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Hyperbolic Limit
of Parabolic Semilinear Heat Equations

with Fading Memory

V. Pata

Abstract. This paper is devoted to the comparison of two models describing heat conduction
with memory, arising in the frameworks of Coleman-Gurtin and Gurtin-Pipkin. In particular,
the second model entails an equation of hyperbolic type, where the dissipation is carried out by
the memory term solely, and can be viewed as the limit of the first model as the coefficient ω
of the laplacian of the temperature tends to zero. Results concerning the asymptotic behavior,
with emphasis on the existence of a uniform attractor, are provided, uniformly in ω. The
attractor of the hyperbolic model is shown to be upper semicontinuous with respect to the
family of attractors of the parabolic models, as ω tends to zero.
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1. Introduction

Let Ω ⊂ R3 be a fixed bounded domain occupied by a solid heat conductor. Setting for
simplicity the specific heat of the conductor equal to 1, and assuming only small varia-
tions of the absolute temperature and temperature gradient from equilibrium reference
values, the internal energy e : Ω× R→ R and the heat flux vector q : Ω× R→ R3 are
described by the constitutive equations

e(x, t) = e0 + ϑ(x, t)

q(x, t) = −ω∇ϑ(x, t)−
∫ ∞

0

k(s)∇ϑ(x, t− s) ds

where ϑ : Ω × R → R is the temperature variation field relative to the equilibrium
reference value, k : R+ → R is the heat flux memory kernel, and the constants e0

and ω denote the internal energy at equilibrium and the instantaneous conductivity,
respectively. The above equations are derived in the theory of heat flow with memory,
due to Coleman and Gurtin [7] (case ω > 0), and to Gurtin and Pipkin [17] (case ω = 0).
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When a nonlinear temperature dependent heat source g(x, ϑ(x, t)) + f(t, x) is involved,
the energy balance equation

et +∇ · q = g + f

leads to the equation

ϑt(t) = ω∆ϑ(t) +
∫ ∞

0

k(s)∆ϑ(t− s) ds + g(·, ϑ(t)) + f(t). (1.1)

We assume that ϑ satisfies a Dirichlet boundary condition on ∂Ω. Furthermore, the
value of ϑ(t, x) is known for t ≤ τ , where τ ∈ R is the initial time.

Our purpose is to perform a global asymptotic analysis of (1.1). In order to achieve
this goal, we first have to associate with (1.1) a strongly continuous process of operators,
which carries the initial data given at time τ to the solution at time t. A way to do
that is to introduce the (integrated) past history of the temperature as a new variable
of the problem. Hence, along the lines of [9, 13, 15], we define

ηt(x, s) =
∫ t

t−s

ϑ(x, σ) dσ (s ∈ R+).

Assuming k(∞) = 0 and setting µ = −k′, making a formal integration by parts we are
led to the following initial and boundary value problem, depending on ω ≥ 0:

Problem Pω. Find (ϑ, η) solution to the system

ϑt(t) = ω∆ϑ(t) +
∫ ∞

0

µ(s)∆ηt(s) ds + g(·, ϑ(t)) + f(t)

ηt
t(s) + ηt

s(s) = ϑ(t)

in Ω, for any t > τ and any s > 0, which satisfies the initial and boundary conditions

ωϑ(t) = 0∫∞
0

µ(s)ηt(s) ds = 0

ηt(0) = 0

ϑ(τ) = ϑ0

ητ = η0

on ∂Ω× (τ, +∞)

on ∂Ω× (τ, +∞)

in Ω× (τ, +∞)

in Ω

in Ω× R+.

We point out that problem Pω is in fact equivalent to the original equation (1.1).
Indeed, up to chosing

η0(x, s) =
∫ τ

τ−s

ϑ(x, σ) dσ (s ∈ R+)

the first component ϑ of the solution (ϑ, η) to problem Pω is a solution to equation
(1.1).

The presence of the parameter ω is substantial. When ω 6= 0, the equation for ϑ
is of parabolic type. In particular, the term ω∆ϑ, besides having a regularizing effect,
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gives a non-trivial contribution to the dissipation of the system. This setting has been
analyzed in detail in the work [13], where it is shown that such a system possesses a
uniform attractor for solutions. Conversely, the hyperbolic case ω = 0 is much more
delicate. Indeed, in this situation all the dissipation of the system is contained in
the convolution term. In the paper [15], there is an analysis of the linear case: by
means of semigroup techniques, it is shown that the semigroup associated to the linear
homogeneous system has an exponential decay, provided reasonable hypotheses on the
kernel are assumed. However, the semigroup approach is not suitable to get information
about the longtime behavior of solutions in presence of a non-linearity.

On the contrary, in this work, we pursue a different strategy. Namely, we try to get
uniform estimates in time, using an argument which has been developed in [14]. This
allows us give a quite accurate description of the asymptotic properties of the solutions
to problem P0 for a certain class of non-linearities. Furthermore, with additional re-
strictions on the nonlinear term, it is possible to demonstrate that the system exhibits
a uniform attractor. The next goal is a comparison between the parabolic and the
hyperbolic cases, which shows an asymptotic continuity property of the models in the
limit ω → 0. The key step in such analysis is the existence of estimates for the solutions
which are independent of ω. A similar argument has also been used in [16].

