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On the Asymptotic Behaviour of the Integral
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bourhood of ¢ = 0 for 0 < @ < 1. Our main result yields an exact estimate of the remainder

term in the corresponding Tauberian theorem. In particular, we prove that
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Abstract. We study the behaviour of the exponential sums -, in a small neigh-
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as t — 0. These asymptotic relations provide optimal uniform rates of convergence in limit
theorems for partial sums of independent random variables with common distribution function
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1. Introduction and main results

Let X be a random variable taking positive integer values according to the distribution

P(X =n) = m (n € N). For any real number a € (0,2), the non-lattice distribu-
tion function F,(z) =P(X& <z) =1— W (z > 0) of the 1-th power of X belongs
to the normal domain of attraction of the a-stable distribution function G, which is
defined by its Fourier-Stieltjes transform

Galt) = exp{ ~ 3101~ Zsgn(t)log )} fora=1 7Y

— 00

/00 G () — { exp { — Aat|*(1 — isgn(¢) ’ian )L for a #1
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with scale parameter

['(1—-a)cos™ for0<a<l
Aa =
L 2__{)‘) sin "(O‘;l) for 1 < a<2,

where

I'(s) = /000 5 e dy (s > 0).

For further details and the background of limit theorems for sums of random variables
with stable limit law we refer to the monographs Christoph and Wolf [2], Ibragimov and
Linnik [8] or Zolotarev [12]. In other words, if X7, X, ... are independent copies of X
then there is a centering sequence A, («) > 0 such that

sup —0 (n — o0) (1.2)

1
zeR na«

1 1
p(Xf + o+ X — Ag(a)

< x) — Gu(z)

where we may choose

Ay (o) =

nlogn fora=1

{O for0<ax<1
nEXs forl<a<?2.

Esseen’s basic estimate of the L*>°-distance of two distribution functions in terms of
their Fourier-Stieltjes transforms (see, e.g., [8: Chapter 1] or (3.1) below) reveals that
rates of convergence in (1.2) are governed by the nearness of the functions @a and ﬁa
defined by

~ o > 1 et
Fat — ztwdFa — 1tn o
0= [ ear. @ > T

in some small neighbourhood of ¢ = 0. More precisely, we need the exact asymptotic
behaviour of the difference log G, (t) —log F,(t) as t — 0 (see also de Haan and Peng [3]).
Using the Taylor expansion of the log-function, we may replace log F, (t) (see Section 3
for details) by

6itw

— f— _— p— ]R .
Fa(ﬂ 1= Zt/ e (1 Fa(:C)) dzx Zt/ —[ ] dx (a >0,t € )

Further, taking into account the well-known integral

oo 1 N
/ Mm%y = [t|*7(1 — a)(sin ™ 4 sgn(t) cos E) = —log G, (1)
0 2 2 1t
for 0 < o < 1 (a similar formula holds for 1 < o < 2) we see that the rates of convergence
in (1.2) are determined by behaviour of the Fourier integral

Aolt) = it /0 Tet( Lo L Yar—10sGat) - (B -1 (13)

x®  [zo] +
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(0 <a<1)ast— 0 (analogously for 1 < a < 2).

The Tauberian theorem for Fourier integrals (see Bingham et al. [1: p. 209)]) tells us
that A, (t) = o(|t|*) as t — 0 for 0 < @ < 1. From this point of view, the main purpose
of this paper is to find best possible bounds of the remainder term in the mentioned
Tauberian theorem. This problem seems to be unsolved so far and it is indeed by no
means trivial, in particular for 0 < a < % Note that A‘;‘—t(t) expresses the error made
by the approximation of the exponential sum F,(t) — 1 by the Fourier transform of the
smooth function x~%. Several methods have been devised for estimating exponential
sums in lattice point and analytic number theory to treat related question, among them
the powerful van der Corput method (see Kratzel [9], Montgomery [11] or Drmota and
Tichy [4]). Theorem 1 states bounds of A,(t) which are certainly unimprovable for
;11 < a< %, whereas, for 0 < a < i, there is no evidence for the optimality of these

bounds which mainly depend on the growth of certain finite exponential sums.
Theorem 1. For (0 < a < % we have
O(|t|™=2=) for0<a< i
~ «
Fo(t) — 14 [t[°T(1 — a) exp {—isgn(t) %} = O(t|tlog ) fora=1
O(|t|*) fori<a<i
ast — 0.
The corresponding stable limit theorem based on Theorem 1 is the following

Theorem 2. For (< a < % we have uniformly in xr € R

L i O(n_lzga) for0<a< i

Xo 4+ X 4
P( —— g:v)—Ga(x) =4 0"y fora=1

e O(%) for % <a< %

as n — Q.

