Pi_p^{\text{WB}}(\tilde{x}) = \overline{\pi_p(x)} \qquad (x \in \mathcal{D}(p)).$$

Then it follows from (ii) that

$$\|\Pi_p^{\text{WB}}(\tilde{x})\| = \|\overline{\pi_p(x)}\| = p(x) = \|\tilde{x}\|_p \qquad (x \in \mathcal{D}(p))$$

and hence Π_p^{WB} can be extended to a faithful *-representation of the C*-algebra \mathcal{A}_p on the Hilbert space $\mathcal{H}_{\Pi_p^{\text{WB}}} = \mathcal{H}_{\pi_p}$. We denote it by the same symbol Π_p^{WB} and denote by π_p^{WB} the quasi *-representation of \mathcal{A} induced by Π_p^{WB} . Then it follows from Lemma 2.4/(3) and statement (i) that

$$\mathcal{H}_{\pi_p^{\mathrm{WB}}} = \overline{\mathrm{Lin}} \Pi_p^{\mathrm{WB}}(\tilde{\mathcal{N}}_p) \mathcal{H}_{\Pi_p^{\mathrm{WB}}} = \overline{\mathrm{Lin}} \overline{\pi_p(\mathcal{N}_p)} \mathcal{H}_{\pi_p} = \mathcal{H}_{\pi_p} = \mathcal{H}_{\Pi_p^{\mathrm{WB}}}$$

so that $\pi_p^{\text{WB}} \in \text{QRep}^{\text{WB}}(\mathcal{A}, p)$. Further, since

$$\Pi_p^{\rm WB}(\tilde{x}) = \overline{\pi_p(x)} = \Pi_p(\tilde{x}) \upharpoonright \mathcal{H}_{\pi_p^{\rm WB}} \qquad (x \in \mathcal{D}(p))$$

it follows that π_p^{WB} is a restriction of π_p . Suppose $\pi_p \in \text{Rep}(\mathcal{A}, p)$. Then, since π_p^{WB} is a restriction of π_p , it follows that π_p^{WB} is a *-representation of $\mathcal{A} \blacksquare$

The set $\Sigma_B(\mathcal{A})$ of all unbounded C^* -seminorms on \mathcal{A} having Property (B) is an ordered set with respect to the order relation \subset defined by

$$p \subset q \quad \iff \quad \mathcal{D}(p) \subset \mathcal{D}(q) \text{ and } p(x) = q(x) \ \forall x \in \mathcal{D}(p).$$

Proposition 2.11. Let p and q be in $\Sigma_B(\mathcal{A})$. Suppose $p \subset q$. Then, for any $\pi_p \in \operatorname{QRep}(\mathcal{A}, p)$ there exists an element π_q of $\operatorname{QRep}(\mathcal{A}, q)$ such that $\pi_p \subset \pi_q$.

Proof. Let \mathcal{A}_q be the C^* -algebra constructed applying Lemma 2.2 to $\mathcal{D}(q)$. Then it follows from $p \subset q$ that for each $x \in \mathcal{D}(p)$ we can define

$$\Phi: \, \tilde{x} \in \widetilde{\mathcal{D}(p)} \mapsto \tilde{x} \in \widetilde{\mathcal{D}(q)}.$$

Then Φ is an isometric *-isomorphism of the dense subspace $\widetilde{\mathcal{D}(p)}$ of the C*-algebra \mathcal{A}_p into the C*-algebra \mathcal{A}_q , and so it can be extended to a *-isomorphism of the C*-algebra \mathcal{A}_p into the C*-algebra \mathcal{A}_q ; we denote this extension by the same symbol Φ .

Take an arbitrary $\Pi_p \in \operatorname{Rep}(\mathcal{A}_p)$. Since $\Pi_p \circ \Phi^{-1}$ is a faithful *-representation of the C^* -algebra $\Phi(\mathcal{A}_p)$ on \mathcal{H}_{Π_p} and every C^* -algebra is stable [14: Proposition 2.10.2], it follows that $\Pi_p \circ \Phi^{-1}$ can be extended to a *-representation Π_q of the C^* -algebra \mathcal{A}_q on \mathcal{H}_{Π_q} , that is, \mathcal{H}_{Π_p} is a closed subspace of \mathcal{H}_{Π_q} and $\Pi_q(\Phi(\mathcal{A})) \upharpoonright \mathcal{H}_{\Pi_p} = \Pi_p(\mathcal{A})$ for each $\mathcal{A} \in \mathcal{A}_p$. Let π_q denote the element of $\operatorname{QRep}(\mathcal{A}, q)$ induced by Π_q . Then we have

$$\pi_{p}(a)\Pi_{p}(\tilde{x_{1}}\tilde{x_{2}})\xi = \Pi_{p}((ax_{1})^{\sim})\Pi_{p}(\tilde{x_{2}})\xi$$
$$= \Pi_{q}(\Phi((ax_{1})^{\sim}))\Pi_{q}(\Phi(\tilde{x_{2}}))\xi$$
$$= \Pi_{q}((ax_{1})^{\sim}\tilde{x_{2}})\xi$$
$$= \pi_{q}(a)\Pi_{q}(\tilde{x_{1}}\tilde{x_{2}})\xi$$
$$= \pi_{q}(a)\Pi_{p}(\tilde{x_{1}}\tilde{x_{2}})\xi$$

for each $a \in \mathcal{A}, x_1, x_2 \in \mathcal{N}_p$ and $\xi \in \mathcal{H}_{\Pi_p}$, and so $\pi_p \subset \pi_q \blacksquare$