The plan of the paper is as follows. After some notation in Section 2, we prove
existence and uniqueness results in Section 3 on any time interval [τ, T ] for an external
source f ∈ L2([τ, T ], L2), under proper assumptions on the nonlinear term and on the
memory kernel. In particular, we express the solution in terms of a strongly continuous
process Uω

f (t, τ). In Section 4, under more restrictive hypotheses on g and µ, we show
the existence of an absorbing set for Uω

f (t, τ), which is uniform as f belongs to a certain
functional space. Section 5 is devoted to the existence of a uniform attractor. Further
restrictions on f are then needed, namely, f will belong to the hull of a certain transla-
tion compact function. Finally, in Section 6 we study the hyperbolic limit ω → 0. For
simplicity, here we consider f constant in time. In particular, being now the system
autonomous, Sω(t) := Uω

f (t, 0) turns out to be a strongly continuous semigroup.

2. Notation

Let Ω ⊂ R3 be a bounded domain with smooth boundary ∂Ω. With standard notation,
we introduce the Hilbert spaces H−1, L2, H1

0 , H2 on Ω. We shall denote by 〈·, ·〉 and
‖ · ‖ the inner product and the norm on L2, respectively. The symbol 〈·, ·〉 will also
indicate the duality map between H−1 and H1

0 . Identifying L2 with its dual space, we
have the compact and dense embeddings

H−1 ↪→ L2 ↪→ H1
0 ↪→ H2 ∩H1

0 .

Recalling the Poincaré inequality

‖u‖2 ≤ λ0‖∇u‖2 (u ∈ H1
0 ) (2.1)

where λ0 > 0 is the first eigenvalue of −∆ (with Dirichlet boundary conditions), the
inner products in H1

0 and H2∩H1
0 can be chosen to be 〈∇·,∇·〉 and 〈∆·, ∆·〉, respectively.
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Given a positive function α defined on R+ and a real Hilbert space X, let L2
α(R+, X)

be the Hilbert space of X-valued functions on R+ endowed with the inner product

〈ψ1, ψ2〉L2
α(R+,X) =

∫ ∞

0

α(s)〈ψ1(s), ψ2(s)〉X ds.

Accordingly, the Hilbert space H1
α(R+, X) is defined by

H1
α(R+, X) =

{
ψ(s) : R+ → X

∣∣∣ ψ,ψs ∈ L2
α(R+, X)

}
.

Finally, we introduce the Banach space T (X) of L1
loc(R, X)-translation bounded func-

tions with values in X, namely,

T (X) =
{

h ∈ L1
loc(R, X) : ‖h‖T (X) = sup

r∈R

∫ r+1

r

‖h(y)‖Xdy < ∞
}

.

A function h ∈ T (X) is said to be translation compact in L1
loc(R, X) (see [6] and refer-

ences therein) if the hull of h defined as

H(h) = {hr}r∈R
L1

loc(R,X)

is compact in L1
loc(R, X), where hr(·) = h(· + r) is the translate of h by r. Hence a

function ϕ : R→ X belongs to H(h) if and only if for any ε > 0 and any M > 0 there
is a translate hr of h such that

∫ M

−M
‖ϕ(y)− hr(y)‖Xdy ≤ ε. In particular, the relation

‖ϕ‖T (X) ≤ ‖h‖T (X) holds for every ϕ ∈ H(h). If h is constant, then H(h) reduces to the
singleton {h}. The class of translation compact functions in L1

loc(R, X) is quite general;
for instance, it contains Lp(R, X) for all p ≥ 1, the constant X-valued functions, and
the class of almost periodic functions (see [1]).

3. The solutions process

The first step is to write problem Pω in a proper functional setting. To this aim, we
list some assumptions on the memory kernel µ and on the non-linearity g, which will
be needed in the sequel.

Conditions on µ. We consider the following hypotheses:

(h1) µ ∈ C1(R+) ∩ L1(R+).

(h2) µ(s) ≥ 0 and µ′(s) ≤ 0 for all s ∈ R+.

(h3)
∫∞
0

µ(s) ds = k0 > 0.

(h4) µ′(s) + δµ(s) ≤ 0 for all s ∈ R+ and some δ > 0.

(h5) There exists s0 ∈ R+ such that
• µ′ ∈ L2((0, s0))
• µ′(s) + Mµ(s) ≥ 0 for all s ≥ s0 and some M > 0.



Hyperbolic Limit of Parabolic Equations 363

It is clear that we can weaken the first of the two conditions in (h5) asking that µ′

is square summable in a neighborhood of zero. Then, by (h1), µ′ ∈ L2((0, s0)) for every
s0 ∈ R+. Also, notice that if the second condition of (h5) holds for every s ∈ R+, this
automatically implies that µ′ ∈ L2((0, s0)) for every s0 ∈ R+.

The above assumptions are in some sense quite restrictive. For instance, (h4) - (h5),
which are not needed to prove existence and uniqueness results, imply the exponential
decay of µ(s) and the finiteness of µ(0). However, all the results we found in literature
concerning the exponential decay of linear semigroups, with dissipation contained in the
sole memory term, are obtained requiring the exponential decay of the kernel. In our
case, we do have some further dissipation when ω 6= 0. But since we want to consider
the behavior of the system in the limit ω → 0, we also have to require that µ 6≡ 0, and
this explains (h3).

Conditions on g. We consider the following hypotheses: let g ∈ C0(Ω × R), and
assume that there exist non-negative constants c1, c2 such that

(g1) |g(x, r)| ≤ c1

(
1 + |r|) for all x ∈ Ω and all r ∈ R.

(g2) |g(x, r)− g(x, s)| ≤ c2|r − s| for all x ∈ Ω and all r, s ∈ R.

