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Partial Regularity of Weak Solutions
to Nonlinear Elliptic Systems Satisfying a

Dini Condition

J. Wolf

Abstract. This paper is concerned with systems of nonlinear partial differential equations

−Dαaα
i (x, u,∇u) = bi(x, u,∇u) (i = 1, . . . , N)

where the coefficients aα
i are assumed to satisfy the condition

��aα
i (x, u, ξ)− aα

i (y, v, ξ)
�� ≤ ω

�|x− y|+ |u− v|�(1 + |ξ|)

for all {x, u}, {y, v} ∈ Ω × RN and all ξ ∈ RnN , and where
R 1

0

ω(t)
t

dt < +∞ while the

functions
∂aα

i

∂ξ
j
β

satisfy the standard boundedness and ellipticity conditions and the function

ξ 7→ bi(x, u, ξ) may have quadratic growth. With these assumptions we prove partial Hölder
continuity of bounded weak solutions u to the above system provided the usual smallness
condition on ‖u‖L∞(Ω) is fulfilled.
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AMS subject classification: 35B65, 35K65

1. Introduction

Let Ω ⊂ Rn (2 ≤ n ∈ N) be an open and bounded set and N ∈ N. In what follows a
repeated Greek or Latin index implies summation over 1, . . . , n or 1, . . . , N , respectively.
We consider the nonlinear elliptic system

−Dαaα
i (x, u,∇u) = bi(x, u,∇u) in Ω (i = 1, . . . , N) (1.1)

where

u = {u1, . . . , uN}
Dα = ∂

∂xα
(α = 1, . . . , n)

∇u = {Dαui}.
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The coefficients aα
i and bi are assumed to satisfy the following conditions:

∣∣aα
i (x, u, ξ)− aα

i (y, v, ξ)
∣∣ ≤ ω

(|x− y|+ |u− v|)(1 + |ξ|) (1.2)

for all {x, u}, {y, v} ∈ Ω × RN and all ξ ∈ RnN where ω : [0,∞) → [0,∞) is non-
decreasing, bounded and ∫ 1

0

ω(t)
t

dt < +∞ (1.3)

(that is, ω is assumed to fulfill the Dini condition; notice that it implies limt→0 ω(t) = 0),

ξ 7→ aα
i (x, u, ξ) is differentiable on RnN for all {x, u} ∈ Ω× RN

{x, u, ξ} 7→ ∂aα
i

∂ξj
β

(x, u, ξ) is continuous on Ω× RN × RnN





(1.4)

∣∣∣∂aα
i

∂ξj
β

(x, u, ξ)
∣∣∣ ≤ c0 for all {x, u, ξ} ∈ Ω× RN × RnN (1.5)

for some constant c0 > 0,

∂aα
i

∂ξj
β

(x, u, ξ)ηi
αηj

β ≥ ν0|η|2 for all {x, u} ∈ Ω× RN and all ξ, η ∈ RnN (1.6)

for some constant ν0 > 0 (α, β = 1, . . . , n; i, j = 1, . . . , N), and for all M > 0 there
exists a(M) > 0 such that

|bi(x, u, ξ)| ≤ a(M)|ξ|2 + b for all {x, u, ξ} ∈ Ω× [−M, M ]N × RnN (1.7)

for some constant b ≥ 0 (i = 1, . . . , N).
By W 1,2(Ω) we denote the usual Sobolev space. Further, we define Lp(Ω;RN ) =

[Lp(Ω)]N , W 1,p(Ω;RN ) = [W 1,p(Ω)]N , etc.

Definition. A vector-valued function u ∈ W 1,2 ∩L∞(Ω;RN ) is called to be a weak
solution of system (1.1) if

∫

Ω

aα
i (x, u,∇u)Dαϕidx =

∫

Ω

bi(x, u,∇u)ϕidx (1.8)

for all ϕ ∈ C∞c (Ω;RN ).

The following theorem is the main result of our paper.

Theorem. Let conditions (1.2) − (1.7) be satisfied and let u ∈ W 1,2 ∩ L∞(Ω;RN )
be a weak solution to system (1.1) such that

2a(‖u‖L∞(Ω))‖u‖L∞(Ω) < ν0. (1.9)

Then there exists an open set Ω0 ⊂ Ω such that meas(Ω \ Ω0) = 0 and

u|Ω0 ∈ C0,µ(Ω0;RN ) (1.10)



Partial Regularity for Elliptic Systems 317

for all µ ∈ (0, 1).