3. Representability of unbounded C^* -seminorms

Let \mathcal{A} be a partial *-algebra and p an unbounded C^* -seminorm on \mathcal{A} . In this section we give some conditions under which the equality $\operatorname{Rep}(\mathcal{A}, p) = \operatorname{QRep}(\mathcal{A}, p)$ holds. The first case we consider is that of a semi-associative partial *-algebra \mathcal{A} .

Lemma 3.1. Suppose \mathcal{A} is a semi-associative partial *-algebra and $p \in \Sigma_B(\mathcal{A})$. Then $\operatorname{Rep}(\mathcal{A}, p) = \operatorname{QRep}(\mathcal{A}, p)$.

Proof. Since \mathcal{A} is semi-associative, it follows that

$$y^*((ab)x) = y^*(a(bx)) = (y^*a)(bx)$$

for each $a \in L(b)$ and $x, y \in \mathcal{N}_p$ which implies

$$\begin{aligned} \left(\pi_p(ab) \Pi_p(\tilde{x_1} \tilde{x_2}) \xi | \Pi_p(\tilde{y_1} \tilde{y_2}) \eta \right) \\ &= \left(\Pi_p((y_1^*((ab) x_1))^{\sim}) \Pi_p(\tilde{x_2}) \xi | \Pi_p(\tilde{y_2}) \eta \right) \\ &= \left(\Pi_p((y_1^* a)^{\sim} (bx_1)^{\sim}) \Pi_p(\tilde{x_2}) \xi | \Pi_p(\tilde{y_2}) \eta \right) \\ &= \left(\pi_p(b) \Pi_p(\tilde{x_1} \tilde{x_2}) \xi | \pi_p(a^*) \Pi_p(\tilde{y_1} \tilde{y_2}) \eta \right) \end{aligned}$$

for each $x_1, x_2, y_1, y_2 \in \mathcal{N}_p$ and $\xi, \eta \in \mathcal{H}_{\Pi_p}$. Hence π_p is a *-representation of \mathcal{A}

We next consider the case of (everywhere defined) C^* -seminorms. Semi-associativity of \mathcal{A} is no more needed.

Lemma 3.2. Let \mathcal{A} be a partial *-algebra. Suppose p is a semifinite C^* -seminorm on \mathcal{A} . Then $\operatorname{Rep}(\mathcal{A}, p) = \operatorname{QRep}(\mathcal{A}, p)$ and every π_p in $\operatorname{Rep}(\mathcal{A}, p)$ is bounded.

Proof. Since p is a C^* -seminorm on \mathcal{A} , we have $\mathcal{D}(p) = \mathcal{A}$ and $\mathcal{N}_p = R(\mathcal{A})$. For any $a \in \mathcal{A}$ we have $\pi_p(a) = \prod_p(\tilde{a}) \upharpoonright \mathcal{D}(\pi_p)$, and so $\pi_p(a)$ is bounded. Take arbitrary $a, b \in \mathcal{A}$ such that $a \in L(b)$. Then there exist sequences $\{x_n\}, \{y_n\} \in R(\mathcal{A})$ such that $\{x_n\}^{\sim} = \tilde{a}$ and $\{y_n\}^{\sim} = \tilde{b}$, and hence it follows from Lemma 2.2/(2) and Property (A) that

$$\begin{aligned} &\left(\pi_p(ab)\Pi_p(\tilde{x}_1\tilde{x}_2)\xi|\Pi_p(\tilde{y}_1\tilde{y}_2)\eta\right) \\ &= \left(\Pi_p(\{x_ny_n\}^{\sim}\tilde{x}_1)\Pi_p(\tilde{x}_2)\xi|\Pi_p(\tilde{y}_1\tilde{y}_2)\eta\right) \\ &= \left(\Pi_p(\{x_n\}^{\sim})\Pi_p(\{y_n\}^{\sim})\Pi_p(\tilde{x}_1\tilde{x}_2)\xi|\Pi_p(\tilde{y}_1\tilde{y}_2)\eta\right) \\ &= \left(\pi_p(b)\Pi_p(\tilde{x}_1\tilde{x}_2)\xi|\pi_p(a^*)\Pi_p(\tilde{y}_1\tilde{y}_2)\eta\right) \end{aligned}$$

for each $x_1, x_2, y_1, y_2 \in \mathcal{N}_p$ and $\xi, \eta \in \mathcal{H}_{\Pi_p}$. Hence π_p is a *-representation of \mathcal{A}

Lemma 3.3. Let \mathcal{A} be a partial *-algebra \mathcal{A} and $p \in \Sigma_B(\mathcal{A})$. Assume there exists a semifinite C*-seminorm \hat{p} on \mathcal{A} such that $p \subset \hat{p}$. Then $\operatorname{Rep}(\mathcal{A}, p) = \operatorname{QRep}(\mathcal{A}, p)$.