(g3) lim supr→∞
g(x,r)

r ≤ 0 uniformly as x ∈ Ω.
(g4) g(x, ·) ∈ C1(Ω× R) and

• g(·, 0) ∈ H1
0

• g′(·, r) ≤ 0 for all r ∈ R.
• sup‖u‖≤c ‖Dxg(·, u)‖L2 < ∞ for all c ≥ 0.

Here Dx and the prime denote derivation with respect to the first three space
variables, and derivation with respect to the fourth variable of g, respectively. Notice
that (g4) together with (g1) imply (g3). Conditions (g1) - (g2) will be enough to assure
existence and uniqueness; (g3) will be used to prove the existence of a uniform absorbing
set, whereas (g4) is needed for the uniform attractor.

Again, the above conditions are too restrictive in the parabolic case ω > 0 (see
[13]). On the other hand, in the hyperbolic situation, that is, when ω = 0, even a linear
g(x, r) = εr, with ε > 0 very small, could prevent the system from being dissipative.
Notice that, if we consider the linear homogeneous case corresponding to such g, it is
easy to check that the the strongly continuous semigroup of linear operators associated
to the equation is not a contraction semigroup (cf. [15]).

Definition 3.1. Assume (h1) - (h2) and (g1). Let τ, T ∈ R, T > τ , and set
I = [τ, T ]. Assume also that

f ∈ L1(I, L2). (3.1)

A pair (ϑ, η) which fulfils

ϑ ∈ C0(I, L2)

ωϑ ∈ L2(I, H1
0 )

ϑt ∈ L∞(I, H−1) + L1(I, L2)

η ∈ C0(I, L2
µ(R+,H1

0 ))

ηt + ηs ∈ C0(I, L2
µ(R+, L2))
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is a solution to problem Pω in the time interval I provided that

〈ϑt, v〉 = −ω〈∇ϑ,∇v〉 −
∫ ∞

0

µ(s)〈∇η(s),∇v〉 ds + 〈g(·, ϑ), v〉+ 〈f, v〉
∫ ∞

0

µ(s)〈ηt(s) + ηs(s), ∆ζ(s)〉 ds =
∫ ∞

0

µ(s)〈ϑ, ∆ζ(s)〉 ds

for every v ∈ H1
0 and every ζ ∈ L2

µ(R+,H2 ∩H1
0 ), a.e. in I, with initial conditions

ϑ(τ) = ϑ0

ητ = η0

a.e. in Ω

a.e. in Ω× R+.

Here ∂s is a linear operator on L2
µ(R+,H1

0 ) of domain

D(∂s) =
{

ψ ∈ H1
µ(R+,H1

0 )
∣∣∣ ψ(0) = 0

}
.

The following result holds (cf. [12, 13, 15]).

Theorem 3.2. Let (h1) - (h2), (g1) - (g2), and (3.1) hold. Then, given any τ ∈ R
and any T > τ , problem Pω has a unique solution (ϑ, η) in the time interval I = [τ, T ],
with initial data (ϑ0, η0). In addition, if we consider two sets of data {fi, ϑ0i, η0i} (i =
1, 2) and we denote by {ϑi, ηi} the two corresponding solutions to problem Pω, then
there holds

‖ϑ1(t)− ϑ2(t)‖2 +
∫ ∞

0

µ(s)‖∇ηt
1(s)−∇ηt

2(s)‖2ds

≤ C

[
‖ϑ01 − ϑ02‖|2 +

∫ ∞

0

µ(s)‖∇η01(s)−∇η02(s)‖2ds

+
( ∫ T

τ

‖f1(y)− f2(y)‖ dy

)2]
(t ∈ I)

(3.2)

for some constant C > 0, depending (increasingly) only on the size of the data, but
independent of ω ≥ 0.

Proof. The case ω > 0 is proved in [13]. Existence and uniqueness for the case
ω = 0 can be recovered from [15] using a standard fixed point argument. Existence could
also be proved via a Faedo-Galerkin scheme, or taking the limit as ω → 0 of the parabolic
problem. Thus the only thing to be proved is continuous dependence, that is, estimate
(3.2). Let then {ϑi, ηi} (i = 1, 2) be two solutions to problem P0 corresponding to the
source terms and initial data {fi, ϑ0i, η0i}, and denote their differences by {ϑ, η} and
{f, ϑ0, η0}, respectively. According to Definition 3.1, the pair (ϑ, η) fulfils the system

〈ϑt, v〉 = −∫∞
0

µ(s)〈∇η(s),∇v〉 ds + 〈g(·, ϑ1)− g(·, ϑ2), v〉+ 〈f, v〉 (3.3)∫∞
0

µ(s)〈ηt(s) + ηs(s),∆ζ(s)〉 ds =
∫∞
0

µ(s)〈ϑ, ∆ζ(s)〉 ds (3.4)
ϑ(τ) = ϑ0 (3.5)
ητ = η0 (3.6)
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for every v ∈ H1
0 and every ζ ∈ L2

µ(R+,H2 ∩H1
0 ), a.e. in I. Since we already know that

we have uniqueness, we can perform formal estimates in an approximation scheme, and
then pass to the limit. Alternatively, one should work with regularized equations. A
similar situation has been treated in detail in [10]. Setting v = ϑ in (3.3), and using
(g2), we have

1
2

d

dt
‖ϑ‖2 = −

∫ ∞

0

µ(s)〈∇η(s),∇ϑ〉 ds + 〈g(·, ϑ1)− g(·, ϑ2), ϑ〉+ 〈f, ϑ〉

≤ −
∫ ∞

0

µ(s)〈∇η(s),∇ϑ〉 ds + c2‖ϑ‖2‖f‖ ‖ϑ‖.
(3.7)

Setting ζ = η in (3.4), and exploiting (h2) and integration by parts (see [12] for the
details), we end up with

1
2

d

dt

∫ ∞

0

µ(s)‖∇η(s)‖2ds

= −
∫ ∞

0

µ(s)〈∇ηs(s),∇η(s)〉 ds +
∫ ∞

0

µ(s)〈∇η(s),∇ϑ〉 ds

= 1
2

∫ ∞

0

µ′(s)‖∇η(s)‖2ds +
∫ ∞

0

µ(s)〈∇η(s),∇ϑ〉 ds

≤
∫ ∞

0

µ(s)〈∇η(s),∇ϑ〉 ds.

