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Nonlinear Diffusion Equations
on
Bounded Fractal Domains

Jiaxin Hu

Abstract. We investigate nonlinear diffusion equations 2% = Au + f(u) with initial data and

zero boundary conditions on bounded fractal domains. We show that these equations possess
global solutions for suitable f and small initial data by employing the iteration scheme and
the maximum principle that we establish on the bounded fractals under consideration. The
Sobolev-type inequality is the starting point of this work, which holds true on a large class of
bounded fractal domains and gives rise to an eigenfunction expansion of the heat kernel.
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1. Introduction

We consider the nonlinear diffusion equation

% —Au+tflu)  (t>0,z€V\Vp) (1.1)

with given initial data and zero boundary conditions

Ul—o = ug(x zreV
|t=0 = uo(x) ( ) (1.2)
uly, = 0 (t>0)
where V is a self-similar (compact) fractal domain in RY (N > 1) with boundary V;
and A is a “Laplacian” defined on V in an appropriate way. The function f : R — R
is assumed to be locally Lipschitz continuous. We suppose that the initial data ug lie
in L?(V) and satisfy the compatibility condition wug|y, = 0.
The boundary Vp of a self-similar fractal V in RY is defined as follows. Let D > 2
be an integer and {1;}2, the system of contractive similitudes:

i) =iy = iz =yl (2, €RY)
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where 0 < a; <1 (i =1,2,...,D). Then there exists a unique non-empty compact set
V in RN such that V = U2 ,9;(V) (see, for example, [5]). The boundary Vo of V is
deﬁ]r;ed by Vo = UP,_ ey (Vi N V) where Vi = (V) for 1 < i < D (see [22: p.
309]).

A major difficulty in studying equation (1.1) on bounded or unbounded fractal
domains is how to define the Laplacian A. Recall that the linear equation (1.1) with
f = 0 was investigated in [15 - 17] on certain bounded fractals from the analytic point of
view where the Laplacian is defined directly, and in [1, 2, 8] on more general (bounded or
unbounded) fractals from the probabilistic point of view where the Laplacian is viewed
as the infinitesimal generator of a strongly continuous semigroup. See also [4, 7, 10, 18].
Equation (1.1) with f(u) = u? (p > 1) was considered on unbounded fractal domains
in [6], where it is proved that non-negative global solutions with non-negative initial
data exist if p > 1+ d% and the initial data are sufficiently small, whilst solutions blow

up, that is become unbounded in a finite time, if p < 1 + d%, where d, is the spectral
dimension of the fractal domain under consideration. See also [21].

In this paper we work with equation (1.1) on bounded fractal domains, which is
significantly different from the case of unbounded fractals. We assume that there exists
a Hilbert space of functions on the fractal domain V', denoted by Hg (V), that satisfies a
Sobolev-type inequality (see (2.1) below). This is the starting point of this work. Note
that Hg (V) belongs to the domain of the Dirichlet form W (see [19]). The eigenvalue
problem (see (2.2) below) on the space Ha (V) has therefore a sequence of eigenfunctions
with corresponding positive eigenvalues. Then there exists a heat kernel k : (0, 00) X
V xV — [0, 00) which may be expressed in terms of eigenfunctions and eigenvalues (see
(2.6) below). Several properties of the heat kernel are derived, which imply a strongly
continuous contraction semigroup on L?(V) = L*(V;du), where u is the normalized
s-Hausdorff measure on V with s the Hausdorff dimension of V', and p(O) > 0 for
all open sets O C V. Such a measure p exists for a self-similar set satisfying the
open set condition (e.g., post-critically finite self-similar fractals; see [5, 16, 17]). The
Laplacian A in equation (1.1) may also be interpreted as the infinitesimal generator of
this semigroup associated with k (see Section 2).

Recently, a Sobolev-type inequality has been obtained in [14] on post-critically finite
self-similar fractals having regular harmonic structures and satisfying the separation
condition, including the well-known Sierpinski gasket and Vicsek snowflake in RY (N >
2). Consequently, such a Hilbert space Ha(V) and heat kernel k exist (see the detail
in [7, 18] for the case of the Sierpinski gasket). Whether or not a regular harmonic
structure exists for a general post-critically finite self-similar fractal is still an active
topic.