Proof. Take an arbitrary $\pi_p \in \text{QRep}(\mathcal{A}, p)$. By Proposition 2.11 and Lemma 3.2 there exists an element $\pi_{\hat{p}}$ of $\text{QRep}(\mathcal{A}, \hat{p}) = \text{Rep}(\mathcal{A}, \hat{p})$ such that $\pi_p \subset \pi_{\hat{p}}$ which implies $\pi_p \in \text{Rep}(\mathcal{A}, p) \blacksquare$

We consider now the special case of topological partial *-algebras. The simplest situation is of course that of topological quasi *-algebras, where we start from.

Lemma 3.4. Suppose \mathcal{A} is a topological quasi *-algebra over \mathcal{A}_0 and p is an unbounded C*-seminorm on \mathcal{A} having Property (B). Then $\operatorname{Rep}(\mathcal{A}, p) = \operatorname{QRep}(\mathcal{A}, p)$.

Proof. Since every topological quasi *-algebra \mathcal{A} over \mathcal{A}_0 is semi-associative and $R(\mathcal{A}) = \mathcal{A}_0$, it follows from Lemma 3.1 that $\operatorname{Rep}(\mathcal{A}, p) = \operatorname{QRep}(\mathcal{A}, p) \blacksquare$

Let $\mathcal{A}[\tau]$ be a topological partial *-algebra and p an unbounded C^* -seminorm on \mathcal{A} . For any $x \in \mathcal{N}_p$ we define a seminorm p_x on \mathcal{A} by

$$p_x(a) = p(ax) \qquad (a \in \mathcal{A}).$$

We denote by τ_p the locally convex topology on \mathcal{A} defined by the family $\{p_x : x \in \mathcal{N}_p\}$ of seminorms. If $\tau_p \prec \tau$, then p is said to be *locally continuous*.

Lemma 3.5. Let $\mathcal{A}[\tau]$ be a topological partial *-algebra satisfying the following condition

(C) For any $a \in \mathcal{A}$, the map $L_a : R(a) \to \mathcal{A}$, $x \mapsto ax$ is continuous.

Suppose p is a locally continuous unbounded C^{*}-seminorm on \mathcal{A} having Property (B) and $R(\mathcal{A}) \cap \mathcal{D}(p)$ is τ -dense in \mathcal{A} . Then $\operatorname{Rep}(\mathcal{A}, p) = \operatorname{QRep}(\mathcal{A}, p)$.

Proof. Take arbitrary $a, b \in \mathcal{A}$ such that $a \in L(b)$. Since $R(\mathcal{A}) \cap \mathcal{D}(p)$ is τ -dense in \mathcal{A} , there exists a net $\{y_{\beta}\}$ in $R(\mathcal{A}) \cap \mathcal{D}(p)$ such that $\tau - \lim_{\beta} y_{\beta} = b$. Further, since \mathcal{A} satisfies condition (C) we have $\tau - \lim_{\beta} ay_{\beta} = ab$, and since p is locally continuous, it follows that $\lim_{\beta} p(y_{\beta}x - bx) = 0$ and $\lim_{\beta} p((ay_{\beta})x - (ab)x) = 0$ for each $x \in \mathcal{N}_p$. Hence we have

$$\begin{aligned} \left(\pi_p(b)\Pi_p(\tilde{x_1}\tilde{x_2})\xi|\pi_p(a^*)\Pi_p(\tilde{y_1}\tilde{y_2})\eta\right) \\ &= \left(\Pi_p((bx_1)^{\sim}\tilde{x_2})\xi|\pi_p(a^*)\Pi_p(\tilde{y_1}\tilde{y_2})\eta\right) \\ &= \lim_{\beta} \left(\Pi_p((y_{\beta}x_1)^{\sim}\tilde{x_2})\xi|\pi_p(a^*)\Pi_p(\tilde{y_1}\tilde{y_2})\eta\right) \\ &= \lim_{\beta} \left(\Pi_p(\tilde{y_{\beta}}\tilde{x_1})\Pi_p(\tilde{x_2})\xi|\pi_p(a^*)\Pi_p(\tilde{y_1}\tilde{y_2})\eta\right) \\ &= \lim_{\beta} \left(\Pi_p((ay_{\beta})^{\sim}\tilde{x_1})\Pi_p(\tilde{x_2})\xi|\Pi_p(\tilde{y_1}\tilde{y_2})\eta\right) \\ &= \left(\Pi_p(((ab)x_1)^{\sim})\Pi_p(\tilde{x_2})\xi|\Pi_p(\tilde{y_1}\tilde{y_2})\eta\right) \\ &= \left(\pi_p(ab)\Pi_p(\tilde{x_1}\tilde{x_2})\xi|\Pi_p(\tilde{y_1}\tilde{y_2})\eta\right) \end{aligned}$$

for each $x_1, x_2, y_1, y_2 \in \mathcal{N}_p$ and $\xi, \eta \in \mathcal{H}_{\Pi_p}$, which implies π_p is a *-representation of \mathcal{A}