(3.8)

Addition of (3.7) - (3.8) leads to

1
2

d

dt

(
‖ϑ‖2 +

∫ ∞

0

µ(s)‖∇η(s)‖2ds

)
≤ c2‖ϑ‖2 + ‖f‖ ‖ϑ‖.

The thesis then follows from (3.5) - (3.6) and a Gronwall-type Lemma (see, e.g., [3:
Lemma A.5] and [21: Appendix])

Introducing the product space

H = L2 × L2
µ(R+, H1

0 ),

in light of Theorem 3.2, it is possible to express the solutions to problem Pω in terms
of a strongly continuous process of operators (see [20]). Namely, we write the solution
(ϑ(t), ηt) of problem Pω at time t with initial data (ϑ0, η0) given at time τ ≤ t as

(ϑ(t), ηt) = Uω
f (t, τ)(ϑ0, η0).

The two-parameter family Uω
f (t, τ) fulfils the following relations:

1. Uω
f (t, τ) : H → H for any t ≥ τ, τ ∈ R.

2. Uω
f (τ, τ) is the identity map on H for any τ ∈ R.

3. Uω
f (t, s)Uω

f (s, τ) = Uω
f (t, τ) for any t ≥ s ≥ τ, τ ∈ R.
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4. Uω
f (t, τ)z → z as t ↓ τ for any z ∈ H, τ ∈ R.

5. Uω
f (t, τ) ∈ C0(H,H) for any τ ∈ R, t ≥ τ .

The dependence of the process on ω is understood. It is convenient however to highlight
the dependence on the external force f . This because we have in mind to consider, rather
than a single process, a family of processes {Uω

f (t, τ) : f ∈ F}, where F , usually called
the symbol space, is a suitable function space. The particular choice of F depends on
which results one wants to prove (see Theorem 4.1 and the beginning of Section 5).

For further reference, it is useful to write problem Pω in a more compact form.
Hence, setting

z0 = (ϑ0, η0) and z(t) = (ϑ(t), ηt)

we have
d

dt
z(t) = Lωz(t) + N(·, z(t)) + F (t)

z(τ) = z0

(3.9)

where the linear operator Lω is defined as

Lω =
(

ω∆
∫∞
0

µ(s)∆ · ds

I −∂s

)

with domain

D(Lω) =





z ∈ H

∣∣∣∣∣∣∣∣∣∣

ϑ ∈ H1
0

ω∆ϑ +
∫∞
0

µ(s)∆η(s) ds ∈ L2

∂sη(s) ∈ L2
µ(R+,H1

0 )

η(0) = 0





and the non-linearity N and the source term F are given by

N(·, z) = (g(·, ϑ), 0) and F (t) = (f(t), 0).

The energy associated to (3.9) at time t is given by

E(t) = 1
2 ‖Uω

f (t, τ)z0‖2H = 1
2

(
‖u(t)‖2 +

∫ ∞

0

µ(s)‖∇ηt(s)‖2ds

)
.
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4. Uniform absorbing sets

The main result of this section is the following uniform in time energy estimate.

Theorem 4.1. Assume (h1) - (h5) and (g1) - (g3). Let F ⊂ T (L2) be a bounded
set. Then there exist positive constants C, ε, and Λ = Λ(F), all independent of ω, such
that the relation

E(t) ≤ Ce−ε(t−τ)E(τ) + Λ (4.1)

holds for every t ≥ τ , every τ ∈ R, and every f ∈ F . In particular, if g ≡ 0 and F
reduces to the null function (that is, the linear homogeneous case), then Λ = 0.

Proof. Let f ∈ F be fixed. We perform formal estimates, that can be made
rigorous in an approximation scheme. Notice first that, by the continuity of g and (g3),
for every ν > 0 there exists c3 = c3(ν) such that

rg(x, r) ≤ νr2 + c3 (x ∈ Ω, r ∈ R).

Therefore, the product in H of (3.9) and z entail

d

dt
E = −ω‖∇ϑ‖2 + 〈g(·, ϑ), ϑ〉+ 〈f, ϑ〉 −

∫ ∞

0

µ(s)〈∇ηs(s),∇η(s)〉 ds

≤ −ω‖∇ϑ‖2 + ν‖ϑ‖2 + c3|Ω|+ ‖f‖ ‖ϑ‖ −
∫ ∞

0

µ(s)〈∇ηs(s),∇η(s)〉 ds.

(4.2)

Notice that c3 vanishes when g ≡ 0. Reasoning as in the proof of Theorem 3.1, integra-
tion by parts and (h4) supply

−
∫ ∞

0

µ(s)〈∇ηs(s),∇η(s)〉 ds = 1
2

∫ ∞

0

µ′(s)‖∇η(s)‖2ds

≤ − δ
2

∫ ∞

0

µ(s)‖∇η(s)‖2ds.