It should be mentioned that both Theorems 1 and 2 play an important role in
proving rates of convergence of power sums of partial quotients of continued fraction
expansions (see Heinrich [6, 7] and Lévy [10] for historical background).

The paper is organized as follows: Section 2 presents the estimation method which
enables us to prove Theorem 1, and Section 3 contains the proof of Theorem 2. In
Section 4 we round off the topic by considering the case % < a < 1 which requires
comparatively elementary techniques. The remaining case 1 < o < 2 is omitted because
its treatment follows the classical line using pseudo-moments and difference moments

(see [2] and references therein).

Throughout, let ¢1(-),ca(+),... denote positive constants which may be depend on
parameters indicated in parenthesis.



382 L. Heinrich

2. Proof of Theorem 1

Throughout we use the notations ¢(z) = [#]—z+3 and f = min{1, 23—} for 0 < o < 3.
At the beginning we get rid of those parts of A ( ) which can be easily estimated.

Lemma 1. For 0 < a <1 and 0 < |t| <1 we have

et o
Ay(t) — it/ e'te v(a?) dz

< e (a)t*(+0),
2
1/t T

Proof. Put

/[t " 1 1
I(t) =it ”(———)d t < 1).
W=it| = e e 0<l <)

1/t e [z9]

Since I,(—t) = I,(t) and A,(—t) = A,(t), it suffices to consider positive t-values
0 <t <1. We first show that

A4 (1) ( — 2a) te+8), (2.1)
(t

For this end we split up the difference A, (t) — I, (t) as follows:

1/t e 0 it 00 it
Au(t) — In(t) = it/ g Y +5 zt/ C _do - it/ A
0 o ([z9] +1) 1/¢1+8 T e [29] +1

= 1) + 1P (1) - 190,

Obviously, since |(z)| < 3,

1/¢ 2«
|Ié1)(t)|§t/ d_$: t
0 $2a 1 -2«

and integration by parts yields

itT ith

e B e _ /T pite < 1 >
[To‘] +1 [t_a(l‘f'ﬁ)] +1 1/¢1+8 [l’a] +1

S et 110

In the same way we get
12 (t)] < 2420+

which together with the preceding estimates implies (2.1). By using the identity

11 P(z®) + 3

[zo] +1 2o zo([ze] +1)
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we may rewrite I, (t) for 0 < a < % in the following way:

1/t1+8 ] e 1
IO( (t) — Zt/ eZtm M dx
1/t ze(lze] +1)

it /1/t1+6 et
= — dx
2 1/t T2«
148 o
i [ e e 2
VA ZESY

1/t1+5 A a
+ it/ el _w(x ) dz.
1/t

dx

Integrating by parts yields

it /1/t1+5 et
— 5 dx
2 1/t X @

B t20¢ / d(ezx )
o 9 1 T2

t20¢ B ) )
— 7 6zt t2aﬁ _ ¢t _/1 et d($_2a)

and, by 0 < ¢ (z) + 1 <1 and 2a(1 4+ 3) > 3, we see that

s for 0 < a< 1
T () + ) s [ dr ) L
it et ——— =" x| < ¢ —- < tlog; fora=3
1/t z?*([z*] +1) T N
3271 for% <a< %

The latter two estimates combined with (2.1) prove Lemma 1 il

The remaining integral term in the difference A, (t) — I, (t) is more resistant and
requires deeper considerations.

Lemma 2. For 0 <a < i and 0 < [t| <1 we have

1/t1+5 , @
z't/ elte _w(x ) dx
1

Jt 2o < ea(a) 1

D) for0<a< i a#ld
1
|t|210g|71‘ fora = 7.