4. Unbounded C^* -seminorms defined by *-representations

In the previous sections we constructed *-representations of a partial *-algebra \mathcal{A} from a representable unbounded C^* -seminorm on \mathcal{A} having Property (B). Now, starting from a *-representation π of \mathcal{A} , we try to construct a representable unbounded C^* -seminorm $r_{\pi} \in \Sigma_B(\mathcal{A})$. When this is possible, it makes sense to investigate on the relation between π and the natural *-representation $\pi_{r_{\pi}}^N$ of \mathcal{A} induced by r_{π}

Let π be a *-representation of \mathcal{A} on a Hilbert space \mathcal{H}_{π} . We put, as above,

$$\mathcal{A}_b^{\pi} = \left\{ x \in \mathcal{A} : \, \overline{\pi(x)} \in \mathcal{B}(\mathcal{H}_{\pi}) \right\}$$

and

$$\pi_b(x) = \overline{\pi(x)} \qquad (x \in \mathcal{A}_b^{\pi}).$$

Then \mathcal{A}_b^{π} is a partial *-subalgebra of \mathcal{A} and π_b is a bounded *-representation of \mathcal{A}_b^{π} on \mathcal{H}_{π} . An unbounded C^* -seminorm r_{π}^L on \mathcal{A} is defined by

$$\mathcal{D}(r_{\pi}^{L}) = \mathcal{A}_{b}^{\pi}$$
 and $r_{\pi}^{L}(x) = \|\pi_{b}(x)\|$ $(x \in \mathcal{D}(r_{\pi}^{L})).$

But r_{π}^{L} does not necessarily have Property (B). For this reason, we consider the family of all unbounded C^* -seminorms on \mathcal{A} having Property (B) which are restrictions of r_{π}^{L} . We denote this family by $\Sigma_{B}(\pi)$ and call it the *family of unbounded* C^* -seminorms induced by π .

Definition 4.1. If $\Sigma_B(\pi) \neq \{0\}$, then π is said to have *Property* (B).

Suppose that π has Property (B) and $r_{\pi} \in \Sigma_B(\pi)$. We put

$$\Pi(\tilde{x}) = \pi(x) \qquad (x \in \mathcal{D}(r_{\pi})).$$

Then since

$$\|\Pi(\tilde{x})\| = r_{\pi}(x) = \|\tilde{x}\|_{r_{\pi}} \qquad (x \in \mathcal{D}(r_{\pi}))$$

it follows that Π can be extended to a faithful *-representation $\Pi_{r_{\pi}}^{N}$ of the C*-algebra $\mathcal{A}_{r_{\pi}} \equiv \widehat{\mathcal{D}(r_{\pi})}/\sim$ on the Hilbert space \mathcal{H}_{π} , and $\Pi_{r_{\pi}}^{N}(\mathcal{A}_{r_{\pi}}) = \overline{\pi(\mathcal{D}(r_{\pi}))}^{\parallel \parallel}$. We denote by $\pi_{r_{\pi}}^{N}$ the quasi *-representation of \mathcal{A} constructed by $\Pi_{r_{\pi}}^{N}$. This is called the *natural* representation of \mathcal{A} induced by π . Since $\mathcal{H}_{\Pi_{r_{\pi}}} = \mathcal{H}_{\pi}$, it follows that $\mathcal{H}_{\pi_{r_{\pi}}}^{N}$ is a closed subspace of \mathcal{H}_{π} .

Proposition 4.2. Suppose that π is a *-representation of \mathcal{A} having Property (B) and $r_{\pi} \in \Sigma_B(\pi)$. Then r_{π} is representable, $\pi_{r_{\pi}}^N \in \text{Rep}(\mathcal{A}, r_{\pi})$ and $\hat{\pi} \upharpoonright \mathcal{D}(\pi_{r_{\pi}}^N) = \pi_{r_{\pi}}^N$.