Remarks. The partial Hölder continuity of bounded weak solutions to quasilinear
systems (i.e. aα

i (x, u, ξ) = aαβ
ij (x, u)ξβ

j ) of type (1.1) has been proved in [7, 8] by using
the blow-up method (notice that the monograph [6] also contains a direct proof of this
result based on higher integrability of∇u). On the other hand, partial Hölder continuity
of weak solutions to system (1.1) with bi satisfying the usual controlled growth condition
is studied in [2] (cf. also [5] for elliptic systems of higher order). Our theorem above thus
extends these results to fully nonlinear elliptic systems (1.1). Since the functions ∂aα

i

∂ξj
β

are supposed to be only (not necessarily uniformly) continuous our result extents also
Campanato’s Theorem 3.I in [3] where the author has proved partial Hölder continuity
of u if n ≤ 4 and the results obtained in [2] for the case n > 4.

The paper is organized as follows. In Section 2 we prove some technical lemmas
which form the base for applying the blow-up method to prove partial regularity of
bounded weak solutions to system (1.1). The novelty in our approach is the use of
properties of the function ω (cf. (1.3)) which we present in Lemma 2.2. The key
inequality for partial regularity is stated in Lemma 3.1. Its proof relies on the blow-up
method, where again properties of ω play an essential role. The proof of our theorem
is then given in Section 4. An appendix is devoted to the proof of a convergence result
which we have used in Section 3.

2. Preliminaries

In this section we are going to present some lemmas which we will use in the sequel
of the paper. We start with a result of higher integrability which is due to Giaquinta
and Modica (cf. [6]) relying on an idea of Gehring [4]. For this, in the case of v ∈
L1(Br) (0 < r < +∞) we define the mean value

∫−
Br

v dxdt = 1
meas(Br)

∫
Br

v dxdt.

Lemma 2.1. Let conditions (1.2) and (1.4) − (1.7) be fulfilled and let u ∈ W 1,2 ∩
L∞(Ω;RN ) be a weak solution of system (1.1) satisfying the smallness condition (1.9).
Then there exists a real number p > 2 such that ∇u ∈ Lp

loc(Ω;RnN ). In addition, for
any concentric balls BR/2 ⊂ BR ⊂ Ω (0 < R ≤ 1) we have

(∫
−

BR/2

(1 + |∇u|2) p
2 dx

) 2
p

≤ c

∫
−

BR

(1 + |∇u|2) dx (2.1)

where c > 0 is a constant depending on ν0, c0, a, b, ‖u‖L∞(Ω) only.

In the case of controlled growth, higher integrability of weak solutions to system
(1.1) is obtained in [2]. The assertion of Lemma 2.1 can be proved as in [2] after having
established a suitable Caccioppoli type inequality.

Next, we are going to derive some useful properties relating to the modulus of
continuity occuring in (1.3) satisfying the Dini condition (1.3).
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Lemma 2.2. Let ω : [0,∞) → [0,∞) be a non-decreasing function which satisfies
condition (1.3). Then:

(i) For any θ > 0 we have the inequality

∫ 1

0

ω(tθ)
t

dt < +∞. (2.2)

(ii) For any given numbers R, τ ∈ (0, 1) we have the inequality

∞∑
m=0

ω(τmR) ≤ 1
1− τ

∫ R

0

ω(t)
t

dt + ω(R). (2.3)

(iii) There exists a non-increasing function γ : (0, 1] → (0, +∞) with limt→0 γ(t)
= +∞ such that

t 7→ γ(t)ω(t) is non-decreasing on (0, 1] and
∫ 1

0

γ(t)ω(t)
t

dt < +∞. (2.4)

Proof. (i) Assertion (2.2) easily follows by means of the transformation formula of
the Lebesgue integral.

(ii) Let R, τ ∈ (0, 1) be arbitrarily fixed. Taking into account the fact that ω is
non-decreasing one may estimate

∫ R

0

ω(t)
t

dt =
∞∑

m=1

∫ τm−1R

τmR

ω(t)
t

dt

≥
∞∑

m=1

τm−1 − τm

τm−1
ω(τmR)

= (1− τ)
∞∑

m=1

ω(τmR).

Whence (2.3).

(iii) Firstly, assume ω(t0) = 0 for some t0 ∈ (0, 1]. This implies ω(t) = 0 for all
t ∈ [0, t0] and the function

γ(t) =
{

1 if t ∈ (t0, 1]
t0
t if t ∈ (0, 1]

fulfils the conditions we are looking for. Secondly, assume that ω(t) > 0 for all t ∈ (0, 1].
We set I =

∫ 1

0
ω(t)

t dt. Then there exists a sequence 1 = t0 > t1 > . . . > tm > 0 (m ∈
N0) with limm→∞ tm = 0 such that

∫ tm

0

ω(t)
t

dt ≤ 4−mI and ω(tm+1) ≤ 1
2ω(tm) (m ∈ N0). (2.5)
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Next, we set

γ(t) = 2m min
{

2,
ω(tm)
ω(t)

}
(t ∈ (tm+1, tm], m ∈ N0).