For such Laplacians, we obtain a maximum principle analogous to the classical result
[10, 23] for smooth domains (see Section 3). In Section 4, we use an iteration scheme
(see, for example, [26]) and the maximum principle to establish the existence of global
solutions to problem (1.1) - (1.2) for suitable f and small initial data w.
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2. Preliminaries and heat kernels
Let V be a self-similar fractal in RN (N > 1) and Vj its boundary. Define the space
Co(V)={f: fis continuous on V and f|y, =0}

with the usual supremum norm. Let Hg(V) be a Hilbert space in Co(V) with norm
| - || and inner product (-,-). Throughout this paper we suppose that H} (V) is dense in
Co(V) and

u(z) —u(y)l < colr —y[*[lull  (z,yeV) (2.1)

for all w € H(V), where ¢y > 0 and « € (0, 1] are constants. This inequality is termed
Morrey-Sobolev imbedding inequality in [23].

There is a class of fractals V' when such a Hilbert space exists in a natural way. For
example, let V be the Sierpinski gasket in RY (N > 2) with boundary V; defined as the
N + 1 corner points in V, that is Vo = {po, p1,...,pn} for points p; in RY (0 <i < N)
with the property that [p;—p;| =1 (¢ # j) and V is the closure of V, = U2, V,, under the
Euclidean metric, where V,, = UY (9;(Vi,—1) (n > 1) with ¢;(z) = 1(z+p;) (0 <i < N).
There exists a Hilbert space Ha(V) which is dense in Co(V), and (2.1) holds with
co=2N+3and a = 102g1§7 where ||u||?* = W (u,u) for v € H}(V) with the Dirichlet
form W defined by

[e—y|=2""

for all u,v € H3(V) (see [18] for N = 2 and [7] for N > 2). More general cases are
treated in [14, 23].

Given the Hilbert space Hg (V) and (2.1), we may solve the eigenvalue problem

Au = —)\u }
) (2.2)

U|V0 = 0

We say that a non-zero function ¢ € H} (V) satisfies this problem if there is a non-
negative value A such that (¢,v) = X [i, (z)v(x) du(z) for all v € Hy(V), where (-, -)
is the inner product of the Hilbert space H} (V) and pu is the normalized s-Hausdorff
measure on V with s the Hausdorff dimension of V. Such a function ¢ is termed
eigenfunction of problem (2.2) with eigenvalue A. Using (2.1) and the standard method
20, 27], we have that problem (2.2) has a sequence of solutions ¢, (n > 1) in H}(V)
with eigenvalues \,, and that the ,, satisfy ||¢,|2 = 1 and form a complete orthogonal
basis of H}(V), that is

(Pn,v) = An /V in(@)0(2) dp(z) (v e Hy(V)) (2.3)

(pivy) = /V il@)pi (@) dp(z) =0 (i # 7). (2.4)
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Moreover, the sequence of eigenvalues A, satisfies 0 < A,, T 0o as n — oo (see [7] for the
Sierpinski gasket in RY (N > 2)). Next, we suppose that Weyl’s theorem holds, that is
aAF <p(A) < A F (2.5)

for all A sufficiently large, where c1,co > 0, p(A) is the number of the eigenvalues
(with multiplicity) not greater than A and d; is the spectral dimension of V. This was

addressed in [11] for the Sierpinski gasket in RY (N > 2) with d, = 2%, in [17]

for post-critically finite fractals and in [24] for variational fractals.
Define

k(t,x,y) = Zexp “Aab)on(@)on(y) (>0 z,y€V) (2.6)

(see, for example, [10]). Then k has the properties of a heat kernel on V', in particular
the semigroup property.

Proposition 2.1.

(1) The series in (2.6) is uniformly convergent for all x,y € V and allt > n > 0,
and so k(t,z,y) is well-defined for all x,y € V and all t > 0.