Proof. In view of the periodicity ¢(z) = ¢ (x + 1) for x € R the function 1 admits
the Fourier series representation

6—27mnw 2wine

pe)= 2y EMD _ L e TS gy
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This series converges uniformly in any closed interval not containing any integer, and
its value is 0 for z € Z. Furthermore, the partial sums 22;1 sin(2mne)
bounded which allows term-wise integration leading to

are uniformly

it/l/t el ¥(z?) dx = f: (o () = T (1) 0<t<1) (2.2)

2a o,n
/t X n=1
where
t L/ere dx
+ _ itr+2mi ne® 1
Ja,n(t>_ % " gttrremne .CC% (TLEN,0<O{< 5)

1

Substituting x = y° ’\"t(t) with A, (¢) = (222)7* and a = 1 we may write

: « —2« P xn e
Jo:i:n(t) — iat® (An(t))l g /(t ) ei)\n(t)(z“—z) dz
n (An (1))~ e
at2a /(tﬁ An(t))~¢ d(ei)\n (t)(za:l:z))
N n()\n (t))2a (An ()~ (az“_l + 1)23—11 '

We first determine an upper bound of the series Y Ji, (t). Since the function
f(z) = (az®1 +1)237% is positive and strictly increasing on (0,00) for 1 < a < 3, it
follows, after rewriting the Riemann-Stieltjes integral

B _

1 . “ A=
——d(e’ An(t)(2 +Z)) with

a f(2) B =

An ()™
(7 (t))

by partial integration that

B iAn () (2%+2) 9
/ d(e ) < < 2(>\n(t))3a_1-
A f(z) f(A)
Together with °>° | =5 = %27
o = (An()*! _ 7a
+ (1) < 2at2 (”—<_t3a 1< 1). 2.
D Widalt)] < 20t 5SS < 5 (3<a<y (23)

In the case of @ > 3, the function f is decreasing on (0, z4) and increasing on (z4,00)

a—3

1
—3) =T Again after integrating by parts we get the estimate

where z, = (

B d(ei/\n(t)(z“+z)) 1 1 B 1
/ @ | ST e ) (7]

2 for A<zy <B
<

flz4)

% for A< B < zy.
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Without loss of generality, assume 0 < t < ("’T’?’)a (< 1) implying (A, (¢))™ < z4.

. a(148)—
Since (tP\, ()™ < 24 for n > N(t) := [%} and 37, - ny 25 < W, we find
in analogy to (2.3) that
oo N(t) _
2at2% 1 25(3& 1)
[ Jan ()] < e 2017 T
n; ’ f(z4) ,; (An(t))?n Z (An(8))1—n

2_a
2at°T-= Zn Lo —|—4az“ 142a(14p)

< ==
(2m) 77 f(24) 42
Thus, summarizing (2.3) and (2.4) we see that

Z| )] < c3(@) max{t**, *77a}  (0<a<3,0<t<1). (2.5)

To derive a bound of the second series on the right-hand side of (2.2) we decompose
the sum

D Jpa(t) = at®*(Si(t) + Sa(t) + Ss(t)) (2.6)

and treat each of the sums S;(t) (i = 1,2, 3) separately for sufficiently small ¢ > 0. Let

20 = atTe (< 1) denote the positive root of the equation 1 —az®~! = 0. Further, define
the integers

21(z0 + 1)
Nt = |0

27m(zg — tv)o—1

a
where v = 8 — a(1 + 8) = mi {1—2 : }
ere v =3 —a(l + ) = min & T

We first treat the finite sum

Si(t) = Nf) At 2 / e gt —2)
' n=N1(t)+1 n (An(t)) =« #-a

for 0 <t < (%0)% In view of
(20 +tM)* 1 — (20—t 1 < 2(a — 1)(20 + 7)Y

the number of summands of S;(t) is bounded by

t77((z0 + 7)1 = (20 — t7)271) (a —1)2071
No(t) — Ni(t) <1 <l4+-——
2(t) B <1+ 2m (28 — t?27v)a—1 s b+ T2y
for 0 <t < (%0)% Substituting z = (A, (t)) "%y in each term of S;(t), we see that