Obviously, γ : (0, 1] → (0, +∞) is non-increasing and γ(tm) = 2m for all m ∈ N0. In ad-
dition, one may easily check that γ(t)ω(t) is non-decreasing on each interval (tm+1, tm].
On the other hand, from (2.5) it follows that

γ(tm+1)ω(tm+1) = 2m+1ω(tm+1) ≤ γ(tm)ω(tm) (m ∈ N0).

Therefore, the function γ · ω is non-decreasing on (0, 1]. Finally, with the help of (2.5)
we find

∫ 1

0

γ(t)ω(t)
t

dt =
∞∑

m=0

∫ tm

tm+1

γ(t)ω(t)
t

dt ≤ I

∞∑
m=0

2m+1

4m
= 2I

∞∑
m=0

1
2m

= 4I

which completes the proof of the lemma

Lemma 2.3. Let ω : [0, +∞) → [0,+∞) be a bounded function. Then there exists
some constant c∗ = c∗(n) > 0 such that for each function u ∈ W 1,2(Ω;RN ) the following
estimate holds for every ball BR ⊂ Ω (0 < R ≤ 1) and every q ≥ 1:

(∫
−

BR

[
ω
(
R + |u(x)− uBR |

)]q
dx

) 1
q

≤ ω(2
√

R) + k0R
1
q

(
c∗

∫
−

BR

|∇u|2dx

) 1
q

(2.6)

where k0 = supt≥0 ω(t).

Proof. Let BR ⊂ Ω (0 < R ≤ 1) be arbitrarily fixed. Defining A = {x ∈ BR :
|u(x)− uBR

| ≤ √
R} we estimate

(∫
−

BR

[
ω
(
R + |u(x)− uBR |

)]q
dx

) 1
q

≤ ω(2
√

R) + k0

(
meas(BR\A)

meas(BR)

) 1
q

. (2.7)

With the help of the Poincaré inequality we estimate

meas(BR\A)

meas(BR)
≤ 1

R

∫
−

BR

|u− uBR |2dx ≤ c∗R
∫
−

BR

|∇u|2dx.

Then inserting this inequality into (2.7) gives (2.6)

Next we prove a technical lemma which describes in an abstract manner the standard
iterating process playing an essential role to obtain partial Hölder continuity of weak
solutions u to system (1.1).
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Lemma 2.4. Let (φm), (Mm), (sm) be sequences of non-negative real numbers.
Moreover, assume (sm) to be non-increasing and S =

∑+∞
m=0 sm < +∞. Furthermore,

suppose there are some positive constants ε, τ, λ, M (0 < τ < 1) such that the following
conditions are fulfilled:

(E1) φm+1 ≤
√

τ(φm + sm) (m ∈ N0) where φm + sm ≤ ε and Mm ≤ M .

(E2) |Mm+1 −Mm| ≤ λφm (m ∈ N0).

(E3) φ0 + s0
1−√τ

≤ ε.

(E4) M0 ≤ 1
2M .

(E5) λ
1−√τ

(φ0 + S) ≤ 1
2M .

Then

φm ≤ τ
m
2 φ0 +

m−1∑

k=0

τ
m−k

2 sk and Mm ≤ M (2.8)

for all m ∈ N.

Proof. We will prove assertion (2.8) by induction over m ∈ N. For m = 1 the first
inequality in (2.8) immediately follows after having combined conditions (E3) and (E1),
whereas the second inequality holds by condition (E4). Now, we assume (2.8) to be
fulfilled for j = 1, . . . , m. Since (sm) is non-increasing observing condition (E3), from
(2.8) we obtain

φm + sm ≤ φ0 + 1
1−√τ

s0 ≤ ε.

Now, we are in the position to apply condition (E1) (notice that condition Mm ≤ M is
fulfilled by virtue of (2.8)). Thus

φm+1 ≤
√

τ(φm + sm) ≤ τ
m+1

2 φ0 +
m∑

k=0

τ
m+1−k

2 sk.

Next, using the triangular inequality together with conditions (E2) and (E4) we obtain

Mm+1 ≤
m∑

j=0

|Mj+1 −Mj |+M0 ≤ λ

m∑

j=0

φj + 1
2M.