(ii) For allz,y € V and t,s > 0, k(t + s,z,y) fv (t,z,2)k(s, z,y) du(z).
Proof. Taking y € V; in (2.1) and using (2.3), we have that for some ¢ > 0

1 1
sup lon ()] < cllonl| = cAd[|@nll2 = cAa. (2.7)
e

From (2.5), we see that
bln% <\, < bgn% (n>1) (2.8)
for some by,by > 0. Thus fort >n >0

sup | exp(—Ant)on(2)en(y)| < bonds exp(—binnis)
z,yeVv

and so

Z exp(—Ant)on(2)en(y)

is uniformly convergent on [n,o0) for all z,y € V since > -, nis exp(—bmn%) is
convergent, proving statement (i).
Let n > 0. From (2.4) we see that for t,s >n >0and z,y € V

/Vk(t,:c,z)k(s,z,y)du(z)

)

/Vexp(—knt)son(w)son@) (Z exp(—AmS)sOm(Z)som(w) dp(z)

n=1 m=1

exp(=An(t + 8))¢n(2)n y)llonl3

M

S
Il
-

k(t+s,2,y)
since |[¢nll2 =1 (n > 1), proving statement (ii) il
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Define the family of mappings {T}}¢~0 on L?(V) by

T,f () = /V k(o) f@) duly) (e V) (2.9)

for f € L?*(V). Clearly, each T} is linear and symmetric, and satisfies the semigroup
property T;Ty = Ty4s (t,s > 0) by virtue of Proposition 2.1/(ii). Moreover, we have

Proposition 2.2. Each T; (t > 0) is a contraction on L*(V), that is

1T fll2 < W fll (f € L*(V)). (2.10)

Moreover,

lm TS~ flo =0 (f € L(V)) (2.11)

Proof. Note that Hi(V) is dense in L?*(V) since H}(V) is dense in Co(V), and
(V

so by (2.3) we see that {¢,},>1 is also a complete orthonormal basis of L2 ). Let
f € L*(V). By Parseval’s relation, ||f|[3 = Y07 az, where a, = [, f(y)en(y) du(y).

Therefore, by (2.9), (2.6) and (2.4), it follows that for ¢ > 0

o0

ITef113 =D an exp(—20at) < > a2 = || 13
n=1

giving (2.10). Further, for f = >"°7 | anpn, € L2(V),
ITef = £I3 =" a2 (exp(=Mt) 1) =0 (¢ 10) (2.12)

n=1

since Y~ aZ(exp(—A,t) — 1)? is uniformly convergent on ¢ > 0, giving statement
(2.11) 1

By Proposition 2.2 we see that {T;}¢~¢ is a strongly continuous contraction semi-
group on L?(V). Thus we can define the infinitesimal generator A of it by

Af = 1,% N Tnf - f) (2.13)
where the limit is taken in the L?-norm. Let
D(A) = {f € L(V) : limh™ ' (Tif — f) exists in LQ(V)}. (2.14)

Then D(A) is dense in L2(V) (see [28]).
Let A be given by (2.13). Then

Ap, () = =A\pen(z) pointwise in V\Vj (n>1) (2.15)
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where {p,} is the sequence of eigenfunctions in (2.2). From (2.9), (2.6) it is easily seen
that T} is self-adjoint, that is for f,g € L?(V)

[ Tt @) dnta) = [ Tig(a) (@) duta)
1% Vv

and so

/V Af(@)g(a) du(e) = lim b~ /V (T3f - £)g() du(a)

~ limh" /V F(2)(Thg — g) dulz)

:/ Ag(z)f(x) du(z).
1%

Therefore, for f,g € L?(V) and Af, Ag € L?(V) we get the Gauss-Green formula
/V Af(x)g(x)du(z) = /V Ag(z)f(x) dp(). (2.16)

Proposition 2.3. Let k be as in (2.6). Then for allz € V, to > 0 and yg € V,
there exists %(to,x,yo) and

ok

E(tOMnyO) :Ak<t07'xay0)' (217)

