Unbounded C^* -Seminorms and $*$ -Representations of Partial [∗] -Algebras

F. Bagarello, A. Inoue and C. Trapani

Abstract. The main purpose of this paper is to construct *-representations from unbounded C^* -seminorms on partial $*$ -algebras and to investigate their $*$ -representations.

Keywords: Partial *-algebras, quasi *-algebras, unbounded C^* -seminorms, (unbounded) *representations

AMS subject classification: 46K70, 46L05

1. Introduction and Preliminaries

A C^* -seminorm p on a locally convex $*$ -algebra A is a seminorm enjoying the so-called C^* -property $p(x^*x) = p(x)^2$ $(x \in \mathcal{A})$. They have been extensively studied in the literature (see, e.g., $[9 - 13, 19]$). One of the main points of the theory is that every *-representation of the completion (\mathcal{A}, p) is bounded.

Generalizations of this notions have led Bhatt, Ogi and one of us [11] to consider socalled *unbounded* C^* -seminorms on $*$ -algebras. Their main feature is that they need not be defined on the whole A but only on a $*$ -subalgebra of it. This fact allows the existence of unbounded representations of A (and motivates the adjective "unbounded" used to name them). But it is not only for need of mathematical generalization that it makes sense to consider unbounded C^* -seminorms but also because of it appearance in some subject of mathematical physics [1, 15, 18]. However, when considering unbounded C^* seminorms on a locally convex $*$ -algebra A whose multiplication is not jointly continuous one is naturally led to consider partial algebraic structures: in that case in fact the completion of A is no longer, in general, a locally convex $*$ -algebra but only a topological quasi [∗] -algebra [16, 17]. Quasi [∗] -algebras are a particular case of partial [∗] -algebras [3]. Roughly speaking, a partial $*$ -algebra A is a linear space with involution and a partial multiplication defined on a subset Γ of $A \times A$ enjoying some of the usual properties of multiplication, with the very relevant exception of associativity. Of course, as one of the main tools in the study of ^{*}-algebras is the theory of ^{*}-representations, partial ∗ -algebras of operators (so-called partial O[∗] -algebras) have been considered as the main

F. Bagarello: Univ. of Palermo, Dept. Math. & Appl., IT-90128 Palermo, Italy

A. Inoue: Fukuoka University, Dept. Appl. Math., 814-0180, Fukuoka, Japan

C. Trapani: Univ. of Palermo, Dept. Phys. Sci. & Astr., IT-90123 Palermo, Italy

instance of these new algebraic structures and a systematic study has been undertaken [3 - 6]. From a more abstract point of view, the possibility of introducing topologies compatible with the structure of a partial [∗] -algebra has been investigated in [2].

The present paper is organized as follows.

In Section 2, starting from a C^* -seminorm p on a partial *-algebra \mathcal{A} , we prove the existence of *quasi* $*$ -*representations* of A induced by p; they are named in this way since the usual rule for the multiplication holds in a sense that remind the multiplication in quasi ^{*}-algebras. These quasi ^{*}-representations depend essentially on a certain subspace \mathcal{N}_p of the domain $\mathcal{D}(p)$ of the C^{*}-seminorm p. Of course, by adding assumptions on \mathcal{N}_p we are led to consider a variety of situations of some interest. In this perspective, we introduce the notions of *finite* and (weakly-) semifinite C^* -seminorms and study in detail the quasi [∗] -representations that they induce.

In Section 3 we consider the problem as to whether a $*$ -representation of A , in the sense of [5], does really exist or in other words if the quasi [∗] -representation, whose existence has been proved in Section 2, is indeed a ^{*}-representation.

In Section 4, we reverse the point of view: starting from a $*$ -representation π of a partial ^{*}-algebra, we construct an unbounded C^* -seminorm r_{π} on A which turns out to admit a ^{*}-representation $\pi_{r_{\pi}}^{N}$ called *natural*. We then investigate the relationship between $\pi_{r_{\pi}}^{N}$ and the ^{*}-representation π where we had started with.

Section 5 is devoted to the discussion of some examples.

Before going forth, we shortly give some definitions needed in the sequel.

A partial *-algebra is a complex vector space A, endowed with an involution $x \mapsto x^*$ (that is, a bijection such that $x^{**} = x$) and a partial multiplication defined by a set $\Gamma \subset \mathcal{A} \times \mathcal{A}$ (a binary relation) such that:

- (i) $(x, y) \in \Gamma$ implies $(y^*, x^*) \in \Gamma$.
- (ii) $(x, y_1), (x, y_2) \in \Gamma$ implies $(x, \lambda y_1 + \mu y_2) \in \Gamma$ for all $\lambda, \mu \in \mathbb{C}$.
- (iii) For any $(x, y) \in \Gamma$, there is defined a product $x y \in A$, which is distributive with respect to addition and satisfies the relation $(xy)^* = y^*x^*$.

The element e of the partial ^{*}-algebra A is called a *unit* if $e^* = e, (e, x) \in \Gamma$ for all $x \in \mathcal{A}$ and $e x = x e = x$ for all $x \in \mathcal{A}$.

Given the defining set Γ, spaces of multipliers are defined in the obvious way:

$$
(x, y) \in \Gamma \iff x \in L(y)
$$
 or x is a left multiplier of y
 $\iff y \in R(x)$ or y is a right multiplier of x.

For a subset β of \mathcal{A} , we write

$$
L(\mathcal{B}) = \cap_{x \in \mathcal{B}} L(x), \qquad R(\mathcal{B}) = \cap_{x \in \mathcal{B}} R(x).
$$

Notice that the partial multiplication is not required to be associative (and often it is not). The following weaker notion is therefore in use: a partial $*$ -algebra A is said to be semi-associative if $y \in R(x)$ implies $y \cdot z \in R(x)$ for every $z \in R(\mathcal{A})$ and

$$
(x \cdot y) \cdot z = x \cdot (y \cdot z).
$$

Let $\mathcal{A}[\tau]$ be a partial ^{*}-algebra, which is a topological vector space for the locally convex topology τ . Then $\mathcal{A}[\tau]$ is called a *topological partial* ^{*}-algebra if the following two conditions are satisfied [2]:

- (i) The involution $a \mapsto a^*$ is τ -continuous.
- (ii) The maps $a \mapsto xa$ and $a \mapsto ay$ are τ -continuous for all $x \in L(\mathcal{A})$ and $y \in R(\mathcal{A})$.

A quasi ^{*}-algebra (A, A_0) is a partial ^{*}-algebra where the multiplication is defined via the ^{*}-algebra $\mathcal{A}_0 \subset \mathcal{A}$ by taking Γ as

$$
\Gamma = \Big\{ (a,b) \in \mathcal{A} \times \mathcal{A} : a \in \mathcal{A}_0 \text{ or } b \in \mathcal{A}_0 \Big\}.
$$

If A is endowed with a locally convex topology which makes it into a topological partial *-algebra and A_0 is dense in A, then (A, A_0) is said to be a *topological* quasi *-algebra.

We turn now to partial O^{*}-algebras. Let H be a complex Hilbert space and D a dense subspace of H. We denote by $\mathcal{L}^{\dagger}(\mathcal{D},\mathcal{H})$ the set of all (closable) linear operators X such that $D(X) = \mathcal{D}$ and $D(X^*) \supseteq \mathcal{D}$. The set $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ is a partial *-algebra with respect to the following operations: the usual sum $X_1 + X_2$, the scalar multiplication λX , the involution $X \mapsto X^{\dagger} = X^* \upharpoonright \mathcal{D}$ and the (weak) partial multiplication $X_1 \square X_2 = X_1^{\dagger *} X_2$, defined whenever X_2 is a weak right multiplier of X_1 (equivalently, X_1 is a weak left multiplier of X_2), that is, if and only if $X_2 \mathcal{D} \subset D(X_1^{\dagger})$ and $X_1^* \mathcal{D} \subset D(X_2^*)$ (we write $X_2 \in R^{w}(X_1)$ or $X_1 \in L^{w}(X_2)$. When we regard $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ as a partial *-algebra with those operations, we denote it by $\mathcal{L}_{w}^{\dagger}(\mathcal{D},\mathcal{H})$.

A partial O^{*}-algebra on D is a (partial) ^{*}-subalgebra M of $\mathcal{L}^{\dagger}_{w}(\mathcal{D},\mathcal{H})$, that is, M is a subspace of $\mathcal{L}^{\dagger}_{w}(\mathcal{D},\mathcal{H})$ containing the identity and such that $X^{\dagger} \in \mathcal{M}$ whenever $X \in \mathcal{M}$ and $X_1 \square X_2 \in \mathcal{M}$ for any $X_1, X_2 \in \mathcal{M}$ such that $X_2 \in R^w(X_1)$. Thus $\mathcal{L}^{\dagger}_w(\mathcal{D}, \mathcal{H})$ itself is the largest partial O^* -algebra on the domain D .

Given a [†]-invariant subset N of $\mathcal{L}^{\dagger}(\mathcal{D},\mathcal{H})$, the familiar weak bounded commutant is defined as

$$
\mathcal{N}'_{w} = \Big\{ C \in \mathcal{B}(\mathcal{H}) : (CX\xi|\eta) = (C\xi|X^{\dagger}\eta) \text{ for each } \xi, \eta \in \mathcal{D} \text{ and } X \in \mathcal{N} \Big\}.
$$

The last definitions we need are related with representations.

A ^{*}-representation of a partial ^{*}-algebra $\mathcal A$ is a ^{*}-homomorphism of $\mathcal A$ into $\mathcal L_w^{\dagger}(\mathcal D(\pi),$ \mathcal{H}_{π}), for some pair $\mathcal{D}(\pi) \subset \mathcal{H}_{\pi}$, that is, a linear map $\pi: \mathcal{A} \to \mathcal{L}_{w}^{\dagger}(\mathcal{D}(\pi), \mathcal{H}_{\pi})$ such that

- (i) $\pi(x^*) = \pi(x)^\dagger$ for every $x \in \mathcal{A}$.
- (ii) $x \in L(y)$ in A implies $\pi(x) \in L^{\mathbf{w}}(\pi(y))$ and $\pi(x) \square \pi(y) = \pi(xy)$.