Proof. Since

$$\mathcal{D}(\pi_{r_{\pi}}^{N}) = \operatorname{Lin}\left\{ \Pi_{r_{\pi}}^{N}(\tilde{x_{1}}\tilde{x_{2}})\xi : x_{1}, x_{2} \in \mathcal{N}_{r_{\pi}}, \xi \in \mathcal{H}_{\pi} \right\}$$
$$= \operatorname{Lin}\left\{ \overline{\pi(x_{1}x_{2})}\xi : x_{1}, x_{2} \in \mathcal{N}_{r_{\pi}}, \xi \in \mathcal{H}_{\pi} \right\}$$

it follows that

$$(\pi(a)^*\eta | \Pi_{r_{\pi}}^N(\tilde{x_1}\tilde{x_2})\xi) = (\pi(a)^*\eta | \pi(x_1x_2)\xi) = (\overline{\pi((ax_1)^*)}\eta | \overline{\pi(x_2)}\xi) = (\eta | \overline{\pi((ax_1)x_2)}\xi) = (\eta | \pi_{r_{\pi}}^N(a) \Pi_{r_{\pi}}^N(\tilde{x_1}\tilde{x_2})\xi)$$

for each $a \in \mathcal{A}, \eta \in \mathcal{D}(\pi(a)^*), x_1, x_2 \in \mathcal{N}_{r_{\pi}}$ and $\xi \in \mathcal{H}_{\pi}$, which implies that

$$\Pi_{r_{\pi}}^{N}(\tilde{x_{1}}\tilde{x_{2}})\xi \in \mathcal{D}(\overline{\pi(a)})$$
$$\overline{\pi(a)}\Pi_{r_{\pi}}^{N}(\tilde{x_{1}}\tilde{x_{2}})\xi = \pi_{r_{\pi}}^{N}(a)\Pi_{r_{\pi}}^{N}(\tilde{x_{1}}\tilde{x_{2}})\xi.$$

Hence, $\mathcal{D}(\pi_{r_{\pi}}^{N}) \subset \mathcal{D}(\hat{\pi})$ and $\hat{\pi} \upharpoonright \mathcal{D}(\pi_{r_{\pi}}^{N}) = \pi_{r_{\pi}}^{N}$, which implies since $\hat{\pi}$ is a *-representation of \mathcal{A} that $\pi_{r_{\pi}}^{N}$ is a *-representation of \mathcal{A} and r_{π} is representable

We summarize in the following scheme the method of construction of $\pi_{r_{\pi}}^{N}$ described above:

Proposition 4.3. Suppose p is a representable weakly semifinite unbounded C^* seminorm on \mathcal{A} having Property (B). Then every π_p of Rep^{WB}(\mathcal{A}, p) has Property (B).

Take an arbitrary $r_{\pi_p} \in \Sigma_B(\pi_p)$ which is an extension of p. Then $\pi_p \subset \pi_{r_{\pi_p}}^N$ and $\hat{\pi_p} = \hat{\pi}_{r_{\pi_p}}^N$.

Proof. Since $p \in \Sigma_B(\mathcal{A})$ and $p \subset r_{\pi_p} \subset r_{\pi_p}^N$, it follows that π_p has Property (B) and $\mathcal{N}_p \subset \mathcal{N}_{r_{\pi_p}} \subset \mathcal{A}_b^{\pi_p}$, which implies

$$\mathcal{D}(\pi_p) = \operatorname{Lin}\left\{\overline{\pi_p(x_1x_2)}\xi : x_1, x_2 \in \mathcal{N}_p \text{ and } \xi \in \mathcal{H}_{\pi_p}\right\}$$
$$\subset \operatorname{Lin}\left\{\overline{\pi_p(x_1x_2)}\xi : x_1, x_2 \in \mathcal{N}_{r_{\pi_p}} \text{ and } \xi \in \mathcal{H}_{\pi_p}\right\}$$
$$= \mathcal{D}(\pi_{\pi_p}^N)$$
$$\subset \mathcal{H}_{\pi_p}$$

and $\pi_p = \pi_{r_{\pi_p}}^N \upharpoonright \mathcal{D}(\pi_p)$. On the other hand, it follows from Proposition 4.2 that $\pi_{r_{\pi_p}}^N \subset \hat{\pi_p}$. Hence it follows that $\mathcal{H}_{\pi_p} = \mathcal{H}_{\pi_{r_{\pi_p}}}^N, \pi_p \subset \pi_{r_{\pi_p}}^N$ and $\hat{\pi_p} = \hat{\pi}_{r_{\pi_p}}^N \blacksquare$

5. Examples

In this section we give some examples of unbounded C^* -seminorms on partial *-algebras having Property (B).

Example 5.1. Let S be a vector space of complex sequences containing l^{∞} . Suppose that $\{x_n\}^* \equiv \{\overline{x_n}\} \in S$ if $\{x_n\} \in S$ and S is l^{∞} -module. Then S is a partial *-algebra under the following partial multiplication and involution: $\{x_n\} \in L(\{y_n\})$ if and only if $\{x_ny_n\} \in S$ and $\{x_n\}^* = \{\overline{x_n}\}$, and it has Property (A) and $R(S) \supset l^{\infty}$. We define an unbounded C^* -norm on S having Property (B) by

$$\mathcal{D}(r_{\infty}) = l^{\infty} \quad \text{and} \quad r_{\infty}(\{x_n\}) = \|\{x_n\}\|_{\infty} \quad (\{x_n\} \in \mathcal{D}(r_{\infty})).$$

For any $\{x_n\} \in l^\infty$ we put

$$\Pi_{r_{\infty}}(\{x_n\})\{y_n\} = \{x_n y_n\} \qquad (\{y_n\} \in l^2).$$

Then $\Pi_{r_{\infty}}$ is a faithful *-representation of the C*-algebra l^{∞} on the Hilbert space l^2 and since

$$\mathcal{N}_{r_{\infty}} \supset \left\{ \{x_n\} \in S : x_n \neq 0 \text{ for only finite numbers } n \right\}$$

it follows that $\Pi_{r_{\infty}}(\mathcal{N}^2_{r_{\infty}})\mathcal{H}_{\Pi_{r_{\infty}}}$ is total in $\mathcal{H}_{\Pi_{r_{\infty}}}$. Hence r_{∞} is weakly semifinite.