Proof. Let to > 0. From (2.7) - (2.8) the series

Z An €xp(=Anto)@n () en(yo)

n=1

is uniformly convergent for all z,yo € V. Thus %(to, x,yo) exists and

ok

3¢ (o, 2,50) = — > Anexp(=Anto)@n(@)@n(yo) (2.18)

n=1

forall z € V, tg > 0 and yp € V. On the other hand, we see that for fixed ¢y and g,
using (2.6) and Proposition 2.1/(ii),
lim h_l (Thk(t07 xz, yO) - k(t07 xz, yO)) = 1’%?01 h’_l (k(to + h7 xz, yO) - k(t()a xz, yO))

h10
ok

= E(t()axayO)

giving (2.17) by using (2.13) and the dominated convergence theorem Hi
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Proposition 2.4. Let k be as in (2.6). Then
k(t,z,y) >0
Aﬁ@xwmmwél

Proof. Let f € L*(V). We write f(z) =Y 7, anpn(z). Then

(t>0,2eV). (2.19)

oo

/f YT () dp(a Zexp i) < 3 at = 111

whence

0< [ F@Ts@ dn@) < IAIF (0> 0.5 € V). (2.20)
We claim that, for all f € L?(V) with f > 0,
T,f(x)>0  (t>0). (2.21)

To see this, suppose that this is false. Then there exist xo € V and t5 > 0 such that
T, f(xzo) < 0. By the continuity of T} f, we see that there is a neighborhood O of z
in V such that T}, f(z) < 0 for x € O. Since 1(O) > 0 we have that, taking f(z) =1
for z € O and f(z) =0 for z € V\O, [, f(2)T;, f(x) dp(x) < 0 which contradicts with
(2.20). From (2.21) and the continuity of the heat kernel k& we immediately get that
k(t,z,y) > 0on (0,00) x V x V.

From (2.20) we have that

/f T,f(x)dp(z) >0 (t > 0)

for all f € L*(V) which yields that, for all f: V — [0,1], T;.f(z) < max,ey f(z) < 1
forallt >0 and x € V. We take f =1 on V to give (2.19) i

3. The maximum principle
We state the maximum principle on the fractal V. See [13] in the framework of Bauer
harmonic spaces.

Proposition 3.1. Let T' > 0. Suppose that v(t,-) € D(A) is continuous on [0, T
and satisfies

Av—av—2Y <0 (t >0,z € V\V)
V|t=0 = vo(z) >0 (xeV) (3.1)
=0 (t=0)

where a > 0 and D(A) is as in (2.14). Then

v(t,z) >0 ((t,z) € (0, T] x V). (3.2)
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Proof. Suppose (tg,z9) € (0,7] x V is such that v(tg,z9) < 0. Since v(t,x) is
continuous on [0, 7] x V and vo(z) > 0, there must exist (¢1,21) € (0,7] x V such that v
reaches its negative minimum at (¢1,x7). Note that %(tl, x1) <0, and Av(ty,z1) >0
since using (2.19)

Tho(ty,x1) — v(ty, z1) > v(t1, x1) (/V k(h,z1,y) du(y) — 1) > 0.

Therefore,

0 < Av(ty,zq1) — %(tl,xl) < av(t1,z1) < 0.

But this is a contradiction, proving the statement H

Corollary 3.2. Let T > 0. Suppose that w(t,-) € D(A) is continuous on [0,T] and
satisfies

Aw—aw—%—sz (t >0,z € V\W)
Wli=g = wo(z) <0 (xeV) (3.3)
w[vo =0 (tZO)

where a > 0 and D(A) is as in (2.14). Then

w(t,z) <0 ((t,z) € (0, T] x V). (3.4)

Proof. Let v(t,z) = —w(t,x). Then the statement follows immediately from
Proposition 3.1 I

4. Existence of solutions

We establish the existence of solutions to problem (1.1) - (1.2) for suitable f and small
initial data by using an iteration scheme and the maximum principle. To do this, we
first investigate the linear problem

gu — Ay (t>0,2cV\V)
u|i=o = P(x) (xeV) : (4.1)
ulv, =0 (t=0)

From (2.16), (2.17) and (2.11) we see that this problem has a unique solution

ult, x) = /V k(t, 2, 9)d(y) duly) (4.2)

if € L?(V). The following proposition states the continuity of solutions to problem
(4.1). The results on regular sets were addressed in [3].
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Proposition 4.1. Let u = u(t,x) be the solution of the linear problem (4.1). If the
initial data ¢ € Co(V'), then u is continuous on [0,00) X V.