Finally, applying (2.8) for j = 1, . . . ,m and taking into account condition (E5), from
the latter inequality we deduce by an elementary calculus

Mm+1 ≤ λ
1−√τ

φ0 + λ

m∑

j=1

j−1∑

k=0

τ
j−k
2 sk + 1

2M ≤ λ
1−√τ

(φ0 + S) + 1
2M ≤ M.

Whence, (2.8) for m + 1

The next lemma contains a fundamental estimate for weak solutions of an elliptic
system with constant coefficients which is due to Campanato (cf. [1, 5]).
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Lemma 2.5. Let Aαβ
ij(∗) (α, β = 1, . . . , n; i, j = 1, . . . , N) be constants satisfying

the condition
ν0|η|2 ≤ Aαβ

ij(∗)η
i
αηj

β ≤ c0|η|2 (η ∈ RnN ). (2.9)

Then there exists a constant A = A(ν0, c0, n) > 0 such that for every weak solution
u ∈ W 1,2(B1;RN ) of the system

Dα

(
Aαβ

ij(∗)Dβuj
)

= 0 in B1 (i = 1, . . . , N) (2.10)

and every τ ∈ (0, 1) we have
∫

Bτ

|v − vBτ
|2dx ≤ A2τn+2

∫

B1

|u− uB1 |2dx. (2.11)

3. Blow up

The aim of this section is to obtain a fundamental estimate under additional suitable
conditions. Here we shall use the so-called indirect method. For the sake of simplicity,
we are going to introduce the following notions: Let u ∈ W 1,2(Ω;RN ), let x0 ∈ Ω and
0 < R < dist(x0, ∂Ω). We define

Φ(u;x0, R) =

(∫
−

BR(x0)

∣∣∇u− (∇u)BR(x0)

∣∣2dx

) 1
2

M(u;x0, R) =

(∫
−

BR(x0)

(
1 + |∇u|2)dx

) 1
2

+ |uBR(x0)|.

Let ω denote the modulus of continuity of the coefficients aα
i (α = 1, . . . , n; i =

1, . . . , N) satisfying the Dini condition (1.3). Then by Lemma 2.2 there exists a non-
increasing function γ : (0, 1] → (0, +∞) with limt→0 γ(t) = +∞ such that the function

ω0(t) = γ(t)ω(2
√

t) + tσ
(
σ = p−2

4p

)

is non-decreasing on (0, 1] and obeys the condition

∫ 1

0

ω0(t)
t

dt < +∞ (3.1)

where p > 2 refers to the exponent of higher integrability (cf. Lemma 2.1).
With the notion introduced above we have the following

Lemma 3.1. We assume conditions (1.2) − (1.7) to be fulfilled. Let u ∈ W 1,2 ∩
L∞(Ω;RN ) be a weak solution to system (1.1) satisfying the smallness condition (1.9).
Then for each τ ∈ (0, 1

2 ) and M ≥ 0 there exists a constant ε0 = ε0(τ, M) > 0 such that
the inequality

Φ(u; x0, τR) ≤ 2Aτ
(
Φ(u; x0, R) + ω0(R)

)
(3.2)
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is true for each x0 ∈ Ω and each 0 < R < dist(x0, ∂Ω) where

Φ(u; x0, R) ≤ ε0 and M(u; x0, R) ≤ M (3.3)

and A > 0 is the constant appearing in (2.11).

Proof. Let us assume there exist some numbers τ ∈ (0, 1
2 ) and M ≥ 0 such that

the assertion of the lemma is not true. Then there must exist
1) sequences (εm), (Rm) ⊂ R+ such that εm, Rm → 0 as m → +∞
2) a sequence (xm) ⊂ Ω such that for all m ∈ N

Φ(u; xm, Rm) + ω0(Rm) = εm, M(u; xm, Rm) ≤ M (3.4)
Φ(u; xm, τRm) > 2Aτ

(
Φ(u;xm, Rm) + ω0(Rm)

)
. (3.5)

Then we define for almost all y ∈ B1(0)

λm = (∇u)BRm

vm(y) =
u(xm + Rmy)− uBRm

−Rmλm · y
Rmεm

Aαβ
ij(m)(y) =

∫ 1

0

∂aα
i

∂ξj
β

(
xm, uBRm

, tεm∇vm(y) + λm

)
dt





(m ∈ N)

(α, β = 1, . . . , n; i, j = 1, . . . , N). With the help of the transformation formula of the
Lebesgue integral from (3.4) - (3.5) we may verify

( ∫
−

B1

(
1 + |εm∇vm + λm|2

)
dy

) 1
2

≤ M, |λm| ≤ M, |uBRm
| ≤ M (3.6)

Φ(vm; 0, 1) +
ω0(Rm)

εm
= 1 (3.7)