N> (t)

OEEDS /

n= N1 (t)+1

_1).
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To find an estimate of the infinite sum

)\nt —2« (tﬂ)\n(t))ia dei}\n(t)(za_z)
S ( )

RSN () (e (0271 =128

we rewrite the Riemann-Stieltjes integral

B
1 4 a
—— d(ePn D =2) with g(2) = (1 — az® )23~
| ) ()= (1 -0z

by partial integration. This yields

/B d(ein (D" =2)

1 1 B 1
A 9(2) : 9(A) - 9(B) +/A ‘%@) ’ (2.7)

By the choice of Nj(t) and N»(t) we have

<zy—1trY formn> Ng(t)
> 2o+t for n < Ny(t).

ey {
The function ¢ is positive on [A, B] and strictly decreasing there for a > 3, whereas

for 2 < a < 3 the function ¢ increases on (0,z_) and decreases on (z_,zp), where
1

z- = (222)" T (< z). In either case the total variation of ﬁz) on [A, B] is less than
ﬁ + g(lB). Hence, by (2.7) and using

1—a(zo —t")* P =a(zy™" — (20 —t")* ") > tVa(a — 1) (20 — t7)* 2

we obtain for n > Ny(t) that

(X0 (0)7" gD =2)) 9 9
f ST S
()0 9(2) g (®)=) * g((tFAa(t)) =)
1 tBa=1)3
<9 )\n t 3a—1 _
<2000 M (§—am + T et

a—2

2a—1t2(2a—1)ﬁ—|—a
a(a — 1)z )

for 0 < ¢ < min {(%)7,(%)2}. Remembering that (\,())*! = f= and 3,y & <
%, we obtain
o 2@—2t2(2a—1)ﬂ+a
Sy (t)] < —(2+ )
520 < Z ™2 ala —1)z§2

n>N2(t)
< gt 1m0 e3P o=l (< (¢4 4 c5)tP7Y)
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for 0 < ¢ <min{(22)7, (%)},

a
To estimate the remaining finite sum

N1 ()

)\nt —2« (tﬁAn(t))_a d eikn(t)(zafz)
- 3 et | < )

n A(t)-o  (azt7h—1)z3-a

n=1

[W] being less than Ny (t) for 0 < ¢ < (%0)%

and chosen so that zo + 7 < (A, (t)) ™ < 2z for n € {No(t) + 1,..., N1(t)}. Again
integrating by parts yields

/2z0 d<ei>\n(t)(za—z))
(

92, (1)) o (az¢7t —1)z57¢

we need a further integer Ny(t) =

2(t8 N, (1))t

a(zo + oyt —1 = (1)

for No(t) <n < Ni(t). Hence, the sum

N1 (t)

—2a 2z eirn (1) (2 —2)

n=No(0)+1 (o) (@207 = 1)

allows the estimate

A0
S5 (1)] < qot?Gatfte N SR < eppPeftel < oD, (2.8)
n:No(t)+1

Assume in addition 0 < ¢ < (M)a implying (A, (t))™® < z_ for any n € N. For
these t-values we may rewrite S3(¢) in the following way:

N (t) 1-2a
. )\n t — *
s =i Y PO (ke )+ K 0) - S30)
n=1
N Qa7 e 0
2 Py (2.9)
= " (e (@207 = 1)z
No(t)

(7 An (1) iAn(t)(2%—2)
Z / dle” ) (2.10)
n=1 2

0 (az?=1 —1)z3—@

where

20 d 229 . a d

20

Once more employing the partial integration formula, we get

2
~ (a(2z0)27t = 1)(220)° ¢

/<tﬂAn<t>>a d(en (B =2))
2

- (aze=1 —1)z3-@
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for 1 <n < Ny(t) and, by applying (2.7) with B = z_,