Proof. Since u is the solution of problem (4.1), we see that

u(t,x) = /Vk(t,m Y)o Zanexp —Mt)pn(z) (t>0,ze€V) (4.3)

where a, = [ ¢n(y)0(y) du(y). It is easily seen that u is continuous in (0, 00) x V since
S0 anexp(—A t)gon( ) is uniformly convergent for all x € V and t > n > 0.

It remains to prove that u is continuous at {0} x V. To see this, we first assume
that ¢ € H} (V). We write ¢(z) = > o7 | anpn(x). From (2.3), |[¢n||* = A, where || - ||
is the norm of Hg (V). Thus

||U(ta ) - ¢<)H2 = i an(exp(_)\nt) i exp )\nt) - 1)2)\n

for all ¢ > 0 which implies lim¢ o [[u(t,-) — ¢(-)|| = 0 since Y7 | a? (exp(—Ant) — 1)2)\n
is uniformly convergent in ¢ > 0 by noting that

Z a2 (exp(—Ant) — 1)2)\n < 42 a’ )\, = 4||¢[? (t>0).
n=1 n=1
Therefore, it follows from (2.1) that for ¢ € H(V)
— (- < el ) — o()| = _
lim [Ju(?, ) = ¢()lloo < elim [lu(t, ) = ¢(-)]| =0 (4.4)
where ¢ > 0. For ¢ € Cy(V), there is a sequence {1),,} in H}(V) such that
[n = ¢lle =0 (n—00) (4.5)

since H}(V) is dense in Co(V). On the other hand, setting
wnlte) = | k(e 0) duly)
we have that for ¢ > 0, using (2.19),
e, = )L = sup | [ .90 () = 90) )| < 1 =

Hence, we see that for ¢ € Cy(V'), using (4.4) and (4.5),

i u(t,) = 6(-) o

< tim [u(t, ) = un(t, Voo + lun(t:) = (oo + [n — Gl

t10

< lim [Hun( ) = V(oo + 2[|Yn — ¢l

t10
= 2||t)n — Pl
— 0

as n — oo giving the continuity of v at {0} x V' I
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Corollary 4.2. Suppose that h = h(t,z) is continuous on [0,00) x V. Let v(t,-) €
D(A) be the solution of the linear diffusion problem

9v 4 qv = Av + h(t,z) (t >0,z € V\Vp)
V|t=0 = vo(x) (xeV)
ol =0 (t > 0)

where a is a constant and D(A) is as in (2.14). Then v is continuous on [0,00) X V if
the initial data vy € Co(V).

Proof. Let w(t,x) = v(t,z)exp(at). Then w satisfies

9w — Aw + exp (at)h(t, z) (t>0,2 € V\W)

wli=o = vo(x) (xeV)
wly, =0 (t=0)
Therefore,
w(t,x) = u(t,x) +/0 dT/V k(t — 7, 2,y) exp(ar)h(r,y) du(y) (4.6)

where wu is the solution of problem (4.1) with the initial data vg. From Proposition 4.1,
u is continuous on [0,00) x V since vy € Cy(V). The second term on the right-hand
side of (4.6) is also continuous on [0,00) x V since h is continuous on [0,00) x V' I

We require the concepts of upper and lower solutions. Let 7' > 0 and I'r = (0, 7] x V.
A function uy : 'y — R is an upper solution of problem (1.1) - (1.2) on I'p if uy(¢,-) €
D(A) for t € (0,T] and satisfies

Auy + f(ur) — G <0 (in I'r)
U1 |i=0 > uo(x) (xeV) ». (4.7)
uily, =0 (t >0)

Analogously, a function v; : 'y — R is a lower solution of problem (1.1) - (1.2) on I'p
if v1(t,-) € D(A) for t € (0,7] and satisfies

Avy + f(v1) — %21 >0 (in T'p)
V1 |t=0 < up(x) (xeV) p. (4.8)
U1|V0 = 0 (t Z O)

As before, A is the generator of the semigroup {7}}:~o associated with the heat kernel
k.