Φ(vm; 0, τ) > 2Aτ
(
Φ(vm; 0, 1) +

ω0(Rm)
εm

)
. (3.8)

Then making use of the mean value theorem, from (1.8) we deduce that vm belongs to
the space W 1,2(B1;RN ) satisfying the integral identity

∫

B1

Aαβ
ij(m)Dβvj

mDαψidy

= 1
εm

∫

B1

{
aα

i

(
xm, uBRm

, εm∇vm + λm

)

− aα
i

(
xm + Rmy, u(xm + Rmy), εm∇vm + λm

)}
Dαψidy

+ Rm

εm

∫

B1

bi

(
xm + Rmy, u(xm + Rmy), εm∇vm + λm

)
ψidy

(3.9)

for all m ∈ N and ψ ∈ C∞c (B1;RN ).
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From the definition of vm we deduce that (vm)B1 = (∇vm)B1 = 0. Then observing
(3.7) after having applied the Poincaré inequality we obtain

‖vm‖W 1,2(B1) ≤ c∗‖∇vm‖L2(B1) = c∗Φ(vm; 0, 1) ≤ c∗. (3.10)

If necessary passing to a subsequence we may assume the following convergence prop-
erties to be fulfilled:

xm → x∗ in Rn, uBRm
→ u∗ in RN , λm → λ∗ in RnN (3.11)

vm → v strongly in L2(B1;RN ) (3.12)

Dαvm → Dαv weakly in L2(B1;RN ) (3.13)
εm(Dαvm)(y) → 0 for a.a. y ∈ B1 (3.14)

Aαβ
ij(m)(y) → Aαβ

ij(∗) for a.a. y ∈ B1 (3.15)

as m → +∞ where

Aαβ
ij(∗) =

∂aα
i

∂ξj
β

(x∗, u∗, λ∗) = const

(α, β = 1, . . . , n; i, j = 1, . . . , N). Indeed, (3.11) follows from the boundedness of
the sequences (xm), (uBRm

), (λm) (cf. (3.6)) whereas (3.12) - (3.13) are obtained by
the compactness of the imbedding W 1,2(B1;RN ) ⊂ L2(B1;RN ) and the reflexivity of
the space L2(B1;RN ). To prove (3.14) we use the fact that the sequence (εmDαvm)
converges to zero with respect to the L2(B1;RN )-norm which shows the existence of a
subsequence (vmj ) such that (3.14) is fulfilled. Finally, (3.15) is a consequence of (3.11)
and (3.14).

Now we are in a position to pass to the limit in (3.9). Let ψ ∈ C∞(B1;RN ) with
supp ψ ⊂ B1 be fixed.

(i) Observing (3.15) we deduce

Aαβ
ij(m)Dαψ → Aαβ

ij(∗)Dαψ in L2(B1;RN ) as m → +∞.

Then taking into account (3.13) we get

∫

B1

Aαβ
ij(m)Dβvj

mDαψidy →
∫

B1

Aαβ
ij(∗)DβvjDαψidy (3.16)

as m → +∞ (α, β = 1, . . . , n; i, j = 1, . . . , N).

(ii) Next we are going to estimate the right-hand side of identity (3.9).
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1. Observing (1.2), by virtue of the Hölder inequality applying Lemma 2.3 we find

|I1(m)| = 1
εm

∣∣∣∣∣
∫

B1

{
aα

i

(
xm, uBRm

, εm∇vm + λm

)

− aα
i

(
xm + Rmy, u(xm + Rmy), εm∇vm + λm

)}
Dαψidy

∣∣∣∣∣

≤ maxB1 |∇ψ|
εm

∫

B1

ω
(
Rm +

∣∣u(xm + Rm)− uBRm

∣∣)(1 + |εm∇vm + λm|
)
dy

≤ 2Mmeas(B1) maxB1 |∇ψ|
εm

(∫
−

B1

[
ω
(
Rm +

∣∣u(xm + Rm)− uBRm

∣∣)
]2

dy

) 1
2

≤ c
εm

{
ω(2

√
Rm) +

√
Rm

}

≤ c
{ 1

γ(Rm)
+ Rσ

m

}

where the constant c > 0 does not depend on m ∈ N.
2. By (1.7) and (3.6) we estimate

|I2(m)| = Rm

εm

∣∣∣∣∣
∫

B1

bi

(
xm + Rmy, u(xm + Rmy), εm∇vm + λm

)
ψidy

∣∣∣∣∣

≤ max
B1

|ψ|
√

Rm

∫

B1

(
a|εm∇vm + λm|2 + b

)
dy

≤ c′
√

Rm

where the constant c′ > 0 does not depend on m ∈ N. Thus I1(m) + I2(m) → 0 as
m → +∞. Now, in (3.9) passing to the limit we conclude that