If π is a ^{*}-representation of the partial ^{*}-algebra \mathcal{A} into $\mathcal{L}^{\dagger}_{w}(\mathcal{D}(\pi), \mathcal{H}_{\pi})$, we define $\widetilde{\mathcal{D}(\pi)}$ as the completion of $\mathcal{D}(\pi)$ with respect to the graph topology defined by $\pi(\mathcal{A})$. Furthermore, we put

$$
\widehat{\mathcal{D}(\pi)} = \bigcap_{x \in \mathcal{A}} \mathcal{D}(\overline{\pi(x)})
$$

$$
\mathcal{D}(\pi)^* = \bigcap_{x \in \mathcal{A}} \mathcal{D}(\pi(x)^*).
$$

We say that π is

-closed if $\mathcal{D}(\pi) = \widetilde{\mathcal{D}(\pi)}$

-fully-closed if $\mathcal{D}(\pi) = \mathcal{D}(\pi)$ s -self-adjoint if $\mathcal{D}(\pi) = \mathcal{D}(\pi)^*$.

Let π_1 and π_2 be ^{*}-representations of A. With the notation $\pi_1 \subset \pi_2$ we mean that $\mathcal{H}_{\pi_1} \subseteq \mathcal{H}_{\pi_2}, \mathcal{D}(\pi_1) \subseteq \mathcal{D}(\pi_2)$ and $\pi_1(a)\xi = \pi_2(a)\xi$ for each $\xi \in \mathcal{D}(\pi_1)$.

By considering the identical ^{*}-representations, the terms fully-closed, self-adjoint etc. can also be referred to a partial O^* -algebra on a given domain D and then generalized, in obvious way, to an arbitrary [†]-invariant subset of $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$.

2. Representations induced by unbounded C^* -seminorms

In this section we construct (quasi) *-representations of partial *-algebras from unbounded C[∗] -seminorms. Throughout this paper we treat only with partial [∗] -algebras whose partial multiplication satisfies the property

(A)
$$
\begin{cases} y^*(ax) = (y^*a)x \\ a(xy) = (ax)y \end{cases}
$$
 for all $a \in \mathcal{A}$ and all $x, y \in R(\mathcal{A})$.

We remark that if A is semi-associative, then it satisfies Property (A) .

Definition 2.1. A mapping p of a (partial) *-subalgebra $\mathcal{D}(p)$ of A into \mathbb{R}^+ is said to be an *unbounded* m^* - $(semi)$ norm on A if

- (i) p is a (semi) norm on $\mathcal{D}(p)$.
- (ii) $p(x^*) = p(x)$ for all $x \in \mathcal{D}(p)$.

(iii) $p(xy) \leq p(x)p(y)$ for all $x, y \in \mathcal{D}(p)$ such that $x \in L(y)$.

An unbounded m^* -(semi)norm p on A is said to be an unbounded C^* -(semi)norm if

(iv) $p(x^*x) = p(x)^2$ for all $x \in \mathcal{D}(p)$ such that $x^* \in L(x)$.

An unbounded m^* -(semi)norm or C^* -(semi)norm on A is said to be a m^* -(semi)norm or C^* - $(semi)$ norm, respectively, if $\mathcal{D}(p) = \mathcal{A}$.

An (unbounded) m^* -seminorm p on A is said to have Property (B) if it satisfies the following basic density-condition:

(B) $R(\mathcal{A}) \cap \mathcal{D}(p)$ is total in $\mathcal{D}(p)$ with respect to p.

Lemma 2.2. Let p be an m^* -seminorm on A having Property (B) , that is, $R(A)$ is p-dense in A . We denote by A the set of all Cauchy sequences in A with respect to the seminorm p and define an equivalent relation \sim in A by $\{a_n\} \sim \{b_n\}$ if $\lim_{n\to\infty} p(a_n$ b_n) = 0. Then the following statements hold:

(1) The quotient space \hat{A}/\sim is a Banach *-algebra under the following operations, involution and norm:

$$
\{a_n\}^{\sim} + \{b_n\}^{\sim} \equiv \{a_n + b_n\}^{\sim}
$$

\n
$$
\lambda \{a_n\}^{\sim} \equiv \{\lambda a_n\}^{\sim}
$$

\n
$$
\{a_n\}^{\sim} \{b_n\}^{\sim} \equiv \{x_n y_n\}^{\sim} (\{x_n\}^{\sim}, \{y_n\}^{\sim} \in R(\mathcal{A}), \{x_n\}^{\sim} \equiv \{a_n\}^{\sim}, \{y_n\}^{\sim} \equiv \{b_n\}^{\sim})
$$

\n
$$
\{a_n\}^{\sim*} \equiv \{a_n^*\}^{\sim}
$$

\n
$$
||\{a_n\}^{\sim}||_p \equiv \lim_{n \to \infty} p(a_n).
$$

(2) For each $a \in \mathcal{A}$ we put $\tilde{a} = \{a_n\}^{\sim} \ (a_n = a, n \in \mathbb{N})$ and $\tilde{\mathcal{A}} = \{\tilde{a} : a \in \mathcal{A}\}\$. Then $\tilde{\mathcal{A}}$ is a dense *-invariant subspace of $\hat{\mathcal{A}}/\sim$ satisfying $\tilde{a}\tilde{b} = (ab)^{\sim}$ whenever $a \in L(b)$.

(3) Suppose p is a C^* -seminorm on A. Then \hat{A}/\sim is a C^* -algebra.

Proof. As in the usual construction of the completion of a normed space, it can be shown that \mathcal{A}/\sim is a Banach space.

We first show that ${a_n}^{\sim} {b_n}^{\sim}$ is well-defined and the relation defines a multiplication of \hat{A}/\sim . Since $R(A)$ is p-dense in A, for each $\{a_n\}, \{b_n\} \in \hat{A}$ there exist sequences $\{x_n\}, \{y_n\} \in R(\mathcal{A})$ such that $\{a_n\}^{\sim} = \{x_n\}^{\sim}$ and $\{b_n\}^{\sim} = \{y_n\}^{\sim}$. Then it follows from the submultiplicativity of p that $\{x_n y_n\}^{\sim} \in \hat{\mathcal{A}}$ and $\{a_n\}^{\sim} \{b_n\}^{\sim}$ is independent of the choice of the equivalent sequences $\{x_n\}$ and $\{y_n\}$. Further, the relation $\{a_n\}^{\sim}\{b_n\}^{\sim}$ defines a multiplication of \hat{A}/\sim . In fact, the associativity follows from the equalities

$$
\{a_n\}^{\sim}(\{b_n\}^{\sim}\{c_n\}^{\sim}) = \{x_n\}^{\sim}(\{y_nz_n\}^{\sim})
$$

$$
= \{x_n(y_nz_n)\}^{\sim}
$$

$$
= \{(x_ny_n)z_n\}^{\sim}
$$

$$
= (\{a_n\}^{\sim}\{b_n\}^{\sim})\{c_n\}^{\sim}
$$

where $\{x_n\}, \{y_n\}, \{z_n\} \subset R(\mathcal{A})$ such that $\{x_n\}^{\sim} = \{a_n\}^{\sim}, \{y_n\}^{\sim} = \{b_n\}^{\sim}$ and $\{z_n\}^{\sim} =$ ${c_n}^{\sim}$, and the other properties can be proved in a similar way. Thus \hat{A} ∕ is a usual algebra.

Similarly it is shown that $\{a_n\}^{\sim} \mapsto \{a_n^*\}^{\sim}$ is an involution of the algebra $\hat{\mathcal{A}}/\sim$, and

$$
\|\{a_n\}^{\sim}\{b_n\}^{\sim}\|_p \le \|\{a_n\}^{\sim}\|_p \|\{b_n\}^{\sim}\|_p, \qquad \|\{a_n\}^{\sim*}\|_p = \|\{a_n\}^{\sim}\|_p
$$

for each $\{a_n\}, \{b_n\} \in \mathcal{A}$, which implies statement (1), i.e. that \mathcal{A}/\sim is a Banach ∗ -algebra. Statements (2) and (3) can be proved in a similar way

From now on we denote by

 $\Sigma(\mathcal{A})$ the set of all unbounded C^{*}-seminorms on \mathcal{A}

 $\Sigma_B(\mathcal{A})$ the subset of $\Sigma(\mathcal{A})$ consisting of those satisfying Property (B).

Let p be an unbounded C^{*}-seminorm on A having Property (B), i.e. $p \in \Sigma_B(\mathcal{A})$. By Lemma 2.2, $\mathcal{A}_p = \widehat{\mathcal{D}(p)}/\sim$ is a C*-algebra. We denote by $\text{Rep}(\mathcal{A}_p)$ the set of all *-representations Π_p of the C^{*}-algebra \mathcal{A}_p on Hilbert space \mathcal{H}_{Π_p} and put

$$
\operatorname{FRep}(\mathcal{A}_p) = \Big\{\Pi_p \in \operatorname{Rep}(\mathcal{A}_p) : \Pi_p \text{ is faithful}\Big\}.
$$

Then we have the following

Proposition 2.3. For any $\Pi_p \in \text{Rep}(\mathcal{A}_p)$ we put

$$
\pi_p^{\circ}(x) = \Pi_p(\tilde{x}) \qquad (x \in \mathcal{D}(p)).
$$

Then π_p° is a *-representation of $\mathcal{D}(p)$ on \mathcal{H}_{Π_p} .

This proposition provides the most natural way to define a $*$ -representation of $\mathcal{D}(p)$. However, π_p° cannot be extended to the whole A. The construction of * -representations of A requires a more detailed analysis. This will be the content of the next propositions.

To begin with, we put

$$
\mathcal{N}_p = \Big\{ x \in \mathcal{D}(p) \cap R(\mathcal{A}) : ax \in \mathcal{D}(p) \text{ for all } a \in \mathcal{A} \Big\}.
$$

Then we have the following

Lemma 2.4.