Example 5.2. Let $C(\mathbb{R})$ be a *-algebra of all continuous complex-valued functions on \mathbb{R} equipped with the usual operations $f + g, \lambda f, fg$ and the involution $f^* : f^*(t) = \overline{f(t)}$ $(t \in \mathbb{R})$. Let \mathcal{A} be a *-vector subspace of $C(\mathbb{R})$. Then \mathcal{A} is a partial *-algebra having Property (A) under the following partial multiplication: $f \in L(g)$ if and only if $fg \in \mathcal{A}$. Concrete examples of partial *-algebras of this kind are, for instance:

(1) $\mathcal{A} = C(\mathbb{R}) \cap L^p(\mathbb{R}) \quad (1 \le p < \infty).$

We here define an unbounded C^* -norm on \mathcal{A} by

$$\mathcal{D}(r_{\infty}) = C_c(\mathbb{R}) \equiv \left\{ f \in C(\mathbb{R}) : \text{supp} f \text{ compact } \right\}$$

and

$$r_{\infty}(f) = \sup_{t \in \mathbb{R}} |f(t)| \quad (f \in \mathcal{D}(r_{\infty}))$$

Then since $\mathcal{D}(r_{\infty}) \subset R(\mathcal{A})$, it follows that r_{∞} has Property (B). Further,

$$\mathcal{A}_{r_{\infty}} = C_0(\mathbb{R}) \equiv \left\{ f \in C(\mathbb{R}) : \lim_{|t| \to \infty} |f(t)| = 0 \right\}$$

and a faithful *-representation $\Pi_{r_{\infty}}$ of the C*-algebra $C_0(\mathbb{R})$ on $L^2(\mathbb{R})$ is defined by

$$\Pi_{r_{\infty}}(f)g = fg \qquad (f \in C_0(\mathbb{R}), \quad g \in L^2(\mathbb{R})).$$

Since $\mathcal{N}_{r_{\infty}} \supset C_c(\mathbb{R})$, it follows that $\Pi_{r_{\infty}}(\mathcal{N}_{r_{\infty}}^2)L^2(\mathbb{R})$ is total in $L^2(\mathbb{R})$, which means that r_{∞} is weakly semifinite.

(2)
$$\mathcal{A} = \mathcal{A}_n \equiv \{ f \in C(\mathbb{R}) : \sup_{t \in \mathbb{R}} \frac{|f(t)|}{(1+t^2)^n} < \infty \} \quad (n \in \mathbb{N}).$$

We define an unbounded C^* -norm r_{∞} on \mathcal{A} by

$$\mathcal{D}(r_{\infty}) = C_b(\mathbb{R}) \equiv \left\{ f \in C(\mathbb{R}) : f \text{ bounded} \right\}$$

and

$$r_{\infty}(f) = \sup_{t \in \mathbb{R}} |f(t)| \ (f \in \mathcal{D}(r_{\infty})).$$

Then it is proved similarly to (1) that r_{∞} is a weakly semifinite unbounded C^* -norm on \mathcal{A} .

Similarly we have the following

Example 5.3.

(1) Let $C^{\infty}(\mathbb{R}) \cap L^{p}(\mathbb{R})$ $(1 \leq p < \infty)$ where $C^{\infty}(\mathbb{R})$ is a *-algebra of all infinitely differentiable complex functions on \mathbb{R} . We put

$$\mathcal{D}(r_{\infty}) = C_c^{\infty}(\mathbb{R})$$
 and $r_{\infty}(f) = \sup_{t \in \mathbb{R}} |f(t)| \ (f \in \mathcal{D}(r_{\infty})).$

Then r_{∞} is a weakly semifinite unbounded C^* -norm on $C^{\infty}(\mathbb{R}) \cap L^p(\mathbb{R})$ having Property (B).

(2) Let
$$n \in \mathbb{N}$$
 and $\mathcal{A}_n = \{f \in C^{\infty}(\mathbb{R}) : \sup_{t \in \mathbb{R}} \frac{|f(t)|}{(1+t^2)^n} < \infty\}$. We put
 $\mathcal{D}(r_{\infty}) = C_b^{\infty}(\mathbb{R})$ and $r_{\infty}(f) = \sup_{t \in \mathbb{R}} |f(t)| \quad (f \in \mathcal{D}(r_{\infty})).$

Then \mathcal{A}_n is a partial *-algebra having Property (A) and r_{∞} is a weakly semifinite unbounded C^* -norm on \mathcal{A}_n having Property (B).