∫

B1

Aαβ
ij(∗)DβvjDαψidy = 0 (3.17)

for all ψ ∈ C∞c (B1;RN ). In addition, by (1.5) - (1.6) we easily verify

ν0|η|2 ≤ Aαβ
ij(∗)η

i
αηj

β ≤ c0|η|2

for all η ∈ RnN . Therefore from Lemma 2.5 it follows

Φ(v; 0, τ) ≤ AτΦ(v; 0, 1). (3.18)

On the other hand, as it will be shown in the appendix below that we have

lim
m→+∞

Φ(vm; 0, τ) = Φ(v; 0, τ) ≥ 2Aτ. (3.19)

Then taking into account the lower semicontinuity of the norm from (3.8) we estimate

2AτΦ(v; 0, 1) ≤ 2Aτ lim inf
m→+∞

Φ(vm; 0, 1) ≤ lim
m→+∞

Φ(vm; 0, τ) = Φ(v; 0, τ)

what clearly contradicts to (3.18)
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4. Proof of the Theorem

Partial Hölder continuity will be proved by a standart iteration process described in
Lemma 2.4, where condition (E2) will be verified by the following lemma.

Lemma 4.1. For each τ ∈ (0, 1) there exists a constant λ0 = λ0(τ, n) > 0 such
that for any function u ∈ W 1,2(Ω;RN ), for each x0 ∈ Ω and all 0 < R < dist(x0, ∂Ω)
we have the inequality∣∣M(u; x0, τR)−M(u;x0, R)

∣∣ ≤ λ0Φ(u; x0, R). (4.1)

Proof. Let τ ∈ (0, 1) be arbitrarily fixed, let x0 ∈ Ω and let 0 < R < dist(x0, ∂Ω).
We define

F (x, y) =
(
1 + |∇u(x)|2)

1
2

G(x, y) =
(
1 + |∇u(y)|2)

1
2



 for a.a. {x, y} ∈ BτR ×BR.

Obviously, F, G ∈ L2(BτR×BR). Moreover, making use of the triangular inequality we
estimate ∣∣∣∣∣

( ∫
−

BτR

(1 + |∇u(x)|2)dx

) 1
2

−
( ∫
−

BR

(1 + |∇u(y)|2) dy

) 1
2
∣∣∣∣∣

=
[
meas2n(BτR ×BR)

] 1
2

∣∣∣‖F‖L2(BτR×BR) − ‖G‖L2(BτR×BR)

∣∣∣

≤ [
meas2n(BτR ×BR)

] 1
2

( ∫

BR

∫

BR

|∇u(x)−∇u(y)|2dxdy

) 1
2

≤ 2
τn/2

( ∫
−

BR

|∇u− (∇u)BR |2dx

) 1
2

= 2
τn/2 Φ(u; x0, R).

Next, by virtue of the Hölder and Poincaré inequalities we get

|uBτR
− uBR

|
=

∣∣∣
(
u− (∇u)BR

· (x− x0)
)
BτR

− (
u− (∇u)BR

· (y − x0)
)
BR

∣∣∣

≤
(∫
−
∫
−

BτR×BR

∣∣∣u(x)− (∇u)BR
· (x− x0)− u(y) + (∇u)BR

· (y − x0)
∣∣∣
2

dxdy

) 1
2

≤ 2
τn/2

(∫
−

BR

∣∣∣u(x)− uBR
− (∇u)BR

· (x− x0)
∣∣∣
2

dx

) 1
2

≤ 2Rc∗
τn/2

(∫
−

BR

|∇u− (∇u)BR |2dx

) 1
2

≤ 2c∗
τn/2 Φ(u;x0, R).

Thus, assertion (4.1) is obtained after having combined the two inequalities proved
above
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Proof of the Theorem. Firstly, we define the singular set Σ by

Σ =
{

x0 ∈ Ω
∣∣∣ lim inf

R→0
Φ(u; x0, R) > 0 and sup

R>0
M(u; x0, R) = +∞

}
.

It is well known that meas(Σ) = 0 (cf. [9]). Now, let x0 ∈ Ω \ Σ be arbitrarily chosen.
Then we set

M = 2 sup
R>0

M(u;x0, R) + 1.