(4.3)

Take now the product in L2 of the first equation of system (3.9) and −η(s), and integrate
over R+ in µ(s) ds. This gives

−
∫ ∞

0

µ(s)〈ϑt, η(s)〉 ds = ω

∫ ∞

0

µ(s)〈∇ϑ,∇η(s)〉 ds +
∥∥∥∥
∫ ∞

0

µ(s)∇η(s) ds

∥∥∥∥
2

−
∫ ∞

0

µ(s)〈g(·, ϑ), η(s)〉 ds−
∫ ∞

0

µ(s)〈f, η(s)〉 ds.

(4.4)

By means of Hölder and Young inequalities, (h3), (g1), (2.1), we estimate the terms of
the right-hand side of (4.4) as follows:

ω

∫ ∞

0

µ(s)〈∇ϑ,∇η(s)〉 ds ≤ ω‖∇ϑ‖2 +
ωk0

4

∫ ∞

0

µ(s)‖∇η(s)‖2ds (4.5)

∥∥∥∥
∫ ∞

0

µ(s)∇η(s) ds

∥∥∥∥
2

≤
( ∫ ∞

0

µ(s)‖∇η(s)‖ ds

)2

≤ k0

∫ ∞

0

µ(s)‖∇η(s)‖2ds (4.6)
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−
∫ ∞

0

µ(s)〈g(·, ϑ), η(s)〉 ds

≤ c1k0|Ω|
2

+
k0

4
‖ϑ‖2 + c1λ0

(
c1 + 1

2

) ∫ ∞

0

µ(s)‖∇η(s)‖2ds

(4.7)

−
∫ ∞

0

µ(s)〈f, η(s)〉 ds ≤ k
1
2
0 λ

1
2
0 ‖f‖

( ∫ ∞

0

µ(s)‖∇η(s)‖2ds

) 1
2

. (4.8)

Introducing the functional

L(t) = −
∫ ∞

0

µ(s)〈ϑ, η(s)〉 ds

and exploiting the second equation of system (3.9), we can transform the left-hand side
of (4.4) into

−
∫ ∞

0

µ(s)〈ϑt, η(s)〉 ds =
d

dt
L+ k0‖ϑ‖2 −

∫ ∞

0

µ(s)〈ϑ, ηs(s)〉 ds. (4.9)

Finally, the Hölder inequality, (h2) - (h3), (h5), and (2.1), entail

∫ ∞

0

µ(s)〈ϑ, ηs(s)〉 ds

= −
∫ ∞

0

µ′(s)〈ϑ, η(s)〉 ds

≤ λ
1
2
0 ‖ϑ‖

(
1

µ
1
2 (s0)

∫ s0

0

|µ′(s)|µ 1
2 (s)‖∇η(s)‖ ds + M

∫ ∞

s0

µ(s)‖∇η(s)‖ ds

)

≤ λ
1
2
0 ‖ϑ‖

{
1

µ
1
2 (s0)

( ∫ s0

0

|µ′(s)|2ds

) 1
2
( ∫ s0

0

µ(s)‖∇η(s)‖2ds

) 1
2

+ Mk
1
2
0

( ∫ ∞

s0

µ(s)‖∇η(s)‖2ds

) 1
2
}

≤ k0

4
‖ϑ‖2 + c4

∫ ∞

0

µ(s)‖∇η(s)‖2ds

(4.10)

where

c4 = λ0 max
{

1
k0µ(s0)

∫ s0

0

|µ′(s)|2ds, M2

}
.

Collecting (4.4) - (4.9), and denoting for simplicity

c5 =
ωk0

4
+ k0 + c1λ0

(
c1 +

1
2

)
+ c4

c6 = k
1
2
0 λ

1
2
0

c7 =
c1k0|Ω|

2
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we get the inequality

d

dt
L+

k0

2
‖ϑ‖2

≤ ω‖∇ϑ‖2 + c5

∫ ∞

0

µ(s)‖∇η(s)‖2ds + c6‖f‖
( ∫ ∞

0

µ(s)‖∇η(s)‖2ds

) 1
2

+ c7.

(4.11)

Notice that c7 = 0 when g ≡ 0.
For N > 0, set

Φ(t) = NE(t) + L(t).

Then fix N > 2 big enough such that

1
c8
E(t) ≤ Φ(t) ≤ c8E(t) (4.12)

for some c8 > 1, and
Nδ

2
− c5 ≥ k0

4
. (4.13)

Addition of (4.2) and N -times (4.11), and (4.3) and (4.13), lead to

d

dt
Φ + (N − 1)ω‖∇ϑ‖2 +

(k0

2
−Nν

)
‖ϑ‖2 +

k0

4

∫ ∞

0

µ(s)‖∇η(s)‖2ds

≤ N‖f‖ ‖ϑ‖+ c6‖f‖
( ∫ ∞

0

µ(s)‖∇η(s)‖2ds

) 1
2

+ Nc3|Ω|+ c7.

(4.14)

At this point, we fix the value of ν > 0 small enough such that

k0

2
−Nν ≥ k0

4
. (4.15)

Hence, setting

ε =
k0

2c8
, c9 = c6

√
2c8 + N

√
c8, c10 = Nc3|Ω|+ c7

inequalities (4.14) - (4.15) yield

d

dt
Φ + εΦ ≤ c9‖f‖Φ 1

2 + c10 (4.16)

where c10 = 0 when g ≡ 0. Exploiting a Gronwall-type Lemma (cf. [3, 21]), we get from
(4.16) the inequality

Φ(t) ≤ 2Φ(τ)e−ε(t−τ) +
2c10

ε
+

c2
9e

ε

(1− e−
ε
2 )2

‖f‖2T (L2).