- (1) \mathcal{N}_p is an algebra satisfying $(\mathcal{D}(p) \cap R(\mathcal{A}))\mathcal{N}_p \subset \mathcal{N}_p$.
- (2) We denote by \mathcal{T}_p the closure of $\widetilde{\mathcal{N}_p}$ in the C^{*}-algebra \mathcal{A}_p . Then \mathcal{T}_p is a closed left ideal of A_n .
- (3) $\Pi_p(\widetilde{\mathcal{N}}_p^2)\mathcal{H}_{\Pi_p}$ is dense in $\Pi_p(\widetilde{\mathcal{N}}_p)\mathcal{H}_{\Pi_p}$.

Proof. Statement (1) follows from the semi-associativity (A).

Statement (2): Since $\mathcal{D}(p) \cap R(\mathcal{A})$ is p-dense in $\mathcal{D}(p)$ and the above property (1), it follows that $\mathcal{D}(p)^\sim \mathcal{N}_p^\sim \subset \mathcal{T}_p$, and so $\mathcal{D}(p)^\sim \mathcal{T}_p \subset \mathcal{T}_p$. Since $\mathcal{D}(p)^\sim$ is dense in the C^* -algebra \mathcal{A}_p , we have $\mathcal{A}_p \mathcal{T}_p \subset \mathcal{T}_p$.

Statement (3): It is clear that $\Pi_p(\widetilde{\mathcal{N}_p}^2) \mathcal{H}_{\Pi_p}$ is dense in $\Pi_p(\widetilde{\mathcal{N}_p} \mathcal{T}_p) \mathcal{H}_{\Pi_p}$. Since \mathcal{T}_p is a closed left ideal of the C^{*}-algebra \mathcal{A}_p , there exists a direct net $\{U_\lambda\}$ in \mathcal{T}_p such that $\lim_{\lambda} ||AU_{\lambda} - A||_p = 0$ for each $A \in \mathcal{T}_p$, which implies that $\Pi_p(\widetilde{\mathcal{N}}_p\mathcal{T}_p)\mathcal{H}_{\Pi_p}$ is dense in $\Pi_p(\widetilde{\mathcal{N}}_p)\mathcal{H}_{\Pi_p}$. Hence $\Pi_p(\widetilde{\mathcal{N}}_p^{-2})\mathcal{H}_{\Pi_p}$ is dense in $\Pi_p(\widetilde{\mathcal{N}}_p)\mathcal{H}_{\Pi_p}$

Let now

$$
\mathcal{D}(\pi_p) = \text{Lin}\Big\{\Pi_p((xy)^{\sim})\xi : x, y \in \mathcal{N}_p \text{ and } \xi \in \mathcal{H}_{\Pi_p}\Big\}
$$

and \mathcal{H}_{π_p} be the closure of $\mathcal{D}(\pi_p)$ in \mathcal{H}_{Π_p} . We define

$$
\pi_p(a)\left(\sum_k \Pi_p((x_k y_k)^\sim)\xi_k\right) = \sum_k \Pi_p((ax_k)^\sim \widetilde{y_k})\xi_k
$$

for $a \in \mathcal{A}$ and $\sum_{k} \Pi_p((x_k y_k)^{\sim}) \xi_k \in \mathcal{D}(\pi_p)$.

Remark. By Lemma $2.4/(3)$ we have

$$
\mathcal{H}_{\pi_p} \equiv \overline{\text{Lin}} \Big\{ \Pi_p(\tilde{x_1} \tilde{x_2}) \xi : x_1, x_2 \in \mathcal{N}_p \text{ and } \xi \in \mathcal{H}_{\Pi_p} \Big\}
$$

$$
= \overline{\text{Lin}} \Big\{ \Pi_p(\tilde{x}) \xi : x \in \mathcal{N}_p \text{ and } \xi \in \mathcal{H}_{\Pi_p} \Big\}.
$$

In general, it may happen that \mathcal{H}_{π_p} is very 'small' compared to \mathcal{H}_{Π_p} . This point will be considered at the end of this section, where *well-behaved* representations related to unbounded C^* -seminorms will be introduced.

Now, we prove the following

Lemma 2.5. π_p is a linear map of A into $\mathcal{L}^{\dagger}(\mathcal{D}(\pi_p), \mathcal{H}_{\pi_p})$ satisfying the following properties:

\n- (i)
$$
\pi_p(a^*) = \pi_p(a)^\dagger
$$
 $(a \in \mathcal{A})$.
\n- (ii) $\pi_p(ax) = \pi_p(a) \Box \pi_p(x)$ $(a \in \mathcal{A}, x \in R(\mathcal{A}))$.
\n- (iii) $\|\overline{\pi_p(x)}\| \leq p(x)$ $(x \in \mathcal{D}(p))$. Further, if $\pi_p \in \text{FRep}(\mathcal{A}_p)$, then $\|\overline{\pi_p(x)}\| = p(x)$ $(x \in \mathcal{N}_p)$.
\n

Proof. By Lemma $2.4/(2)-(3)$ we have

$$
\Pi_p((ax)^{\sim}\tilde{y})\xi \in \Pi_p(\mathcal{T}_p)\mathcal{H}_{\Pi_p} \subset \mathcal{H}_{\pi_p}
$$

for each $a \in \mathcal{A}$, $x, y \in \mathcal{N}_p$ and $\xi \in \mathcal{H}_{\Pi_p}$, and further by Property (A)

$$
\begin{aligned} \left(\Pi_p((ax_1)^\sim \tilde{y_1})\xi|\Pi_p(\tilde{x_2}\tilde{y_2})\eta\right) \\ &= \left(\Pi_p(\tilde{y_1})\xi|\Pi_p(((ax_1)^*x_2)^\sim)\Pi_p(\tilde{y_2})\eta\right) \\ &= \left(\Pi_p(\tilde{y_1})\xi|\Pi_p((x_1^*(a^*x_2))^\sim)\Pi_p(\tilde{y_2})\eta\right) \\ &= \left(\Pi_p(\tilde{x_1}\tilde{y_1})\xi|\Pi_p((a^*x_2)^\sim \tilde{y_2})\eta\right) \end{aligned}
$$

for each $a \in \mathcal{A}, x_1, y_1, x_2, y_2 \in \mathcal{N}_p$ and $\xi, \eta \in \mathcal{H}_{\Pi_p}$, which implies that $\pi_p(a)$ is a welldefined linear map from $\mathcal{D}(\pi_p)$ to \mathcal{H}_{π_p} satisfying $\pi_p(a^*) = \pi_p(a)^\dagger$. It is clear that π_p is a linear map of A into $\mathcal{L}^{\dagger}(\mathcal{D}(\pi_p), \mathcal{H}_{\pi_p}).$

We next show statement (ii). Take arbitrary $a \in \mathcal{A}$ and $x \in R(\mathcal{A})$. By Property (A) we have

$$
z^*((ax)y) = (z^*(ax))y = ((z^*a)x)y
$$

for each $a \in \mathcal{A}, x \in R(\mathcal{A})$ and $y, z \in \mathcal{N}_p$, and hence it follows from Lemma 2.2/(2) that

$$
\begin{aligned}\n(\pi_p(ax)\Pi_p(\tilde{y_1}\tilde{y_2})\xi|\Pi_p(\tilde{z_1}\tilde{z_2})\eta) \\
&= \left(\Pi_p((ax)y_1)^\sim\right)\Pi_p(\tilde{y_2})\xi|\Pi_p(\tilde{z_1})\Pi_p(\tilde{z_2})\eta) \\
&= \left(\Pi_p(((z_1^*a)x)^\sim\tilde{y_1})\Pi_p(\tilde{y_2})\xi|\Pi_p(\tilde{z_2})\eta\right) \\
&= \left(\Pi_p(\tilde{y_1}\tilde{y_2})\xi|\Pi_p(\tilde{x^*}(z_1^*a)^{*\sim})\Pi_p(\tilde{z_2})\eta\right) \\
&= \left(\Pi_p(x)\Pi_p(\tilde{y_1}\tilde{y_2})\xi|\pi_p(a)^\dagger\Pi_p(\tilde{z_1}\tilde{z_2})\eta\right) \\
&= \left(\pi_p(x)\Pi_p(\tilde{y_1}\tilde{y_2})\xi|\pi_p(a)^\dagger\Pi_p(\tilde{z_1}\tilde{z_2})\eta\right)\n\end{aligned}
$$

for each $y_1, y_2, z_1, z_2 \in \mathcal{N}_p$ and $\xi, \eta \in \mathcal{H}_{\Pi_p}$, which implies statement (ii).