2)‘71 t 3a—1
/z d(eiM (O =2)) Pelll for0<a<
— — S 0,737.r
Oney=e (1= a2z 132;1_1 for % <a< %

whence it follows after a short calculation that the series (2.9) and (2.10) are bounded
o2
by cg max {ﬁm , ta}.
We now turn to estimate the integrals K (t) and K, (t). For this purpose, we

apply the method of stationary phase (see Erdélyi [5] or Krétzel [9: pp. 204 — 206]) to
K, (t). The function h(z) = 2* — 2z possesses the unique stationary point z = 2o, that
is h/(z9) = 0. We introduce the new variable of integration u = u(z) := y/h(z) — h(z0)
which is positive and strictly increasing for zy < z < 2zy. Using the inverse function
z = z(u) := h~Y(u® + h(zp)), we obtain

. uo .
Kctn(t) _ 6z/\n(ii)h(zo)/ ez/\n(t)u2 (Z(U))a_3zl(u) du
0

where ug = 1/h(229) — h(z0). Further, define the twice continuously differentiable func-
tion

on [0, up]. The mean-value theorem gives

@' (u) = (2(u)* 72" (u) = ¢'(0) + up”(I(u))  for some I(u) € (0,u)
with ¢/(0) = 25 32/(0) and 2/(0) = \/2/h”(20). The latter is a consequence of the rule
of L’Hospital applied to the function 2z’(u) = h,(h_l(,fgfonuQ)). Therefore,

a—3 ixn (t)h(z u “
V2207 3eiAn(h(z0) o eiAn(®u® gy eikn(t)h(zo)/ ’ e“n(t)Ungo”(ﬁ(u))du

V1 (20) 0 0

a=3_idn(H)h(20) pugin(t) iv idn(t)h(z0) [uo ,
eEEyvo G S | e
20" (20) An(t) Jo Vv 22 () Jo

Since the function ¢ (u) has a bounded third derivative on [0, ug], we see that the integral
0 o (9(u)) d(e* M) is bounded in ¢ € (0,1] and n € N. This fact and the estimate
1

0
ug)\n (t) eifu [e%e) eiv
dv — / dv
/O \/6 0 \/5 )\n (t)

which is seen from the second mean-value theorem, combined with fooo % dv = \/me'%
(see Section 1) and (2.11) yield

Kq(t) =

(2.11)

< ¢

zngﬁeiAn(t)h(zo)—Fig

20" (z0) An ()

1
Sclo)\—(t)-

‘ng_,n(t) -




Asymptotic Behaviour of an Integral 389

In quite the same manner we find the estimate
Koot — 2873 /m et (O(z0) i N
; 20" (z0) A (t) WD)

Finally, on combining the preceding two estimates, (2.8) and the above-obtained bounds
of (2.9) and (2.10) we arrive at

< ci1

S3(t) —

R~ {taw—n for 0 < a
12

a—2 n(An(t))29 2 max{t®, t**71} for 1 <«

1
A
ala — 1)z % n=1 <3
The crucial step in proving Lemma 2 is the evaluation of the finite exponential sum

Ni(t) eidn (1) (26 —20)
a(t):=

= (1) T
(ta ) 30 Ni(:t) { ( ) 2NN\ T 1420
=(— exp < i(zy — 2o (—a> }n_ 3(1-a)
2w = P 0 t
Using the well-known facts that
aly]
o <1l4logN
N”:1 (0<s<1,N€eN)
S
—=n 8 S
we find the estimates
t2B=1) for0<a < i
Sa(t)] < ciz(a) S log g fora=; (2.12)

a(da—1) 1 1
t20- for y <a <3

so that, somewhat crude for i <a< %,
—1 1 1
t(6=1) for 0 <a<3,a# 7
log% for o = L.

15(0)] < cna(a) { 4

Finally, inserting the obtained bounds of Si(t), Sa(t) and Ss(t) into the right-hand

side of (2.6) and on combining this with (2.5) and (2.2) we complete the proof of Lemma
21

Remark 1. The asymptotic expansions of the Airy integral % ffooo exp{i(%—3 +
zx)} dx for large positive values of z (see [5]) can be used to study the behaviour of
Jlin(t) (or Kfn(t)) when ), (t) becomes large.