The thesis then follows at once from (4.12)
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It is worth noting that, in particular, here we provided a direct proof of the exponen-
tial decay of the strongly continuous semigroup associated to the linear homogeneous
case. The reader should confront this result with [15].

Corollary 4.2. Let the hypotheses of Theorem 4.1 be fulfilled. Then there exists an
invariant, bounded, absorbing set B0 for the family {Uf (t, τ), f ∈ F}, which is uniform
as ω ≥ 0 and f ∈ F . Moreover, B0 is connected whenever F is connected.

Proof. Just define
B0 =

⋃

ω≥0

⋃

f∈F

⋃

τ∈R

⋃

t≥τ

Uω
f (t, τ)B

where B is the ball of H of radius 2
√

Λ centered at zero

Another straightforward consequence of Theorem 4.1 is the following result, which
will be needed later.

Corollary 4.3. Assume (h1) - (h5) and (g1) - (g3). Let F ⊂ T (L2) be a bounded
set. Then there exist a positive constant C depending on F , but independent of ω, such
that the relation

ω

∫ t

τ

‖∇ϑ‖2 ≤ C
(E(0) + t− τ

)

holds for every t ≥ τ , every τ ∈ R, and every f ∈ F .

5. Existence of a uniform attractor

In the sequel, let (h1) - (h5) and (g1) - (g4) hold. We assume

h is translation compact in L1
loc(R,H1

0 ). (5.1)

Then we take F = H(h), and we study the asymptotic behavior of the family of processes
{Uω

f (t, τ), f ∈ H(h)}, for ω ≥ 0.

Recall that a set Aω ⊂ H is said to be the uniform attractor for the family of
processes {Uω

f (t, τ), f ∈ H(h)} if it is at the same time a uniformly (as f ∈ H(h))
attracting set, and it is contained in every closed uniformly attracting set. The reader
is referred to the classical books [2, 18, 20, 23] for an overview of the relevant concepts
and results used in this section.

When ω > 0, as shown in [13], the family {Uω
f (t, τ), f ∈ H(h)} possesses a uniform

attractor, even assuming weaker conditions on g, and for h translation compact in
L1

loc(R, L2). Indeed, the dissipation contained in ∆ϑ plays a significant role. In this
work, however, we are mainly interested to the case ω = 0, and to the continuity
properties that we can obtain as ω → 0. This is why we will look for results which are
independent of ω. Clearly, in the estimates that follow, our assumptions on g and h will
not be optimal for a fixed ω > 0, but they probably are as ω → 0 (and, in particular,
for ω = 0).
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Let B0 be the invariant, bounded, connected, uniform absorbing set of Uω
f (t, τ),

given by Corollary 4.2. For any z0 ∈ B0, we write the solution z to (3.9) as z = zc + zd,
where zc and zd are the solutions to the problems

d

dt
zc = Lωzc + N(·, zc) + F

zc(τ) = 0



 (5.2)

and
d

dt
zd = Lωzd + N(·, z)−N(·, zc)

zd(τ) = z0



 , (5.3)

respectively. It is immediate to see (cf. Theorem 3.2) that problems (5.2) and (5.3)
admit unique solutions belonging to the space C0([τ,∞),H). Introducing the product
Hilbert space

V = H1
0 × L2

µ(R+,H2 ∩H1
0 )

we have

Lemma 5.1. There exists a constant K > 0 such that the inequality

‖zc(t)‖V ≤ K

holds for every τ ∈ R, t ≥ τ , ω ≥ 0, and z0 ∈ B0.

Proof. We repeat the proof of Theorem 4.1, except we now take inner products
in H1

0 and H2 ∩H1
0 rather then in L2 and H1

0 , respectively. This is possible since, on
account of (g4), g(x, ϑc(x, t)) ∈ H1

0 . Thus we define

Ec(t) = 1
2

(
‖∇uc(t)‖2 +

∫ ∞

0

µ(s)‖∆ηt
c(s)‖2ds

)

and

Lc(t) = −
∫ ∞

0

µ(s)〈∇ϑc,∇ηc(s)〉 ds.

Notice that Theorem 4.1 applies to Ec as well. In particular, this means that ‖ϑc‖ is
uniformly bounded. Hence, in force of (g4) and the Young inequality,

〈∇g(·, ϑc),∇ϑc〉 = 〈Dxg(·, ϑc),∇ϑc〉+ 〈g′(·, ϑc)∇ϑc,∇ϑc〉 ≤ ν‖∇ϑc‖2 + c11

for every ν > 0 and some c11 = c11(ν). Therefore, the analog of (4.2) - (4.3) reads

d

dt
Ec + 1

2

∫ ∞

0

µ(s)‖∆ηc(s)‖2ds

≤ −ω‖∆ϑc‖2 + 〈∇g(·, ϑc),∇ϑc〉+ 〈∇f,∇ϑc〉
≤ −ω‖∆ϑc‖2 + ν‖∇ϑc‖2 + c11 + ‖∇f‖ ‖∇ϑc‖.