Take an arbitrary $x \in \mathcal{D}(p)$. Since $\pi_p(x) = \prod_p(\tilde{x})\left|\mathcal{H}_{\pi_p}$, it follows that $\|\pi_p(x)\| \le$ $\|\Pi_p(\tilde{x})\| = p(x)$. Suppose $\Pi_p \in \text{FRep}(\mathcal{A}_p)$. Take an arbitrary $x \in \mathcal{N}_p$. It is sufficient to show $\|\overline{\pi_p(x)}\| \geq p(x)$. If $p(x) = 0$, then this is obvious. Suppose $p(x) \neq 0$. We put $y=\frac{x}{n(x)}$ $\frac{x}{p(x)}$. Since

$$
\|\Pi_p(\tilde{y})\xi\| \le \|\Pi_p(\tilde{y})\| \, \|\xi\| = p(y) \|\xi\| \le 1
$$

for each $\xi \in \mathcal{H}_{\Pi_p}$ such that $\|\xi\| \leq 1$ and $\Pi_p(\tilde{\mathcal{N}}_p)\mathcal{H}_{\Pi_p}$ is total in \mathcal{H}_{π_p} (by Lemma 2.4/(3) and Remark thereafter), it follows that

$$
\begin{aligned}\n\|\overline{\pi_p(y)}\| &= \|\overline{\pi_p(y^*)}\| \\
&\ge \sup \{ \|\pi_p(y^*)\Pi_p(\tilde{y})\xi\| : \xi \in \mathcal{H}_{\Pi_p} \text{ with } \|\xi\| \le 1 \} \\
&= \sup \{ \|\Pi_p((y^*y)^\sim)\xi\| : \xi \in \mathcal{H}_{\Pi_p} \text{ with } \|\xi\| \le 1 \} \\
&= \|\Pi_p((y^*y)^\sim)\| \\
&= p(y^*y) \\
&= p(y)^2 \\
&= 1\n\end{aligned}
$$

which implies that $\|\overline{\pi_p(x)}\| \geq p(x)$

Remark. If, instead of following the above procedure, we would have taken

$$
\mathcal{D}(\pi) = \text{Lin}\{\Pi_p(\tilde{x})\xi : x \in \mathcal{N}_p \text{ and } \xi \in \mathcal{H}_{\Pi_p}\}
$$

$$
\mathcal{H}_{\pi} = \text{closure of } \mathcal{D}(\pi) \text{ in } \mathcal{H}_{\Pi_p}
$$

and

$$
\pi(a)\left(\sum_{k} \Pi_p(\tilde{x_k}) \xi_k\right) = \sum_{k} \Pi_p((ax_k)^\sim) \xi_k
$$

for $a \in \mathcal{A}$ and $\sum_k \Pi_p(\tilde{x}_k) \xi_k \in \mathcal{D}(\pi)$, then we could not conclude that $\pi(a)$ belongs to $\mathcal{L}^{\dagger}(\mathcal{D}(\pi), \mathcal{H}_{\pi})$ for each $a \in \mathcal{A}$.

So far, we do not know whether π_p is a ^{*}-representation of A for the lack of semiassociativity of partial multiplication, and so we define the following notion:

Definition 2.6. A linear map π of A into $\mathcal{L}^{\dagger}(\mathcal{D}(\pi), \mathcal{H}_{\pi})$ is said to be a *quasi* *representation if

- (i) $\pi(a^*) = \pi(a)^\dagger$ for all $a \in \mathcal{A}$
- (ii) $\pi(ax) = \pi(a) \pi(x)$ for all $a \in \mathcal{A}$ and all $x \in R(\mathcal{A})$.

By Lemma 2.5, for each $p \in \Sigma_B(\mathcal{A})$, every π_p is a quasi *-representation of \mathcal{A} , and it is said to be a quasi $*$ -representation of A induced by p.

We summerize in the following scheme the method of construction π_p from an

unbounded C^* -seminorm p described above:

Here the arrow $A \text{ -- } \rightarrow B$ means that B is constructed from A. We put

$$
QRep(\mathcal{A}, p) = \{\pi_p : \Pi_p \in Rep(\mathcal{A}_p)\}
$$

Rep(\mathcal{A}, p) = \{\pi_p \in QRep(\mathcal{A}, p) : \pi_p \text{ is a *-representation}\}
FQRep(\mathcal{A}, p) = \{\pi_p : \Pi_p \in FRep(\mathcal{A}_p)\}.

Definition 2.7. Let $p \in \Sigma_B(\mathcal{A})$. We say that p is representable if

$$
\operatorname{FRep}(\mathcal{A}, p) \equiv \Big\{ \pi_p \in \operatorname{FQRep}(\mathcal{A}, p) : \pi_p \text{ is a *-representation of } \mathcal{A} \Big\} \neq \emptyset.
$$

It is natural to look for conditions for p to be representable. We shall consider this problem in Section 3.

We define the notions of semifiniteness and weak semifiniteness of unbounded C^* seminorms, and study (quasi) *-representations induced by them.

Definition 2.8. An unbounded m^* -seminorm p on A is said to be

-finite if $\mathcal{D}(p) = \mathcal{N}_p$ -semifinite if \mathcal{N}_p is p-dense in $\mathcal{D}(p)$.

An unbounded C^* -seminorm p on A having Property (B) is said to be

 $-weakly$ semifinite if $\text{QRep}^{\text{WB}}(\mathcal{A}, p) \equiv \{$ $\pi \in \mathrm{FQRep}(\mathcal{A}, p): \, \mathcal{H}_{\pi_p} = \mathcal{H}_{\Pi_p}$ ª $\neq \emptyset$ and an element π_p of $\mathrm{QRep}^{\mathrm{WB}}(\mathcal{A}, p)$ is said to be a

-well-behaved quasi *-representation of A in $\mathrm{QRep}(\mathcal{A}, p)$.

A representable unbounded C^* -seminorm p on A having Property (B) is said to be

-weakly semifinite if $\text{Rep}^{\text{WB}}(\mathcal{A}, p) \equiv \text{QRep}^{\text{WB}}(\mathcal{A}, p) \cap \text{Rep}(\mathcal{A}, p) \neq \emptyset$.

We remark that semifinite unbounded m^* - or C^* -seminorms automatically satisfy Property (B).

Let π be a (quasi) *-representation of A. We put

$$
\mathcal{A}_{b}^{\pi} = \{ x \in \mathcal{A} : \overline{\pi(x)} \in \mathcal{B}(\mathcal{H}_{\pi}) \}
$$

$$
\mathcal{N}_{\pi} \equiv \{ x \in \mathcal{A}_{b}^{\pi} \cap R(\mathcal{A}) : ax \in \mathcal{A}_{b}^{\pi} \text{ for all } a \in \mathcal{A} \}.
$$

Definition 2.9. If $\pi(\mathcal{A})\mathcal{D}(\pi)$ is total in \mathcal{H}_{π} , then π is said to be non-degenerate. If $\pi(\mathcal{N}_\pi)\mathcal{D}(\pi)$ is total in \mathcal{H}_π , then π is said to be *strongly non-degenerate*.

Proposition 2.10. Let p be an unbounded C^* -seminorm on A having Property (B). Then the following statements hold:

(1) We have

$$
QRepWB(A, p) \subset \left\{ \pi_p \in QRep(\mathcal{A}, p) : \Pi_p \text{ is non-degenerate} \right\}
$$

Rep^{WB}(A, p) $\subset \left\{ \pi_p \in Rep(\mathcal{A}, p) : \Pi_p \text{ is non-degenerate} \right\}.$

In particular, if p is semifinite, then it is weakly semifinite and

$$
QRepWB(A, p) = \left\{ \pi_p \in QRep(A, p) : \Pi_p \text{ is non-degenerate} \right\}
$$

Rep^{WB}(A, p) = $\left\{ \pi_p \in Rep(A, p) : \Pi_p \text{ is non-degenerate} \right\}.$

(2) Suppose $\pi_p \in \text{QRep}^{\text{WB}}(\mathcal{A}, p)$. Then:

- (i) $\pi_p(\mathcal{N}_p)\mathcal{D}(\pi_p)$ is total in \mathcal{H}_{π_p} , and so π_p is strongly non-degenerate.
- (ii) $\|\overline{\pi_p(x)}\| = p(x)$ for each $x \in \mathcal{D}(p)$.

(iii)
$$
\pi_p(\mathcal{A})'_w = \overline{\pi_p(\mathcal{D}(p))}' \text{ and } \pi_p(\mathcal{A})'_w \mathcal{D}(\pi_p) \subset \mathcal{D}(\pi_p).
$$

Conversely, suppose $\pi_p \in \text{QRep}(\mathcal{A}, p)$ or $\pi_p \in \text{Rep}(\mathcal{A}, p)$ satisfy conditions (i) and (ii) above. Then there exists an element π_p^{WB} of $\text{QRep}^{\text{WB}}(\mathcal{A}, p)$ or $\text{Rep}^{\text{WB}}(\mathcal{A}, p)$, respectively, which is a restriction of π_p .

Proof.

Statement (1): Take an arbitrary $\pi_p \in \mathbf{QRep}^{\mathbf{WB}}(\mathcal{A}, p)$. Then since

$$
\mathcal{D}(\pi_p) \subset \mathop{\rm Lin}\nolimits\Pi_p(\mathcal{A}_p)\mathcal{H}_{\Pi_p} \subset \mathcal{H}_{\Pi_p} = \mathcal{H}_{\pi_p}
$$

it follows that Π_p is non-degenerate. Suppose p is semifinite. Let $\Pi_p \in \text{Rep}(\mathcal{A}_p)$ be non-degenerate. Since p is semifinite, it follows that $\{\Pi_p(\tilde{x}) : x \in \mathcal{N}_p\}$ is uniformly dense in the C^{*}-algebra $\Pi_p(\mathcal{A}_p)$, which implies $\mathcal{H}_{\Pi_p} = \mathcal{H}_{\pi_p}$.

Statement (2): Let $\pi_p \in \mathcal{Q} \mathbb{R}e\mathbb{P}^{\mathbb{W} \mathcal{B}}(\mathcal{A}, p)$. Since $\mathcal{H}_{\pi_p} = \mathcal{H}_{\Pi_p}$ and $\pi_p(x) = \Pi_p(\tilde{x})$ $\mathcal{D}(\pi_p)$ for each $x \in \mathcal{D}(p)$, it follows that $\pi_p(\mathcal{N}_p)\mathcal{D}(\pi_p)$ is total in $\Pi_p(\widetilde{\mathcal{N}}_p)\mathcal{H}_{\Pi_p}$ and $\mathcal{N}_p \subset \mathcal{N}_{\pi_p}$, which implies by Lemma 2.4/(3) that statement (i) holds. Further, we have

$$
\overline{\pi_p(x)} = \Pi_p(\tilde{x}) \qquad (x \in \mathcal{D}(p)) \tag{2.2}
$$

and hence

$$
\|\overline{\pi_p(x)}\| = \|\Pi_p(\tilde{x})\| = p(x) \qquad (x \in \mathcal{D}(p)).
$$

We next show statement (iii). Take an arbitrary $C \in \overline{\pi_p(\mathcal{D}(p))}'$. By (2.1) we have

$$
C\Pi_p(\tilde{x}) = C\overline{\pi_p(x)} = \overline{\pi_p(x)}C = \Pi_p(\tilde{x})C \qquad (x \in \mathcal{D}(p))
$$

which implies that $C\Pi_p(\tilde{x_1}\tilde{x_2})\xi \in \mathcal{D}(\pi_p)$ for each $x_1, x_2 \in \mathcal{N}_p$ and $\xi \in \mathcal{H}_{\Pi_p}$ and

$$
\pi_p(a)C\Pi_p(\tilde{x_1}\tilde{x_2})\xi = \pi_p(a)\Pi_p(\tilde{x_1}\tilde{x_2})C\xi
$$

\n
$$
= \Pi_p((ax_1)^\sim)C\Pi_p(\tilde{x_2})\xi
$$

\n
$$
= C\Pi_p((ax_1)^\sim)\Pi_p(\tilde{x_2})\xi
$$

\n
$$
= C\pi_p(a)\Pi_p(\tilde{x_1}\tilde{x_2})\xi
$$

for each $a \in \mathcal{A}$, $x_1, x_2 \in \mathcal{N}_p$ and $\xi \in \mathcal{H}_{\Pi_p}$. Hence $C \in \pi_p(\mathcal{A})'_{\mathbf{w}}$ and $C\mathcal{D}(\pi_p) \subset \mathcal{D}(\pi_p)$. The converse inclusion $\pi_p(\mathcal{A})'_{w} \subset \overline{\pi_p(\mathcal{D}(p))}'$ is trivial. Thus statement (iii) holds.