Example 5.4. Let \mathcal{D} be a dense subspace of a Hilbert space \mathcal{H} and $C(\mathcal{H})$ the C^* -algebra of all compact operators on \mathcal{H} . Suppose that the maximal partial O^* -algebra $\mathcal{L}^{\dagger}(\mathcal{D},\mathcal{H})$ is self-adjoint. Then $\mathcal{L}^{\dagger}(\mathcal{D},\mathcal{H})$ has Property (A) and

$$R^{\mathrm{w}}(\mathcal{L}^{\dagger}(\mathcal{D},\mathcal{H})) = \Big\{ X \upharpoonright \mathcal{D} : \overline{X} \in \mathcal{B}(\mathcal{H}) \text{ and } \overline{X}\mathcal{H} \subset \mathcal{D} \Big\}.$$

We now define an unbounded C^* -norm r_u on the maximal O^* -algebra $\mathcal{L}^{\dagger}(\mathcal{D},\mathcal{H})$ by

$$\mathcal{D}(r_u) = C(\mathcal{H}) | \mathcal{D}$$
 and $r_u(X) = \| \overline{X} \| (X \in \mathcal{D}(r_u)).$

Since

$$F(\mathcal{D},\mathcal{H}) \equiv \operatorname{Lin}\left\{\xi \otimes \overline{y} : \xi \in \mathcal{D} \text{ and } y \in \mathcal{H}\right\} \subset R^{\mathrm{w}}(\mathcal{L}^{\dagger}(\mathcal{D},\mathcal{H}))$$

where $(x \otimes \overline{y})z = (z|y)x$ for $x, y, z \in \mathcal{H}$ and $F(\mathcal{D}, \mathcal{H})$ is uniformly dense in $C(\mathcal{H})$, it follows that r_u has Property (B). Further, since $\mathcal{N}_{r_{\infty}} \supset F(\mathcal{D}, \mathcal{H})$, it follows that r_u is semifinite.

Example 5.5. Let \mathcal{M}_0 be an O^* -algebra on the Schwartz space $\mathcal{S}(\mathbb{R})$ and $N = \sum_{n=0}^{\infty} (n+1)f_n \otimes \overline{f_n}$ the number operator, where $\{f_n\} \subset \mathcal{S}(\mathbb{R})$ is an orthonormal basis in $L^2(\mathbb{R})$ consisting the normalized Hermite functions. Let \mathcal{M} be a partial O^* -algebra on $\mathcal{S}(\mathbb{R})$ containing \mathcal{M}_0 and $\{f_n \otimes \overline{f_m} : m, n \in \mathbb{N}_0\}, \mathbb{N}_0 = \mathbb{N} \cup \{0\}$. Since \mathcal{M} is self-adjoint, it follows that \mathcal{M} has Property (A). We define an unbounded C^* -norm on \mathcal{M} by

$$\mathcal{D}(r_u) = \operatorname{Lin}\left\{Af_n \otimes \overline{Bf_m} : A, B \in \mathcal{M} \text{ and } n, m \in \mathbb{N}_0\right\}$$
$$r_u(X) = \|\overline{X}\| \quad (X \in \mathcal{D}(r_u)).$$

Then

$$\operatorname{Lin}\left\{f_n \otimes \overline{Bf_m} : B \in \mathcal{M} \text{ and } n, m \in \mathbb{N}_0\right\}$$

is contained in \mathcal{N}_{r_u} and is uniformly dense in $\mathcal{D}(r_u)$. Hence r_u has Property (B) and it is semifinite.

Example 5.6. Let $(\mathcal{A}, \mathcal{A}_0)$ be a proper CQ^* -algebra [7, 8], i.e. a topological quasi *-algebra $(\mathcal{A}[\tau], \mathcal{A}_0)$ such that:

- **a)** $\mathcal{A}[\tau]$ is a Banach space under the norm $\|\cdot\|$.
- **b)** The involution * of \mathcal{A} is isometric, i.e. $||X|| = ||X^*||$ for all $X \in \mathcal{A}$.
- c) $||X||_0 = \max\{||X||_R, ||X^*||_R\}$ where $||X||_R = \sup\{||AX|| : ||A|| \le 1\}$.

Of course, the C^* -norm on \mathcal{A}_0 can be viewed as an unbounded C^* -norm r with domain $\mathcal{D}(r) = \mathcal{A}_0$. Since $R(\mathcal{A}) = \mathcal{A}_0$, it is obvious that r satisfies property (B). In order to apply the results of Section 2 we have to consider the set

$$\mathcal{N}_r = \{ X \in \mathcal{A}_0 : AX \in \mathcal{A}_0 \text{ for all } A \in \mathcal{A} \}.$$

Also in this simple situation, \mathcal{N}_r might be trivial. Let us sketch a concrete case, where this does not happen.