(5.4)
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Estimates (4.4) - (4.6) and (4.8) - (4.10) hold for (ϑc, ηc), provided we replace norms
and inner products properly. The only difference is in (4.7). Here, using (2.1), (h1),
and (g1), we have

−
∫ ∞

0

µ(s)〈∇g(·, ϑc),∇ηc(s)〉 ds =
∫ ∞

0

µ(s)〈g(·, ϑc), ∆ηc(s)〉 ds

≤ c12 +
k0

4
‖ϑc‖2 + c13

∫ ∞

0

µ(s)‖∇ηc(s)‖2ds

(5.5)

for some c12, c13 > 0. Reasoning as in the proof of Theorem 4.1 (that is, defining
Φc = NEc + Lc), exploiting (5.4) - (5.5), and recalling that zc(τ) = 0, which implies
Φc(τ) = 0, we get the thesis. Clearly, the constant K of the lemma shall depend on
‖h‖T (H1

0 )

At this level, we cannot conclude that the orbits zc(t) lie in a relatively compact
subset of H. Indeed, even if we have boundedness in V, the embedding V ↪→ H lacks of
compactness. To overcome this obstacle, we shall treat separately the second component
ηc of zc, along the direction suggested by [22].

Lemma 5.2. For every ω ≥ 0, the set

E =
⋃

f∈H(h)

⋃

z0∈B0

⋃

τ∈R

⋃

t≥τ

ηt
c

is relatively compact in L2
µ(R+,H1

0 ), and bounded in H1
µ(R+,H1

0 ) ∩ L2
µ(R+,H2 ∩H1

0 ),
uniformly as ω ≥ 0.

Proof. Since ηt
c has the explicit form (see [13])

ηt
c(s) =

{ ∫ s

0
ϑc(t− y) dy for 0 < s ≤ t− τ∫ t−τ

0
ϑc(t− y) dy for s > t− τ

and consequently

∂s ηt
c(s) =

{
ϑc(t− s) for 0 < s ≤ t− τ
0 for s > t− τ

it is easy to conclude from Lemma 5.1 and (h4) that

E is bounded in H1
µ(R+,H1

0 ) ∩ L2
µ(R+,H2 ∩H1

0 )

and

sup
η∈E

∫ ∞

0

‖∇η(s)‖2ds ∈ L1
µ(R+)

(the above bounds being independent of ω ≥ 0). The result then follows from [22:
Lemma 5.5] (see also [11, 13])
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Corollary 5.3. There exists a relatively compact set K ⊂ H, independent of ω ≥ 0,
such that ⋃

f∈H(h)

⋃

z0∈B0

⋃

τ∈R

⋃

t≥τ

zc(t) ⊂ K.

Moreover, K is bounded in V, and its second component is also bounded in H1
µ(R+,H1

0 ).

Proof. Just denote K = BK ×E , where BK is the closed ball of H1
0 of radius K(ρ)

centered at zero

Finally, we turn our attention to system (5.3).

Lemma 5.4. There exist positive constants C and ε independent of ω ≥ 0 such
that the relation

‖zd(t)‖H ≤ Ce−ε(t−τ)

holds for every τ ∈ R, t ≥ τ , ω ≥ 0 and z0 ∈ B0.

Proof. Again, we mimic the proof of Theorem 4.2. Just notice that, with reference
to (4.2) and (4.7),

〈g(·, ϑ)− g(·, ϑc), ϑd〉 ≤ 0

thanks to (g4), and

−
∫ ∞

0

µ(s)〈g(·, ϑ)− g(·, ϑc), ηd(s)〉 ds

≤ c2

∫ ∞

0

µ(s)‖ϑd‖ ‖ηd(s)‖ ds

≤ k0

4
‖ϑd‖2 + c2

2λ0

∫ ∞

0

µ(s)‖∇ηd(s)‖2ds

thanks to (g2), (2.1), and the Young inequality. Further details are left to the reader

Remark 5.5. It should be noted that the above results still hold if we weaken
condition (g4), asking that g′(·, r) ≤ ν, for some small constant ν, whose upper limit can
be explicitly found with a more careful balance of the estimates appearing in Lemmas
5.1 and 5.4.

Collecting Corollary 5.3 and Lemma 5.4, it is apparent to check that the relatively
compact set K has the uniform attraction property, that is, for any τ ∈ R, and any
bounded set B ⊂ H,

lim
t→∞

[
sup
f∈F

δH(Uω
f (t, τ)B,K)

]
= 0 (5.6)

where δH is the Hausdorff semidistance on H, defined by

δH(B1,B2) = sup
b1∈B1

distH(b1,B2) = sup
b1∈B1

inf
b2∈B2

‖b1 − b2‖H.

Furthermore, from Theorem 3.2 we know that U•(t, τ) is continuous as a map H ×
H(g) → H.

Using the above continuity property, together with (5.6), we can apply standard
results (see [4, 5, 11, 13]) to get
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Theorem 5.6. Assume (h1) - (h5), (g1)-(g4) and (5.1) hold. Then, for every
ω ≥ 0, the family of processes {Uω

f (t, τ), f ∈ H(h)} associated with problem Pω possesses
a compact and connected uniform attractor Aω given by

Aω =

{
z(0) such that z(t) is any bounded complete

trajectory of Uω
f (t, τ) for some f ∈ H(h)

}
.

Recall that the uniform attractor is the smallest compact set of H which enjoys
the uniform attraction property (see [4, 5, 20] for more details). In particular, due
to the minimality property of uniform attractors among uniform attracting sets, from
Corollary 5.3 we also get

Corollary 5.7. The uniform attractor Aω is bounded in V, and its second compo-
nent is also bounded in H1

µ(R+,H1
0 ). The bounds are independent of ω ≥ 0.