Conversely, suppose that $\pi_p \in \text{QRep}(\mathcal{A}, p)$ satisfies conditions (i) and (ii). We put

$$
\Pi_p^{\text{WB}}(\tilde{x}) = \overline{\pi_p(x)} \qquad (x \in \mathcal{D}(p)).
$$

Then it follows from (ii) that

$$
\|\Pi_p^{\text{WB}}(\tilde{x})\| = \|\overline{\pi_p(x)}\| = p(x) = \|\tilde{x}\|_p \qquad (x \in \mathcal{D}(p))
$$

and hence Π_p^{WB} can be extended to a faithful ^{*}-representation of the C^* -algebra \mathcal{A}_p on the Hilbert space $\mathcal{H}_{\Pi_p^{\text{WB}}} = \mathcal{H}_{\pi_p}$. We denote it by the same symbol Π_p^{WB} and denote by π_p^{WB} the quasi *-representation of A induced by Π_p^{WB} . Then it follows from Lemma $2.4/(3)$ and statement (i) that

$$
\mathcal{H}_{\pi_p^\mathrm{WB}}=\overline{\mathrm{Lin}}\Pi_p^\mathrm{WB}(\tilde{\mathcal{N}}_p)\mathcal{H}_{\Pi_p^\mathrm{WB}}=\overline{\mathrm{Lin}}\overline{\pi_p(\mathcal{N}_p)}\mathcal{H}_{\pi_p}=\mathcal{H}_{\pi_p}=\mathcal{H}_{\Pi_p^\mathrm{WB}}
$$

so that $\pi_p^{\text{WB}} \in \text{QRep}^{\text{WB}}(\mathcal{A}, p)$. Further, since

$$
\Pi_p^{\text{WB}}(\tilde{x}) = \overline{\pi_p(x)} = \Pi_p(\tilde{x}) \upharpoonright \mathcal{H}_{\pi_p^{\text{WB}}} \qquad (x \in \mathcal{D}(p))
$$

it follows that π_p^{WB} is a restriction of π_p . Suppose $\pi_p \in \text{Rep}(\mathcal{A}, p)$. Then, since π_p^{WB} is a restriction of π_p , it follows that π_p^{WB} is a ^{*}-representation of A

The set $\Sigma_B(\mathcal{A})$ of all unbounded C^{*}-seminorms on \mathcal{A} having Property (B) is an ordered set with respect to the order relation ⊂ defined by

$$
p \subset q \iff \mathcal{D}(p) \subset \mathcal{D}(q)
$$
 and $p(x) = q(x) \forall x \in \mathcal{D}(p)$.

Proposition 2.11. Let p and q be in $\Sigma_B(\mathcal{A})$. Suppose $p \subset q$. Then, for any $\pi_p \in \text{QRep}(\mathcal{A}, p)$ there exists an element π_q of $\text{QRep}(\mathcal{A}, q)$ such that $\pi_p \subset \pi_q$.

Proof. Let \mathcal{A}_q be the C^{*}-algebra constructed applying Lemma 2.2 to $\mathcal{D}(q)$. Then it follows from $p \subset q$ that for each $x \in \mathcal{D}(p)$ we can define

$$
\Phi: \tilde{x} \in \widetilde{\mathcal{D}(p)} \mapsto \tilde{x} \in \widetilde{\mathcal{D}(q)}.
$$

Then Φ is an isometric *-isomorphism of the dense subspace $\widetilde{\mathcal{D}(p)}$ of the C^* -algebra \mathcal{A}_p into the C^* -algebra \mathcal{A}_q , and so it can be extended to a *-isomorphism of the C^* -algebra \mathcal{A}_p into the C^{*}-algebra \mathcal{A}_q ; we denote this extension by the same symbol Φ .

Take an arbitrary $\Pi_p \in \text{Rep}(\mathcal{A}_p)$. Since $\Pi_p \circ \Phi^{-1}$ is a faithful ^{*}-representation of the C^{*}-algebra $\Phi(\mathcal{A}_p)$ on \mathcal{H}_{Π_p} and every C^{*}-algebra is stable [14: Proposition 2.10.2], it follows that $\Pi_p \circ \Phi^{-1}$ can be extended to a *-representation Π_q of the C^* -algebra \mathcal{A}_q on \mathcal{H}_{Π_q} , that is, \mathcal{H}_{Π_p} is a closed subspace of \mathcal{H}_{Π_q} and $\Pi_q(\Phi(A))\upharpoonright \mathcal{H}_{\Pi_p}=\Pi_p(A)$ for each $A \in \mathcal{A}_p$. Let π_q denote the element of $\text{QRep}(\mathcal{A}, q)$ induced by Π_q . Then we have

$$
\pi_p(a)\Pi_p(\tilde{x_1}\tilde{x_2})\xi = \Pi_p((ax_1)^\sim)\Pi_p(\tilde{x_2})\xi
$$

\n
$$
= \Pi_q(\Phi((ax_1)^\sim))\Pi_q(\Phi(\tilde{x_2}))\xi
$$

\n
$$
= \Pi_q((ax_1)^\sim \tilde{x_2})\xi
$$

\n
$$
= \pi_q(a)\Pi_q(\tilde{x_1}\tilde{x_2})\xi
$$

\n
$$
= \pi_q(a)\Pi_p(\tilde{x_1}\tilde{x_2})\xi
$$

for each $a \in \mathcal{A}$, $x_1, x_2 \in \mathcal{N}_p$ and $\xi \in \mathcal{H}_{\Pi_p}$, and so $\pi_p \subset \pi_q$

3. Representability of unbounded C^* -seminorms

Let A be a partial *-algebra and p an unbounded C^* -seminorm on A. In this section we give some conditions under which the equality $Rep(\mathcal{A}, p) = QRep(\mathcal{A}, p)$ holds. The first case we consider is that of a semi-associative partial $*$ -algebra A .

Lemma 3.1. Suppose A is a semi-associative partial *-algebra and $p \in \Sigma_B(\mathcal{A})$. Then $\text{Rep}(\mathcal{A}, p) = \text{QRep}(\mathcal{A}, p)$.

Proof. Since A is semi-associative, it follows that

$$
y^*((ab)x) = y^*(a(bx)) = (y^*a)(bx)
$$

for each $a \in L(b)$ and $x, y \in \mathcal{N}_p$ which implies

$$
\begin{aligned}\n\left(\pi_p(ab)\Pi_p(\tilde{x_1}\tilde{x_2})\xi|\Pi_p(\tilde{y_1}\tilde{y_2})\eta\right) \\
&= \left(\Pi_p((y_1^*((ab)x_1))^{\sim})\Pi_p(\tilde{x_2})\xi|\Pi_p(\tilde{y_2})\eta\right) \\
&= \left(\Pi_p((y_1^*a)^{\sim}(bx_1)^{\sim})\Pi_p(\tilde{x_2})\xi|\Pi_p(\tilde{y_2})\eta\right) \\
&= \left(\pi_p(b)\Pi_p(\tilde{x_1}\tilde{x_2})\xi|\pi_p(a^*)\Pi_p(\tilde{y_1}\tilde{y_2})\eta\right)\n\end{aligned}
$$

for each $x_1, x_2, y_1, y_2 \in \mathcal{N}_p$ and $\xi, \eta \in \mathcal{H}_{\Pi_p}$. Hence π_p is a ^{*}-representation of \mathcal{A}

We next consider the case of (everywhere defined) C^* -seminorms. Semi-associativity of A is no more needed.

Lemma 3.2. Let A be a partial *-algebra. Suppose p is a semifinite C^* -seminorm on A. Then $\text{Rep}(\mathcal{A}, p) = \text{QRep}(\mathcal{A}, p)$ and every π_p in $\text{Rep}(\mathcal{A}, p)$ is bounded.