37 3>

Remark 2. Estimates (2.12) for 0 < a < 1 could not be improved even by applying
van der Corput’s method (i.e. transforming X (t) in a corresponding Fourier integral
with appropriately optimized remainder term) (see [4: Chapter 2|, [9: Chapter 2| or
[11: Chapter 3]|). On the other hand, it is an open question whether there exists an
approximation of ¥, (t) from below having the order of the left-hand side of (2.12).
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3. Proof of Theorem 2

The proof of Theorem 2 is based on Esseen’s basic inequality (see, e.g., Ibragimov and
Linnik [8: Theorem 1.5.2]) which, for any sequence Z,, with a-stable limit distribution
G, (z) takes the form

EeitZn — Gy (t) 24 )
dt + W—Tsqu (x) (3.1)

1 /7
sup |[P(Z, < a) — Gq(z)| < —/
z€R ™ J_T

for any T' > 0. In our situation we take Z,, = n"w (Xlé +-- -+Xné) and T = poné with
suitably chosen pg > 0. Theorem 1 implies log Fl, (t (t) — (ﬁa(t) —1) = O(|t|**) as t — 0.
Together with the obvious relation nlog Gq (=) = log Ga (t), Theorem 1 reveals that
there exists some sufficiently small py > 0 such that, for |t| < poné,

| log Ee'tZn —log @a(t)‘ =n

kgﬁ;(ig) log G (na>‘<._4ﬂa (3.2)

and .
(%)m f0r0<a<i
| log Ee"*#" — log éa(t)‘ < c15(@) % log % for a = i (3-3)
17

1 1
fOI'1<Oé<§.

n

WtZ,

Using the elementary inequality |e* — 1| < |z|el*| with 2z = log Ee — log @a(t) com-

bined with (3.2) and |G, (t)| = exp{—A,|t|*} we obtain the estimate

Eﬂa—édﬂ
t

<) Tenl® o [ Aoyl oy <),

i

where R, ,(t) denotes the terms on the right-hand side of (3.3) (after the curled bracket).
In view of (1) this last inequality and sup,cpr G, (x) < oo (see [2]) prove Theorem 2 i

4. The case ; < a <1

As mentioned in Section 1, the estimation of A, () for + < o < 1 becomes considerably

simpler because the Fourier integral “( ) is absolutely integrable. In the case of a = %

and a = 1 we establish a first order asymptotic expansion involving logarithmic terms
which entails optimal rates of convergence in Theorem 4.

Theorem 3. For < a <1 we have

P fora =}
i tho xa [mo‘ )d$+0(!t|20‘) for % <a<l1
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ast — 0.

Proof. Assume that % < a < 1. Using the inequalities

. 1 1
e — 1| < min{2, [tz|} and o [0 +1

‘ < min{z~* z72*}

we see that the integral [;° (27 — ([#*] + 1)™!) dz exists and, moreover, that

oo 1 1 1/]¢| ()
/ (e —1) (— — >dac < |t|/ 172 4 + 2/ 2% dx
0 > [zo]+1 0 1

/1l
1 2
t2a—1
(2(1—04) - 2a—1>| |

for any ¢ € R. But this proves the desired estimate.

The case a = % is a little more involved. By splitting the integral on the left-hand

side of (4.1) and integrating by parts, we get
1 0o
~ 1 1
+/ ¢ — e )da
‘ (/ /> Vi Wal+
1 eit

1
g/o (%—der %/1: d(\/;)

<5.

_|_

1 / < d(e'®)
it Jije [Va]+1
It is easily checked that

IV 1 1
/ eztm (_ o —)dx
1 v [Va]+1
1/1/t2 eite p +/1/t2 eite w(\/_)d /1/1&2 eitm(w(ﬁ) + %)2 ;
= = x x)dr — T
1 1 T 1

2 T

and, for 0 <t <1,

1/752 itz 1/t iz 1 1 iz 1 1/t iz
/ ¢ dx:/ e—dleog——i—/ ¢ d:1;+/  de
1 x " x t ¢ x 1 x

where the latter two integrals are bounded. It remains to show the boundedness of