Remark 5.8. When h is quasi periodic, namely

h(x, t) = Ψ(x, κt) = Ψ(x, κ1t, . . . , κmt)

where Ψ(·, $) ∈ C1(Tm,H1
0 ) is a 2π-periodic function of $ on the m-dimensional torus

Tm, and κ1, . . . , κm are rationally independent numbers, then, arguing as in [13] (cf.
also [16]), it is possible to show that, for every ω ≥ 0, the uniform attractor Aω of the
family {Uω

f (t, τ), f ∈ H(h)} has finite fractal dimension. The reader is referred to [8,
23] for more details on the subject.

6. The Hyperbolic limit

In this last section we examine the behavior of the longtime solutions to problem Pω

in the hyperbolic limit ω → 0. The result we obtain will show that, in the limit, the
dynamics of the parabolic problem tend to coincide with the dynamics of the hyperbolic
problem. The argument an be made precise in terms of Hausdorff semidistance of the
respective attractors.

Just for sake of simplicity, we take f ∈ H1
0 constant in time. Then, as remarked in

the introduction,
Sω(t) = Uω

f (t, 0)

turns out to be a strongly continuous semigroup. Moreover, throughout this section, we
shall assume that conditions (h1) - (h5) and (g1) - (g4) hold.

In fact, the following argument can be immediately adapted to the non-autonomous
setting, provided we work with the semigroup Σω(t), acting on the complete metric
space H×H(h), defined by (cf. [4 - 6])

Σω(t)(z, f) = (Uω
f (t, 0)z, f t).

We set
A =

⋃

ω≥0

Aω.

The invariance relation Sω(t)Aω = Aω, which holds for every ω ≥ 0, and Corollary 5.7
imply
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Lemma 6.1. The set A is relatively compact, is bounded in V, and its third com-
ponent is also bounded in H1

µ(R+,H1
0 ).

Concerning the continuity properties of Sω(t) as a function of ω, we have

Lemma 6.2. For every ω0 > 0 there exists a constant C = C(ω0) such that

‖Sω1(t)z0 − Sω2(t)z0‖H ≤ C
√

t

for every ω1, ω2 ≤ ω0 and every z0 ∈ A.

Proof. Let zj , for j = 1, 2, be the solutions to problem Pωj
, with initial data

zj(0) = z0. Denoting z = z1 − z2, we obtain the system

ϑt = ω1∆ϑ1 − ω2∆ϑ2 +
∫ ∞

0

µ(s)∆η(s) ds + g(·, ϑ1)− g(·, ϑ2)

ηt + ηs = ϑ.

The result follows immediately multiplying the above system by (ϑ, η) in H, using the
fact that zj(t) ∈ A for every t ≥ 0, and exploiting (g1) and Lemma 6.1

At this point, we fix ω0 > 0, and we introduce the set G as

G =
{

zω ∈ C0([0,∞),H) : zω(t) = Sω(t)zω0, with zω0 ∈ Aω, for ω ≤ ω0

}
.

We have

Lemma 6.3. G is an equicontinuous family at zero.

Proof. We re-cast the argument used in [16], of which here we limit ourselves to
give the essential lines. First, one has to exploit the strong continuity at zero of Sω(t),
for every fixed ω. Then it is possible to find a finite cover of A (due to Lemma 6.1) of
balls af radius ε, and the desired result follows applying the Minkowski inequality to
the difference ‖Sω(t)zω − zω‖H, on account of (3.2) and Lemma 6.2

The main result of this section is the following.

Theorem 6.4. The attractor A0 of S0(t) is upper semicontinuous at zero with
respect to the sets {Aω, ω > 0}, that is

lim
ω→0

δH(Aω,A0) = 0.

Proof. Along the lines of [19], by contradiction, assume that there exists a constant
% > 0, a sequence of positive numbers ωn → 0, and a corresponding sequence zn0 of
Aωn such that

distH(zn0,A0) ≥ %.

We may suppose ωn ≤ ω0 for every n. Let zn(t) = Sωn(t)zn0. Using the invariance of
the attractor, it is possible to extend in a natural way zn(t) for all times. Just set, for
t < 0, zn(t) = z, where Sωn(−t)z = zn0. By Lemma 6.2, ∪t∈R ∪n zn(t) is a relatively
compact set in H, and by Lemma 6.3, the family of mappings zn is equicontinuous
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from R to H. Indeed, the continuity at a point t0 6= 0 is esily obtained exploiting the
semigroup properties. Then Ascoli’s theorem and a classical diagonalization method
(cf. [16, 19]) entails the existence of z̄ ∈ C0(R,H) such that (up to a subsequence)

zn −→ z̄ in C0([−N,N ],H)

for every N > 0. In particular, zn0 −→ z̄(0) in H. Moreover, supt∈R ‖z̄(t)‖H < ∞.
Exploiting the above convergences, it is easy to show that z̄ fulfils Definition 3.1 for
ω = 0. We just dwell on the convergence of the term −ωn〈∇ϑn,∇v〉. By means of
Corollary 4.3, for every t > τ we have

ωn

∣∣∣∣
∫ t

τ

〈∇ϑn,∇v〉
∣∣∣∣ ≤

√
ωn (t− τ)

1
2 ‖∇v‖

(
ωn

∫ t

τ

‖∇ϑn‖2
) 1

2

−→ 0.

Therefore z̄(t) is a bounded complete trajectory of S0(t), that is, z̄(t) solves problem
P0 for all times and it is bounded in H uniformly in t. From the characterization of
A0 (Theorem 5.6), we conclude that z̄(0) ∈ A0. This implies that distH(zn0,A0) −→ 0
leading to a contradiction
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