Next, we choose τ ∈ (0, 1
2 ) such that

2A
√

τ ≤ 1. (4.2)

In addition, there exists 0 < R0 < min{dist(x0, ∂Ω), 1} such that

λ0
1−√τ

(
Φ(u; x0, R0) + 1

1−τ

∫ R0

0

ω0(t)
t

dy + ω0(R0)
)

< 1
2M

Φ(u; x0, R0) + 1√
τ
ω0(R0) < ε0





. (4.3)

By the absolute continuity of the Lebesgue integral there exists a number r ∈ (
0, dist(x0,

∂Ω)−R0

)
such that, for every y ∈ Br(x0),

M(u; y, R0) ≤ 1
2M

λ0
1−√τ

(
Φ(u; y, R0) + 1

1−τ

∫ R0

0

ω0(t)
t

dy + ω0(R0)
)
≤ 1

2M

Φ(u; y,R0) + 1
1−√τ

ω0(R0) ≤ ε0





. (4.4)

Let y ∈ Br(x0) be arbitrarily fixed. Then for each m ∈ N we define

φm = φm(y) = φ(u; y, τmR0)

Mm = Mm(y) = M(u; y, τmR0)

sm = sm(y) = ω0(τmR0).

Now we may verify that for the sequences (φm), (Mm), (sm) conditions (E1) - (E5)
of Lemma 2.4 are fulfilled. Indeed, condition (E1) may be verified by Lemma 3.1.
Condition (E2) is obtained from (4.1) (cf. Lemma 4.1). Conditions (E3) - (E5) are
finally obtained by (4.4) having used Lemma 2.2. Therefore we are in a position to
apply the technical Lemma 2.4 and receive

φm(y) ≤ τ
m
2 φ0 +

m−1∑

k=0

τ
m−k

2 sk (m ∈ N). (4.5)

Finally, using a standard argument (see, for example, in [5]) we get∫

Bρ(y)

|∇u− (∇u)Bρ(y)|2dx ≤ C0

(
ρ

R0

)n (
y ∈ Br(x0), ρ ∈ (0, R0]

)
(4.6)

where the constant C0 > 0 does not depend on ρ. From (4.6) we deduce together
with Campanato’s theorem (cf. [1]) u

∣∣
Br(x0)

∈ C0,µ(Br(x0);RN ) for all µ ∈ (0, 1). In
particular, from the proof above it is readily seen that Ω0 = Ω \ Σ is an open set with
meas(Ω \ Ω0) = 0 and u

∣∣
Ω0
∈ C0,µ(Ω0;RN ) for all µ ∈ (0, 1) what concludes the proof

of the theorem
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5. Appendix: Proof of (3.19)

By ζ ∈ C∞(Rn) we denote a cut-off function such that ζ ≡ 0 on Rn \ B1/2 and ζ ≡ 1
on Bτ . Then we set

ψi(y) =
(
vi

m(y)− vi(y)
)
ζ2(y) for a.a. y ∈ B1 (i = 1, . . . , N)

which is an admissible test function for both identities (3.9) and (3.17). After having
inserted ψ into (3.9) and (3.17), by combining these two identities we evaluate

∫

B1

Aαβ
ij(m)(Dβvj

m −Dβvj)Dαψidy

=
∫

B1

{
Aαβ

ij(?) −Aαβ
ij(m)

}
DβvjDαψidy

+ 1
εm

∫

B1

{
aα

i

(
xm, uBRm

, εm∇vm + λm

)

− aα
i

(
xm + Rmy, u(xm + Rmy), εm∇vm + λm

)}
Dαψidy

+ Rm

εm

∫

B1

bi

(
xm + Rmy, u(xm + Rmy), εm∇vm + λm

)
ψidy.

Applying the product and chain rule and observing condition (1.5) we find

ν0

∫

B1

|∇vm −∇v|2ζ2dy

≤ −2
∫

B1

Aαβ
ij(m)(Dβvj

m −Dβvj)Dβvj(vi
m − vi)(Dαζ)ζ dy

+
∫

B1

{
Aαβ

ij(∗) −Aαβ
ij(m)

}
Dβvj(Dαvi

m −Dαvi)ζ2dy

+ 2
∫

B1

{
Aαβ

ij(∗) −Aαβ
ij(m)

}
Dβvj(vi

m − vi)(Dαζ)ζ dy

+ 1
εm

∫

B1

{
aα

i

(
xm, uBRm

, εm∇vm + λm

)

− aα
i

(
xm + Rmy, u(xm + Rmy), εm∇vm + λm

)}
(Dαvi

m −Dαvi)ζ2dy

+ 1
εm

∫

B1

{
aα

i

(
xm, uBRm

, εm∇vm + λm

)