1/t% itz 1/t itx?
[ Sewman=2 [Ty an

x 1 x

This is seen after partial integration and using the fact that 0 < flxqﬂ(z) dz < % for
x > 1. This completes the proof of Theorem 3 I
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For @« = 1, both the real and imaginary part of ) (t) can be expressed by the
well-known trigonometric sums

=S ) T () L and o) =3 P o (26 1)

2
k=1 k=1

which converge for t € (—2m,27) \ {0}. A short calculation shows that

oo

=0 sin(kt)
_kzzl kk+1 Zzlk(kﬂ)
= (1 —cost+isint)(C(t) +iS(t))

(~1)(S() (1) + = C(t) + O()
= log G1(t) — g log |t| + O(t?)

as t — 0, where the last two lines follows from (1.1) and by using the Taylor expansions
of sinz, cosx and log(1 4 z). Together with

() 1 - S(Ri(t) ~1)° +0()

ﬁj>

log F (t) =
2 1 1

—1 log — (i 1 2

1(t) + = 5 108 m <z7r sgn(t) — log W) + O(t%)

Il
)

we arrive at

2

~ ~ t? 1 1
log F (t) = log G1(t) + log i <1 —imsgn(t) + log — ) +O(t?) (4.2)

t]
ast — 0.

Estimates (4.1) and (4.2) enables us to derive the following counterpart of Theorem

Theorem 4. For % < a <1 we have uniformly in x € R

n «

P (Xla foed W Al) x) o)

as n — oo, where

—nlogn for a = %
Ap(@) =S —n [;° (5 — [ma] S)dx for 3 <a<1
nlogn for a=1.

Proof. We apply Esseen’s inequality (3.1) to the sequence

QIH

Zy =0 % (X7 4+ X — An(a)



Asymptotic Behaviour of an Integral 393

with 7' = pyn=. By an obvious consequence of (1.1), (1.3) and Theorem 3,
log ﬁa(t) - (F\a(t) —1) = O(|t]*®) asn — oo, for 1 <a<1

whence it follows that (4.1) remains valid if the left-hand side is replaced by log G (t)—
log F (t) for 3 < a < 1. This fact and relations (4.2) and log Gy (t) = nlog G (L) —
itlogn lead to the estimate

| log Be™Zr —log G (t)| = [log Ga(t) — nlog Fa <i> + A0

T I
ne na
1t y5e L 1
— log ] for a = 3
tZa
< c16() Hn for%<oz<1
|t

= (log = > fora=1
n It

for [t| <T = plné. Here p; > 0 is chosen so that, in addition,
s
2
where A\; = 5. Finally, together with |@a(t)| < exp{—Aa[t|]*} (see (1.1) for 1 <a <1)
we complete the proof of Theorem 4 by using the same arguments as at the end of
Section 3 I

|log EeZn — log Gu(t)] < Aa (I<a<i)

To conclude with, we formulate a Tauberian theorem including remainder term for
the trigonometric series

which seems to be of interest for its own.

Corollary. For any integer p > 2 we have
slog 7 +0(1)  forp=2

1 1 ¢ _% _

Tp(t) = |t|5_1r<1 — —) (Sini +ZSgn(t) COS l) + O(| |_l) fOT‘p 3
pIN 20/ ) ot~ Flog ) forp=4

O(|t|~72) forp>5

ast — 0.

Proof. By the very definition of the integer part [-]| we may write
(n+1)P—1

e eitn o0 1
itk
Do =) > e
n=0 [np] +1 n=0 n+1 k=npP
B 1 o (eit(n—i—l)p _ eitnp)
it — 1 — n+1
_ Fl/p(t) —1

et —1
for t ¢ {2rk : k € Z}. Using the Taylor expansion e’ — 1 = it + O(t?) as t — 0 and the
estimates of F}/,(t) — 1 for p > 3 from Theorem 1 and for p = 2 from Theorem 3, we
obtain the asymptotic terms as asserted in the Corollary il
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Remark 3. In order to get the asymptotic behaviour of the trigonometric series

T,(t) = 32, €i*"n "7 we need only to replace O-terms by (|t| “) for any integer
p > 2. This follows immediately by applying the Euler-Maclaurin sum formula (see,
e.g., [9]).
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