Let S be an unbounded selfadjoint operator in Hilbert space $\mathcal{H}, S \geq 1$. The norm

$$||X||_{S} = ||S^{-1}XS^{-1}|| \qquad (X \in \mathcal{B}(\mathcal{H}))$$

defines a topology stricly weaker than the one defined by the C^* -norm of $\mathcal{B}(\mathcal{H})$. Let

$$C(S) = \left\{ X \in \mathcal{B}(\mathcal{H}) : XS^{-1} = S^{-1}X \right\}.$$

C(S) is a C^* -algebra under the norm of $\mathcal{B}(\mathcal{H})$ and its $\|\cdot\|_S$ -completion $\widehat{C}(S)$ is a CQ^* -algebra on C(S) [8: Proposition 2.6]. Now define

$$\mathcal{D}(r) = C(S)$$
 and $r(X) = ||X|| \quad (X \in C(S)).$

Then r is an unbounded C^* -norm on $\widehat{C}(S)$ satisfying property (B). It is easy to check that

$$\mathcal{N}_r \supset \{ X \in C(S) : X \text{ is of finite rank} \}.$$

So, for instance, if S has the spectral decomposition

$$S = \sum_{n=1}^{\infty} \lambda_n P_n$$

where the P_n 's are finite rank projections, then \mathcal{N}_r is non-trivial and the construction of Section 2 applies. We remark that r need not be semifinite but, by Lemma 3.4, any element of $\operatorname{QRep}(\mathcal{A}, p)$ is indeed a *-representation.

Acknowledgment. Two of us (F.B and C.T) wish to acknowledge the warm hospitatily of the Department of Applied Mathematics of the Fukuoka University, where a part of this paper was performed.

References

- Alcantara, J. and J. Yngvason: Algebraic quantum field theory and non commutative moment problem, Part II. Ann. Inst. Henri Poincaré 48 (1988), 161 – 173.
- [2] Antoine, J.-P., Bagarello, F. and C. Trapani: *Topological partial* *-algebras: Basic properties and examples. Rev. Math. Phys. 11 (1999), 267 302.
- [3] Antoine, J.-P. and W. Karwowski: Partial *-algebras of closed linear operators in Hilbert space. Publ. RIMS, Kyoto Univ. 21 (1985), 205 – 236.
- [4] Antoine, J.-P., Inoue, A. and C. Trapani: Partial *-algebras of closable operators. Part I: The basic theory and the abelian case. Publ. RIMS, Kyoto Univ. 26 (1990), 359 – 395.
- [5] Antoine, J.-P., Inoue, A. and C. Trapani: Partial *-algebras of closable operators. Part II: States and representations of partial *-algebras. Publ. RIMS, Kyoto Univ. 27 (1991), 399 - 430.
- [6] Antoine, J.-P., Inoue, A. and C. Trapani: Partial *-algebras of closable operators: A review. Reviews Math. Phys. 8 (1996), 1 – 42.

- [7] Bagarello, F. and C.Trapani: States and representations of CQ*-algebras. Ann. Inst. H. Poincaré 61 (1994), 103 133.
- [8] Bagarello, F. and C.Trapani: CQ*-algebras: structure properties. Publ. RIMS, Kyoto Univ. 32 (1996), 85 – 116.
- [9] Bhatt, S. J., Inoue, A. and H. Ogi: On C^{*}-Spectral Algebras. Suppl. Rend. Circ. Mat. Palermo 56 (1998).
- [10] Bhatt, S. J., Inoue, A. and H. Ogi: Admissibility of weights on non-normed *-algebras. Trans. Amer. Math. Soc. 351 (1999), 4629 – 4656.
- [11] Bhatt, S. J., Inoue, A. and H. Ogi: Unbounded C^{*}-seminorms and unbounded C^{*}-spectral algebras. J. Operator Theory (to appear).
- [12] Bhatt, S. J., Inoue, A. and H. Ogi: Spectral invariance, K-theory isomorphism and an application to the differential structure of C^{*}-algebras. Preprint. Fukuoka Univ. 2001.
- [13] Bonsall, F. F. and J. Duncan: Complete Normed Algebras. Berlin et al: Springer-Verlag 1973.
- [14] Dixmier, J.: C^{*}-Algebras. Amsterdam: North-Holland Publ. Comp. 1977.
- [15] Dubois-Violette, M.: A generalization of the classical moment problem on *-algebras with applications to relativistic quantum theory. Parts I and II. Commun. Math. Phys. 43 (1975), 225 - 254 and 54 (1977), 151 - 172.
- [16] Lassner, G.: Topological algebras and their applications in Quantum Statistics. Wiss. Z. KMU Leipzig, Math.-Naturwiss. R. 30 (1981), 572 595.
- [17] Lassner, G.: Algebras of unbounded operators and quantum dynamics. Physica 124A (1984), 471 – 480.
- [18] Yngvason, J.: Algebraic quantum field theory and non commutative moment problem, Part I. Ann. Inst. Henri Poincaré 48 (1988), 147 – 159.
- [19] Yood, B.: C^* -seminorms. Studia Math. 118 (1996), 19 26.

Received 02.05.2000