Proof. Since p is a C^{*}-seminorm on A, we have $\mathcal{D}(p) = \mathcal{A}$ and $\mathcal{N}_p = R(\mathcal{A})$. For any $a \in \mathcal{A}$ we have $\pi_p(a) = \prod_p(\tilde{a}) \upharpoonright \mathcal{D}(\pi_p)$, and so $\pi_p(a)$ is bounded. Take arbitrary $a, b \in \mathcal{A}$ such that $a \in L(b)$. Then there exist sequences $\{x_n\}, \{y_n\} \in R(\mathcal{A})$ such that ${x_n}^{\sim} = \tilde{a}$ and ${y_n}^{\sim} = \tilde{b}$, and hence it follows from Lemma 2.2/(2) and Property (A) that ¡ ¢

$$
\begin{aligned}\n(\pi_p(ab)\Pi_p(\tilde{x_1}\tilde{x_2})\xi|\Pi_p(\tilde{y_1}\tilde{y_2})\eta) \\
&= \left(\Pi_p(\{x_ny_n\}^\sim\tilde{x_1})\Pi_p(\tilde{x_2})\xi|\Pi_p(\tilde{y_1}\tilde{y_2})\eta\right) \\
&= \left(\Pi_p(\{x_n\}^\sim)\Pi_p(\{y_n\}^\sim)\Pi_p(\tilde{x_1}\tilde{x_2})\xi|\Pi_p(\tilde{y_1}\tilde{y_2})\eta\right) \\
&= \left(\pi_p(b)\Pi_p(\tilde{x_1}\tilde{x_2})\xi|\pi_p(a^*)\Pi_p(\tilde{y_1}\tilde{y_2})\eta\right)\n\end{aligned}
$$

for each $x_1, x_2, y_1, y_2 \in \mathcal{N}_p$ and $\xi, \eta \in \mathcal{H}_{\Pi_p}$. Hence π_p is a ^{*}-representation of \mathcal{A}

Lemma 3.3. Let A be a partial *-algebra A and $p \in \Sigma_B(\mathcal{A})$. Assume there exists a semifinite C^{*}-seminorm \hat{p} on A such that $p \subset \hat{p}$. Then Rep(A, p) = QRep(A, p).

Proof. Take an arbitrary $\pi_p \in \text{QRep}(\mathcal{A}, p)$. By Proposition 2.11 and Lemma 3.2 there exists an element $\pi_{\hat{p}}$ of $\text{QRep}(\mathcal{A}, \hat{p}) = \text{Rep}(\mathcal{A}, \hat{p})$ such that $\pi_p \subset \pi_{\hat{p}}$ which implies $\pi_p \in \text{Rep}(\mathcal{A}, p)$

We consider now the special case of topological partial ^{*}-algebras. The simplest situation is of course that of topological quasi ^{*}-algebras, where we start from.

Lemma 3.4. Suppose A is a topological quasi *-algebra over \mathcal{A}_0 and p is an unbounded C^* -seminorm on A having Property (B). Then $\text{Rep}(\mathcal{A}, p) = \text{QRep}(\mathcal{A}, p)$.

Proof. Since every topological quasi *-algebra A over A_0 is semi-associative and $R(\mathcal{A}) = \mathcal{A}_0$, it follows from Lemma 3.1 that $\text{Rep}(\mathcal{A}, p) = \text{QRep}(\mathcal{A}, p)$

Let $\mathcal{A}[\tau]$ be a topological partial *-algebra and p an unbounded C*-seminorm on A. For any $x \in \mathcal{N}_p$ we define a seminorm p_x on A by

$$
p_x(a) = p(ax) \qquad (a \in \mathcal{A}).
$$

We denote by τ_p the locally convex topology on A defined by the family $\{p_x : x \in \mathcal{N}_p\}$ of seminorms. If $\tau_p \prec \tau$, then p is said to be *locally continuous*.

Lemma 3.5. Let $A[\tau]$ be a topological partial *-algebra satisfying the following condition

(C) For any $a \in \mathcal{A}$, the map $L_a : R(a) \to \mathcal{A}$, $x \mapsto ax$ is continuous.

Suppose p is a locally continuous unbounded C^* -seminorm on A having Property (B) and $R(\mathcal{A}) \cap \mathcal{D}(p)$ is τ -dense in \mathcal{A} . Then $\text{Rep}(\mathcal{A}, p) = \text{QRep}(\mathcal{A}, p)$.

Proof. Take arbitrary $a, b \in \mathcal{A}$ such that $a \in L(b)$. Since $R(\mathcal{A}) \cap \mathcal{D}(p)$ is τ -dense in A, there exists a net $\{y_\beta\}$ in $R(\mathcal{A}) \cap \mathcal{D}(p)$ such that $\tau - \lim_{\beta} y_\beta = b$. Further, since A satisfies condition (C) we have $\tau - \lim_{\beta} ay_{\beta} = ab$, and since p is locally continuous, it follows that $\lim_{\beta} p(y_{\beta}x - bx) = 0$ and $\lim_{\beta} p((ay_{\beta})x - (ab)x) = 0$ for each $x \in \mathcal{N}_p$. Hence we have

$$
\begin{aligned}\n\left(\pi_p(b)\Pi_p(\tilde{x_1}\tilde{x_2})\xi|\pi_p(a^*)\Pi_p(\tilde{y_1}\tilde{y_2})\eta\right) \\
&= \left(\Pi_p((bx_1)^{\sim}\tilde{x_2})\xi|\pi_p(a^*)\Pi_p(\tilde{y_1}\tilde{y_2})\eta\right) \\
&= \lim_{\beta} \left(\Pi_p((y_{\beta}x_1)^{\sim}\tilde{x_2})\xi|\pi_p(a^*)\Pi_p(\tilde{y_1}\tilde{y_2})\eta\right) \\
&= \lim_{\beta} \left(\Pi_p(\tilde{y_{\beta}}\tilde{x_1})\Pi_p(\tilde{x_2})\xi|\pi_p(a^*)\Pi_p(\tilde{y_1}\tilde{y_2})\eta\right) \\
&= \lim_{\beta} \left(\Pi_p((ay_{\beta})^{\sim}\tilde{x_1})\Pi_p(\tilde{x_2})\xi|\Pi_p(\tilde{y_1}\tilde{y_2})\eta\right) \\
&= \left(\Pi_p(((ab)x_1)^{\sim})\Pi_p(\tilde{x_2})\xi|\Pi_p(\tilde{y_1}\tilde{y_2})\eta\right) \\
&= \left(\pi_p(ab)\Pi_p(\tilde{x_1}\tilde{x_2})\xi|\Pi_p(\tilde{y_1}\tilde{y_2})\eta\right)\n\end{aligned}
$$

for each $x_1, x_2, y_1, y_2 \in \mathcal{N}_p$ and $\xi, \eta \in \mathcal{H}_{\Pi_p}$, which implies π_p is a ^{*}-representation of \mathcal{A}

4. Unbounded C^* -seminorms defined by * -representations

In the previous sections we constructed *-representations of a partial *-algebra A from a representable unbounded C^* -seminorm on $\mathcal A$ having Property (B). Now, starting from a *-representation π of A, we try to construct a representable unbounded C^* -seminorm $r_{\pi} \in \Sigma_B(\mathcal{A})$. When this is possible, it makes sense to investigate on the relation between π and the natural ^{*}-representation $\pi_{r_{\pi}}^{N}$ of A induced by r_{π}

Let π be a ^{*}-representation of $\mathcal A$ on a Hilbert space $\mathcal H_{\pi}$. We put, as above,

$$
\mathcal{A}_{b}^{\pi} = \left\{ x \in \mathcal{A} : \overline{\pi(x)} \in \mathcal{B}(\mathcal{H}_{\pi}) \right\}
$$

and

$$
\pi_b(x) = \overline{\pi(x)} \qquad (x \in \mathcal{A}_b^{\pi}).
$$

Then \mathcal{A}_{b}^{π} is a partial ^{*}-subalgebra of \mathcal{A} and π_{b} is a bounded ^{*}-representation of \mathcal{A}_{b}^{π} on \mathcal{H}_{π} . An unbounded C^* -seminorm r_{π}^L on \mathcal{A} is defined by

$$
\mathcal{D}(r_{\pi}^L) = \mathcal{A}_{b}^{\pi}
$$
 and $r_{\pi}^L(x) = ||\pi_b(x)||$ $(x \in \mathcal{D}(r_{\pi}^L)).$

But r_{π}^{L} does not necessarily have Property (B). For this reason, we consider the family of all unbounded C^* -seminorms on $\mathcal A$ having Property (B) which are restrictions of r_{π}^{L} . We denote this family by $\Sigma_{B}(\pi)$ and call it the *family of unbounded* C^{*} -seminorms induced by π .

Definition 4.1. If $\Sigma_B(\pi) \neq \{0\}$, then π is said to have *Property* (B).

Suppose that π has Property (B) and $r_{\pi} \in \Sigma_B(\pi)$. We put

$$
\Pi(\tilde{x}) = \pi(x) \qquad (x \in \mathcal{D}(r_{\pi})).
$$

Then since

$$
\|\Pi(\tilde{x})\| = r_{\pi}(x) = \|\tilde{x}\|_{r_{\pi}} \qquad (x \in \mathcal{D}(r_{\pi}))
$$

it follows that Π can be extended to a faithful ^{*}-representation $\Pi_{r_{\pi}}^{N}$ of the C^{*} -algebra $\mathcal{A}_{r_{\pi}} \equiv \widehat{\mathcal{D}(r_{\pi})}/\sim$ on the Hilbert space \mathcal{H}_{π} , and $\Pi_{r_{\pi}}^N(\mathcal{A}_{r_{\pi}}) = \overline{\pi(\mathcal{D}(r_{\pi}))}^{\|\cdot\|}$. We denote by $\pi_{r_{\pi}}^{N}$ the quasi *-representation of A constructed by $\Pi_{r_{\pi}}^{N}$. This is called the *natural* representation of A induced by π . Since $\mathcal{H}_{\Pi_{r_{\pi}}^N} = \mathcal{H}_{\pi}$, it follows that $\mathcal{H}_{\pi_{r_{\pi}}^N}$ is a closed subspace of \mathcal{H}_{π} .

Proposition 4.2. Suppose that π is a *-representation of A having Property (B) and $r_{\pi} \in \Sigma_B(\pi)$. Then r_{π} is representable, $\pi_{r_{\pi}}^N \in \text{Rep}(\mathcal{A}, r_{\pi})$ and $\hat{\pi} \restriction \mathcal{D}(\pi_{r_{\pi}}^N) = \pi_{r_{\pi}}^N$.