− aα
i

(
xm + Rmy, u(xm + Rmy), εm∇vm + λm

)}
(vi

m − vi)(Dαζ)ζ dy

+ Rm

εm

∫

B1

bi

(
xm + Rmy, u(xm + Rmy), εm∇vm + λm

)
(vi

m − vi)ζ2dy

= I1 + I2 + I3 + I4 + I5 + I6. (5.1)

(i) Observing (1.5) and taking into consideration that v ∈ C1(B1/2;RN ), with the
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help of Young’s inequality we have

I1 + I2 + I3 ≤ 2δ

∫

B1

|∇vm −∇v|2ζ2dy

+ c

{ ∫

B1

|vm − v|2dy +
∫

B1

|Am −A∗|2dy

}

where Am and A∗ denote the matrices {Aαβ
ij(m)} and {Aαβ

ij(∗)}, respectively, δ = 1
6

(
ν0 −

2a‖u‖L∞(Ω)

)
and the constant c > 0 does not depend on m ∈ N.

(ii) Once more using Young’s inequality, observing (1.2) and applying Lemmas 2.1
and 2.3 we deduce

I4 ≤ δ

∫

B1

|∇vm −∇v|2ζ2dy

+ c
ε2

m

∫
−

BRm

[
ω
(
Rm + |u− uBRm

|)]2(1 + |∇u|2)ζ2dx

≤ δ

∫

B1

|∇vm −∇v|2ζ2dy

+ c
ε2

m

(∫
−

BRm

[
ω
(
Rm + |u− uBRm

|)]2p/(p−2)
dx

) p−2
p

×
∫
−

BRm

(1 + |∇u|2) dx

≤ δ

∫

B1

|∇vm −∇v|2ζ2dy + cM2

ε2
m

{
[ω(2

√
Rm)]2 + R2σ

m M
2(p−2)

p

}

≤ δ

∫

B1

|∇vm −∇v|2ζ2dy + cM4

[
1

γ(Rm)
+ Rσ

m

]2

where the constant c > 0 does not depend on m ∈ N.
(iii) Analogously as above we estimate

I5 ≤ c

∫

B1

|vm − v|2dy + cM
3−2

p

[
1

γ(Rm)
+ Rσ

m

]2

.

where the constant c > 0 does not depend on m ∈ N.
(iv) In order to estimate the integral I6 we make use of the two estimates

|εm∇vm + λm|2
≤ ε2

m|∇vm −∇v|2 + εm|∇vm −∇v| |εm∇v + λm|+ |εm∇v + λm|2
(5.2)

and

ess sup
B1

|vm| ≤
2‖u‖L∞(Ω)

εmRm
+

λm

εm
(5.3)
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which are verified by an elementary calculus. Then by condition (1.7) we get

I6 ≤ aRm

εm

∫

B1

|εm∇vm + λm|2|vm|ζ2dy

+ aRm

εm

∫

B1

|εm∇vm + λm|2|v|ζ2dy

+ bRm

εm

∫

B1

|vm + v|2dy

= I ′6 + I ′′6 + I ′′′6 .

To estimate the integral I ′6 we make use of (5.2) - (5.3). Hence

I ′6 ≤ aεmRm

∫

B1

|∇vm −∇v|2|vm|ζ2dy

+ aRm

∫

B1

|∇vm −∇v|2|εm∇v + λm| |vm|ζ2dy

+ aRm

εm

∫

B1

|εm∇v + λm|2|vm|ζ2dy

≤ 2a‖u‖L∞(Ω)

∫

B1

|∇vm −∇v|2ζ2dy + c
√

Rm.

With the same manner, having the estimate I ′′6 + I ′′′6 ≤ c
√

Rm we finally obtain

I6 ≤ 2a‖u‖L∞(Ω)

∫

B1

|∇vm −∇v|2ζ2dy + c
√

Rm

where the constant c > 0 does not depend on m ∈ N. Then inserting the estimates of
I1, . . . , I6 into (5.1) it follows that

1
2 (ν0 − 2a‖u‖L∞(Ω))

∫

Bτ

|∇vm −∇v|2dy

≤ c

(∫

B1

|vm − v|2dy +
∫

B1

|A∗ −Am|2dy +
[

1
γ(Rm)

+ Rσ
m

]2
) (5.4)

where the constant c > 0 does not depend on m ∈ N. Finally, together with (3.12)
and (3.15) we conclude that the right-hand side of (5.4) tends to zero as m →∞, what
proves the required convergence property

Note added in proof. After the present paper has been accepted for print the
author became familiar with the work F. Duzaar and A. Gastel: Nonlinear elliptic
systems with Dini continuous coefficients. In this work the authors prove by an entirely
different method the C1 partial regularity of weak solutions to nonlinear elliptic systems.



330 J. Wolf

References
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