Given upper and lower solutions v, and vy in I'p with v; < uq, we choose My > 0 so
large that My > Ly, where Ly is the Lipschitz constant of f, that is |f(w2) — f(w1)| <
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L¢|lwg — wy] for wy,wy : I'r — R such that minp, v; < w; and we < maxp, uy. Let
z1 : 't — R be continuous and vy < z; < uy. We define 25 by

AZQ — M()ZQ — %if = —(f(Zl) + M()Zl) (11’1 FT)
zo|t=0 = uo(x) (xeV) p. (4.9)
Z2|V0 = O (t Z 0)

From Corollary 4.2, the solution zy of problem (4.9) is continuous on [0,7] x V if
ug € Co(V). Using Propositon 3.1 and (4.7), (4.9) we see that zo < uy in I'p. Similarly,
we have v; < zy by using Corollary 3.2 and (4.8), (4.9).

Let F be a mapping given by zo = Fz;, where 2z is the solution of problem (4.9)
corresponding to z1. Let Q@ = {z: I'r — R|v; < 2z < wu;}. Then F is a mapping from
Q to Q.

Proposition 4.3. F is a monotone mapping in the sense of Collatz, that is
Fu < Fo if u <w (4.10)

for minv; < wu,v < maxu;.

Proof. Let u < v for minv; < u,v < maxwu;. Then

AFu — MoFu — % = —(f(u) + Mou) (in T'p)

Fult=o = uo(z) (zeV)
fu‘vo =0 (t Z 0)
and
AFv — MyFv — ‘95;” = —(f(v) + Moyv) (in I'p)
Foli=o = up(x) (xeV)
f’U|VO =0 (t Z 0)
Therefore, setting w = Fv — Fu,
Aw—Mow—%—"f:—(f(v)—f(u)—i—Mo(v—u)) (in T'p)
w]tzo =0 (ZC S V)
U)|VO = 0 (t Z 0)

Since u < v and My > Ly, we see that f(v)— f(u)+My(v—u) > 0. Thus by Proposition
3.1 we have w > 0, giving the statement ll

We now obtain a solution to problem (1.1) - (1.2) by an iteration procedure.

Lemma 4.4. If ug € Co(V) and there are upper and lower solutions uy and vq
of problem (1.1) — (1.2) satisfying (4.7) and (4.8), respectively, then there is a function
u € L (') satisfying

u(t, z) = /V k(t, 2, y)uoly) du(y) + / ar /V Bt —7oz,y) fu(r,y) du(y)  (4.10)
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with the property that vi < u < wuy i Uy, where T > 0.
Proof. Inductively, we define u,, : I'r — R by
Unt1 = Fup (n>1)

where wu; is the upper solution of problem (1.1) - (1.2). Since F is monotone and
usy < up, we see that

Upt1 = Fp < Flp_1 = Un (n>2),

that is the sequence {u,} is decreasing in n for all (¢,2) € I'r. On the other hand, we
define
Unt1 = Fon (n>1)

where vy is a lower solution of problem (1.1) - (1.2). It follows by Corollary 3.2 that
vy > v1. Thus the sequence {v,,} is increasing in n for all (¢,x) € T'r. Moreover, v, < uy
for all n > 1 since v1 < uq, and v, = Fvp,_1 < Fup_1 = Uy if v,_1 < uy_1. Thus

v < uy, < ug in I'r for n > 1. (4.12)
Therefore, there exists u : I'pr — R with the property v; < u < wq such that
nh_)rr;o Un(t, ) = u(t,z) pointwise in I'p. (4.13)
We have
Un41(t, ) = Fun(t, x)