Proof. Since

$$
\mathcal{D}(\pi_{r_{\pi}}^N) = \text{Lin}\left\{\Pi_{r_{\pi}}^N(\tilde{x_1}\tilde{x_2})\xi : x_1, x_2 \in \mathcal{N}_{r_{\pi}}, \xi \in \mathcal{H}_{\pi}\right\}
$$

$$
= \text{Lin}\left\{\overline{\pi(x_1x_2)}\xi : x_1, x_2 \in \mathcal{N}_{r_{\pi}}, \xi \in \mathcal{H}_{\pi}\right\}
$$

it follows that

$$
(\pi(a)^{*}\eta|\Pi_{r_{\pi}}^{N}(\tilde{x}_{1}\tilde{x}_{2})\xi) = (\pi(a)^{*}\eta|\overline{\pi(x_{1}x_{2})}\xi)
$$

$$
= (\overline{\pi((ax_{1})^{*})}\eta|\overline{\pi(x_{2})}\xi)
$$

$$
= (\eta|\overline{\pi((ax_{1})x_{2})}\xi)
$$

$$
= (\eta|\pi_{r_{\pi}}^{N}(a)\Pi_{r_{\pi}}^{N}(\tilde{x}_{1}\tilde{x}_{2})\xi)
$$

for each $a \in \mathcal{A}$, $\eta \in \mathcal{D}(\pi(a)^*)$, $x_1, x_2 \in \mathcal{N}_{r_{\pi}}$ and $\xi \in \mathcal{H}_{\pi}$, which implies that

$$
\Pi_{r_{\pi}}^N(\tilde{x_1}\tilde{x_2})\xi \in \mathcal{D}(\overline{\pi(a)})
$$

$$
\overline{\pi(a)}\Pi_{r_{\pi}}^N(\tilde{x_1}\tilde{x_2})\xi = \pi_{r_{\pi}}^N(a)\Pi_{r_{\pi}}^N(\tilde{x_1}\tilde{x_2})\xi.
$$

Hence, $\mathcal{D}(\pi_{r_{\pi}}^N) \subset \mathcal{D}(\hat{\pi})$ and $\hat{\pi} \upharpoonright \mathcal{D}(\pi_{r_{\pi}}^N) = \pi_{r_{\pi}}^N$, which implies since $\hat{\pi}$ is a *-representation of A that $\pi_{r_{\pi}}^{N}$ is a ^{*}-representation of A and r_{π} is representable

We summarize in the following scheme the method of construction of $\pi_{r_{\pi}}^{N}$ described above:

Proposition 4.3. Suppose p is a representable weakly semifinite unbounded C^* seminorm on A having Property (B). Then every π_p of $\text{Rep}^{\text{WB}}(\mathcal{A}, p)$ has Property (B). Take an arbitrary $r_{\pi_p} \in \Sigma_B(\pi_p)$ which is an extension of p. Then $\pi_p \subset \pi_{r_{\pi_p}}^N$ and $\hat{\pi_{p}} = \hat{\pi}_{r^N_{\pi_p}}.$

Proof. Since $p \in \Sigma_B(\mathcal{A})$ and $p \subset r_{\pi_p} \subset r_{\pi_p}^N$, it follows that π_p has Property (B) and $\mathcal{N}_p \subset \mathcal{N}_{r_{\pi_p}} \subset \mathcal{A}_{b}^{\pi_p}$, which implies

$$
\mathcal{D}(\pi_p) = \text{Lin}\{\overline{\pi_p(x_1x_2)}\xi : x_1, x_2 \in \mathcal{N}_p \text{ and } \xi \in \mathcal{H}_{\pi_p}\}\
$$

\n
$$
\subset \text{Lin}\{\overline{\pi_p(x_1x_2)}\xi : x_1, x_2 \in \mathcal{N}_{\pi_p} \text{ and } \xi \in \mathcal{H}_{\pi_p}\}\
$$

\n
$$
= \mathcal{D}(\pi_{\pi_p}^N)
$$

\n
$$
\subset \mathcal{H}_{\pi_p}
$$

and $\pi_p = \pi_{r_{\pi_p}}^N \upharpoonright \mathcal{D}(\pi_p)$. On the other hand, it follows from Proposition 4.2 that $\pi_{r_{\pi_p}}^N \subset \hat{\pi_p}$. Hence it follows that $\mathcal{H}_{\pi_p} = \mathcal{H}_{\pi^N_{r_{\pi_p}}}$, $\pi_p \subset \pi^N_{r_{\pi_p}}$ and $\hat{\pi_p} = \hat{\pi}^N_{r_{\pi_p}}$

5. Examples

In this section we give some examples of unbounded C^* -seminorms on partial $*$ -algebras having Property (B).

Example 5.1. Let S be a vector space of complex sequences containing l^{∞} . Suppose that $\{x_n\}^* \equiv \{\overline{x_n}\} \in S$ if $\{x_n\} \in S$ and S is l^{∞} -module. Then S is a partial *-algebra under the following partial multiplication and involution: $\{x_n\} \in L(\{y_n\})$ if and only if $\{x_n y_n\} \in S$ and $\{x_n\}^* = \{\overline{x_n}\}\$, and it has Property (A) and $R(S) \supset l^{\infty}$. We define an unbounded C^* -norm on S having Property (B) by

$$
\mathcal{D}(r_{\infty}) = l^{\infty}
$$
 and $r_{\infty}(\{x_n\}) = ||\{x_n\}||_{\infty} (\{x_n\} \in \mathcal{D}(r_{\infty})).$

For any $\{x_n\} \in l^{\infty}$ we put

$$
\Pi_{r_{\infty}}(\{x_n\})\{y_n\} = \{x_n y_n\} \qquad (\{y_n\} \in l^2).
$$

Then $\Pi_{r_{\infty}}$ is a faithful ^{*}-representation of the C^{*}-algebra l^{∞} on the Hilbert space l^2 and since n o

$$
\mathcal{N}_{r_{\infty}} \supset \Big\{ \{x_n\} \in S : x_n \neq 0 \text{ for only finite numbers } n \Big\}
$$

it follows that $\Pi_{r_{\infty}}(\mathcal{N}_{r_{\infty}}^2)\mathcal{H}_{\Pi_{r_{\infty}}}$ is total in $\mathcal{H}_{\Pi_{r_{\infty}}}$. Hence r_{∞} is weakly semifinite.

Example 5.2. Let $C(\mathbb{R})$ be a ^{*}-algebra of all continuous complex-valued functions on R equipped with the usual operations $f + g, \lambda f, fg$ and the involution $f^* : f^*(t) =$ $\overline{f(t)}$ ($t \in \mathbb{R}$). Let A be a ^{*}-vector subspace of $C(\mathbb{R})$. Then A is a partial ^{*}-algebra having Property (A) under the following partial multiplication: $f \in L(g)$ if and only if $fg \in \mathcal{A}$. Concrete examples of partial *-algebras of this kind are, for instance:

(1) $A = C(\mathbb{R}) \cap L^p(\mathbb{R})$ $(1 \leq p < \infty)$.

We here define an unbounded C^* -norm on A by

$$
\mathcal{D}(r_{\infty}) = C_c(\mathbb{R}) \equiv \left\{ f \in C(\mathbb{R}) : \text{supp} f \text{ compact } \right\}
$$

and

$$
r_{\infty}(f) = \sup_{t \in \mathbb{R}} |f(t)| \quad (f \in \mathcal{D}(r_{\infty})).
$$

Then since $\mathcal{D}(r_{\infty}) \subset R(\mathcal{A})$, it follows that r_{∞} has Property (B). Further,

$$
\mathcal{A}_{r_{\infty}} = C_0(\mathbb{R}) \equiv \left\{ f \in C(\mathbb{R}) : \lim_{|t| \to \infty} |f(t)| = 0 \right\}
$$

and a faithful ^{*}-representation $\Pi_{r_{\infty}}$ of the C^* -algebra $C_0(\mathbb{R})$ on $L^2(\mathbb{R})$ is defined by

$$
\Pi_{r_{\infty}}(f)g = fg \qquad (f \in C_0(\mathbb{R}), \quad g \in L^2(\mathbb{R})).
$$

Since $\mathcal{N}_{r_{\infty}} \supset C_c(\mathbb{R})$, it follows that $\Pi_{r_{\infty}}(\mathcal{N}_{r_{\infty}}^2)L^2(\mathbb{R})$ is total in $L^2(\mathbb{R})$, which means that r_{∞} is weakly semifinite.

$$
(2) \mathcal{A} = \mathcal{A}_n \equiv \{ f \in C(\mathbb{R}) : \sup_{t \in \mathbb{R}} \frac{|f(t)|}{(1+t^2)^n} < \infty \} \quad (n \in \mathbb{N}).
$$

We define an unbounded C^* -norm r_{∞} on A by

$$
\mathcal{D}(r_{\infty}) = C_b(\mathbb{R}) \equiv \left\{ f \in C(\mathbb{R}) : f \text{ bounded} \right\}
$$

and

$$
r_{\infty}(f) = \sup_{t \in \mathbb{R}} |f(t)| \quad (f \in \mathcal{D}(r_{\infty})).
$$

Then it is proved similarly to (1) that r_{∞} is a weakly semifinite unbounded C^* -norm on A.

Similarly we have the following

Example 5.3.

(1) Let $C^{\infty}(\mathbb{R}) \cap L^{p}(\mathbb{R})$ $(1 \leq p < \infty)$ where $C^{\infty}(\mathbb{R})$ is a *-algebra of all infinitely differentiable complex functions on R. We put

$$
\mathcal{D}(r_{\infty}) = C_c^{\infty}(\mathbb{R})
$$
 and $r_{\infty}(f) = \sup_{t \in \mathbb{R}} |f(t)| \ (f \in \mathcal{D}(r_{\infty})).$

Then r_{∞} is a weakly semifinite unbounded C^* -norm on $C^{\infty}(\mathbb{R}) \cap L^p(\mathbb{R})$ having Property (B).

(2) Let
$$
n \in \mathbb{N}
$$
 and $\mathcal{A}_n = \{ f \in C^{\infty}(\mathbb{R}) : \sup_{t \in \mathbb{R}} \frac{|f(t)|}{(1+t^2)^n} < \infty \}$. We put
\n
$$
\mathcal{D}(r_{\infty}) = C_b^{\infty}(\mathbb{R}) \quad \text{and} \quad r_{\infty}(f) = \sup_{t \in \mathbb{R}} |f(t)| \ (f \in \mathcal{D}(r_{\infty})).
$$

Then A_n is a partial ^{*}-algebra having Property (A) and r_{∞} is a weakly semifinite unbounded C^* -norm on \mathcal{A}_n having Property (B).

Example 5.4. Let \mathcal{D} be a dense subspace of a Hilbert space \mathcal{H} and $C(\mathcal{H})$ the C^* algebra of all compact operators on H . Suppose that the maximal partial O^* -algebra $\mathcal{L}^{\dagger}(\mathcal{D},\mathcal{H})$ is self-adjoint. Then $\mathcal{L}^{\dagger}(\mathcal{D},\mathcal{H})$ has Property (A) and

$$
R^{\mathbf{w}}(\mathcal{L}^{\dagger}(\mathcal{D},\mathcal{H})) = \Big\{ X \vert \mathcal{D} : \overline{X} \in \mathcal{B}(\mathcal{H}) \text{ and } \overline{X}\mathcal{H} \subset \mathcal{D} \Big\}.
$$

We now define an unbounded C^* -norm r_u on the maximal O^* -algebra $\mathcal{L}^\dagger(\mathcal{D}, \mathcal{H})$ by

$$
\mathcal{D}(r_u) = C(\mathcal{H})|\mathcal{D}
$$
 and $r_u(X) = ||\overline{X}|| (X \in \mathcal{D}(r_u)).$

Since

$$
F(\mathcal{D}, \mathcal{H}) \equiv \text{Lin}\{\xi \otimes \overline{y} : \xi \in \mathcal{D} \text{ and } y \in \mathcal{H}\} \subset R^{\text{w}}(\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H}))
$$

where $(x \otimes \overline{y})z = (z|y)x$ for $x, y, z \in H$ and $F(D, H)$ is uniformly dense in $C(H)$, it follows that r_u has Property (B). Further, since $\mathcal{N}_{r_{\infty}} \supset F(\mathcal{D}, \mathcal{H})$, it follows that r_u is semifinite.

Example 5.5. Let \mathcal{M}_0 be an O^{*}-algebra on the Schwartz space $\mathcal{S}(\mathbb{R})$ and $N =$ **Example 3.3.** Let \mathcal{M}_0 be an \mathcal{O} -algebra on the schwartz space $\mathcal{O}(\mathbb{R})$ and $N = \sum_{n=0}^{\infty} (n+1)f_n \otimes \overline{f_n}$ the number operator, where $\{f_n\} \subset \mathcal{S}(\mathbb{R})$ is an orthonormal basis in $L^2(\mathbb{R})$ consisting the normalized Hermite functions. Let M be a partial O^{*}-algebra on $\mathcal{S}(\mathbb{R})$ containing \mathcal{M}_0 and $\{f_n \otimes \overline{f_m} : m, n \in \mathbb{N}_0\}$, $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. Since \mathcal{M} is self-adjoint, it follows that M has Property (A). We define an unbounded C^* -norm on M by

$$
\mathcal{D}(r_u) = \text{Lin}\{Af_n \otimes \overline{Bf_m} : A, B \in \mathcal{M} \text{ and } n, m \in \mathbb{N}_0\}
$$

$$
r_u(X) = \|\overline{X}\| \quad (X \in \mathcal{D}(r_u)).
$$

Then

$$
\text{Lin}\left\{f_n \otimes \overline{B}f_m : B \in \mathcal{M} \text{ and } n, m \in \mathbb{N}_0\right\}
$$

is contained in \mathcal{N}_{r_u} and is uniformly dense in $\mathcal{D}(r_u)$. Hence r_u has Property (B) and it is semifinite.

Example 5.6. Let (A, A_0) be a proper CQ^* -algebra [7, 8], i.e. a topological quasi *-algebra $(\mathcal{A}[\tau], \mathcal{A}_0)$ such that:

- a) $\mathcal{A}[\tau]$ is a Banach space under the norm $\|\cdot\|$.
- **b)** The involution $*$ of $\mathcal A$ is isometric, i.e. $||X|| = ||X^*||$ for all $X \in \mathcal A$.
- c) $||X||_0 = \max{||X||_R, ||X^*||_R}$ where $||X||_R = \sup{||AX||: ||A|| \le 1}$.

Of course, the C^* -norm on \mathcal{A}_0 can be viewed as an unbounded C^* -norm r with domain $\mathcal{D}(r) = \mathcal{A}_0$. Since $R(\mathcal{A}) = \mathcal{A}_0$, it is obvious that r satisfies property (B). In order to apply the results of Section 2 we have to consider the set

$$
\mathcal{N}_r = \{ X \in \mathcal{A}_0 : AX \in \mathcal{A}_0 \text{ for all } A \in \mathcal{A} \}.
$$

Also in this simple situation, \mathcal{N}_r might be trivial. Let us sketch a concrete case, where this does not happen.

Let S be an unbounded selfadjoint operator in Hilbert space $\mathcal{H}, S \geq 1$. The norm

$$
||X||_S = ||S^{-1}XS^{-1}||
$$
 $(X \in \mathcal{B}(\mathcal{H}))$

defines a topology stricly weaker than the one defined by the C^* -norm of $\mathcal{B}(\mathcal{H})$. Let

$$
C(S) = \{ X \in \mathcal{B}(\mathcal{H}) : XS^{-1} = S^{-1}X \}.
$$

 $C(S)$ is a C^* -algebra under the norm of $\mathcal{B}(\mathcal{H})$ and its $\|\cdot\|_S$ -completion $\widehat{C}(S)$ is a CQ^* -algebra on $C(S)$ [8: Proposition 2.6]. Now define

$$
\mathcal{D}(r) = C(S) \qquad \text{and} \qquad r(X) = \|X\| \ (X \in C(S)).
$$

Then r is an unbounded C^* -norm on $\widehat{C}(S)$ satisfying property (B). It is easy to check that \overline{a}

$$
\mathcal{N}_r \supset \big\{ X \in C(S) : X \text{ is of finite rank} \big\}.
$$

So, for instance, if S has the spectral decomposition

$$
S = \sum_{n=1}^{\infty} \lambda_n P_n
$$

where the P_n 's are finite rank projections, then \mathcal{N}_r is non-trivial and the construction of Section 2 applies. We remark that r need not be semifinite but, by Lemma 3.4, any element of $\text{QRep}(\mathcal{A}, p)$ is indeed a ^{*}-representation.

Acknowledgment. Two of us (F.B and C.T) wish to acknowledge the warm hospitatily of the Department of Applied Mathematics of the Fukuoka University, where a part of this paper was performed.

References

- [1] Alcantara, J. and J. Yngvason: Algebraic quantum field theory and non commutative moment problem, Part II. Ann. Inst. Henri Poincaré 48 (1988), $161 - 173$.
- [2] Antoine, J.-P., Bagarello, F. and C. Trapani: *Topological partial* ^{*}-algebras: Basic properties and examples. Rev. Math. Phys. 11 (1999), $267 - 302$.
- [3] Antoine, J.-P. and W. Karwowski: Partial ^{*}-algebras of closed linear operators in Hilbert space. Publ. RIMS, Kyoto Univ. 21 (1985), 205 – 236.
- [4] Antoine, J.-P., Inoue, A. and C. Trapani: Partial *-algebras of closable operators. Part I: The basic theory and the abelian case. Publ. RIMS, Kyoto Univ. 26 (1990), 359 – 395.
- [5] Antoine, J.-P., Inoue, A. and C. Trapani: Partial *-algebras of closable operators. Part II: States and representations of partial ^{*}-algebras. Publ. RIMS, Kyoto Univ. 27 (1991), 399 – 430.
- [6] Antoine, J.-P., Inoue, A. and C. Trapani: Partial [∗]-algebras of closable operators: A review. Reviews Math. Phys. 8 (1996), $1 - 42$.
- [7] Bagarello, F. and C.Trapani: States and representations of CQ^{*}-algebras. Ann. Inst. H. Poincaré 61 (1994), 103 – 133.
- [8] Bagarello, F. and C.Trapani: CQ^* -algebras: structure properties. Publ. RIMS, Kyoto Univ. 32 (1996), 85 – 116.
- [9] Bhatt, S. J., Inoue, A. and H. Ogi: On C^{*}-Spectral Algebras. Suppl. Rend. Circ. Mat. Palermo 56 (1998).
- [10] Bhatt, S. J., Inoue, A. and H. Ogi: Admissibility of weights on non-normed *-algebras. Trans. Amer. Math. Soc. 351 (1999), 4629 – 4656.
- [11] Bhatt, S. J., Inoue, A. and H. Ogi: Unbounded C^* -seminorms and unbounded C^* -spectral algebras. J. Operator Theory (to appear).
- [12] Bhatt, S. J., Inoue, A. and H. Ogi: Spectral invariance, K-theory isomorphism and an application to the differential structure of C^* -algebras. Preprint. Fukuoka Univ. 2001.
- [13] Bonsall, F. F. and J. Duncan: Complete Normed Algebras. Berlin et al: Springer-Verlag 1973.
- [14] Dixmier, J.: C*-Algebras. Amsterdam: North-Holland Publ. Comp. 1977.
- [15] Dubois-Violette, M.: A generalization of the classical moment problem on *-algebras with applications to relativistic quantum theory. Parts I and II. Commun. Math. Phys. 43 (1975) , $225 - 254$ and 54 (1977) , $151 - 172$.
- [16] Lassner, G.: Topological algebras and their applications in Quantum Statistics. Wiss. Z. KMU Leipzig, Math.-Naturwiss. R. 30 (1981), 572 – 595.
- [17] Lassner, G.: Algebras of unbounded operators and quantum dynamics. Physica 124A $(1984), 471 - 480.$
- [18] Yngvason, J.: Algebraic quantum field theory and non commutative moment problem, Part I. Ann. Inst. Henri Poincar´e 48 (1988), 147 – 159.
- [19] Yood, B.: C^* -seminorms. Studia Math. 118 (1996), 19 26.

Received 02.05.2000