Zﬂﬁ@%ww@MMw
+ [ ar [ = r) £ o)+ M) = s (7.9) | dto)

giving the statement by letting n — oo and using the dominated convergence theorem H

Proposition 4.5. Let u = u(t,z) be bounded and satisfying (4.11). Suppose that
f € Ci(R) and ug = ug(x) is such that

0
aTtuO exists and is bounded for allt >0 and z € V (4.14)

where Tyug = [, k(t, , y)uo(y) du(y). Then u satisfies equation (1.1) pointwise, where
A is the generator of the semigroup {T; }+>0 associated with the heat kernel k = k(t, z,y).

Proof. Set ug(t,x) = Tyup(x). Since u satisfies (4.11) we have that for 6 > 0
u(t+ 9, x) —u(t,r) = up(t + 9, x) — uo(t, x)

/ dr/ (7,2, 9) f(u(t + 6 — 7,9))du(y)

/lh/ (1.2, 9) f (u(t — 7,y))du(y)

=wug(t+6,z) —up(t,z)
/ dT/ (r,2,y) f (u(t +6 — 7,y))du(y)
+/O dT/Vk(T,a:,y) f(u(t—{—é—T,y))—f(u(t—T,y))]d,u(y).
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Letting

g(t) = 21615 lu(t + 0,x) — u(t, =) (t >0)

we see that, using (2.19) and (4.14),

g(t) < My <5+/Otg(t—7)dr) (t > 0)

since f is Lipschitz and u is bounded, where M; is a constant. Applying Gronwall’s
inequality, it follows that

g(t) < Mydexp(Mt) (t>0) (4.15)

which implies u(t, z) is uniformly Lipschitz on ¢ € (0,T] for all z € V and all T > 0,

and so % exists for almost every ¢t > 0 and all x € V. Thus the second term on the

right-hand side of (4.11) is differentiable with respect to ¢ > 0 and its derivative equals

/Vk(t,x,y)f(uo(y))du(y)Jr/o dT/Vk(T,fC,y)ag(uw(t—T,y)%(t—ﬂy)du(y)

for all z € V and t > 0. It is not hard to verify that Au exists for all £ > 0 and all

x € V since % exists for all t > 0 and all z € V, and

ou

Au(t,x) = 5

(t,x) = f(u(t, z))

forallt >0 and all z € V (see [6]) I

Note that if ug(z) = [;, wo(y)k(0, 2, y0) dpu(y) where § > 0 and wy € L'(V), then ug
satisfies (4.14). Another example when (4.14) holds is that ug = >_._ | anpn € L*(V)

3
with >°07 | |an| A3 < oc.

Theorem 4.6. Suppose that |f(r)| < M\|r| for |r| < b, for some b > 0, and that
ug € Co(V) satisfies |ug(x)| < Mpi(x) in V where A1 is the smallest eigenvalue of (2.2)
with eigenfunction @1 and M so small that max p; < %. Then for any T > 0 there
exists u € L>=((0,T) x V) satisfying (4.11). Moreover, if f € Cy and the initial data ug
satisfies (4.11), then u = u(t,x) satisfies equation (1.1) pointwise for all t > 0 and all
x e V\Vy.

Proof. The proof here is motivated by [9]. Note that the eigenfunction ¢; in (2.2)
can be taken to be non-negative on V. Let uq(t,z) = Myi(x). Then

% — MUy = Aul (t >0,z € V\V())
ullt=0 = M1 (x) (xeV)
ul’Vo =0 (t = O)
It is not hard to verify that u; is an upper solution. Similarly, v1(¢,2) = —Mp;(z) is a

lower solution. The result follows immediately from Lemma 4.4 and Proposition 4.5 B
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For a specific example, let f(r) = r|r[P~ (p > 1). Then problem (1.1) - (1.2) has a
global solution if the initial data are sufficiently small. I mention in passing here that a
partial existence result in Theorem 4.6 might be obtained from the perturbation theory
on Bauer harmonic spaces (see [12, 25]).
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