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Nonlinear Diffusion Equations
on

Bounded Fractal Domains

Jiaxin Hu

Abstract. We investigate nonlinear diffusion equations ∂u
∂t

= ∆u + f(u) with initial data and
zero boundary conditions on bounded fractal domains. We show that these equations possess
global solutions for suitable f and small initial data by employing the iteration scheme and
the maximum principle that we establish on the bounded fractals under consideration. The
Sobolev-type inequality is the starting point of this work, which holds true on a large class of
bounded fractal domains and gives rise to an eigenfunction expansion of the heat kernel.
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1. Introduction

We consider the nonlinear diffusion equation

∂u

∂t
= ∆u + f(u) (t > 0, x ∈ V \V0) (1.1)

with given initial data and zero boundary conditions

u|t=0 = u0(x)

u|V0 = 0

(x ∈ V )

(t ≥ 0)
(1.2)

where V is a self-similar (compact) fractal domain in RN (N ≥ 1) with boundary V0

and ∆ is a “Laplacian” defined on V in an appropriate way. The function f : R → R
is assumed to be locally Lipschitz continuous. We suppose that the initial data u0 lie
in L2(V ) and satisfy the compatibility condition u0|V0 = 0.

The boundary V0 of a self-similar fractal V in RN is defined as follows. Let D ≥ 2
be an integer and {ψi}D

i=1 the system of contractive similitudes:

|ψi(x)− ψi(y)| = αi|x− y| (x, y ∈ RN )
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where 0 < αi < 1 (i = 1, 2, . . . , D). Then there exists a unique non-empty compact set
V in RN such that V = ∪D

i=1ψi(V ) (see, for example, [5]). The boundary V0 of V is
defined by V0 = ∪D

i,j=1 (i6=j)ψ
−1
i (Vi ∩ Vj) where Vi = ψi(V ) for 1 ≤ i ≤ D (see [22: p.

309]).

A major difficulty in studying equation (1.1) on bounded or unbounded fractal
domains is how to define the Laplacian ∆. Recall that the linear equation (1.1) with
f ≡ 0 was investigated in [15 - 17] on certain bounded fractals from the analytic point of
view where the Laplacian is defined directly, and in [1, 2, 8] on more general (bounded or
unbounded) fractals from the probabilistic point of view where the Laplacian is viewed
as the infinitesimal generator of a strongly continuous semigroup. See also [4, 7, 10, 18].
Equation (1.1) with f(u) = up (p > 1) was considered on unbounded fractal domains
in [6], where it is proved that non-negative global solutions with non-negative initial
data exist if p > 1 + 2

ds
and the initial data are sufficiently small, whilst solutions blow

up, that is become unbounded in a finite time, if p ≤ 1 + 2
ds

, where ds is the spectral
dimension of the fractal domain under consideration. See also [21].

In this paper we work with equation (1.1) on bounded fractal domains, which is
significantly different from the case of unbounded fractals. We assume that there exists
a Hilbert space of functions on the fractal domain V , denoted by H1

0 (V ), that satisfies a
Sobolev-type inequality (see (2.1) below). This is the starting point of this work. Note
that H1

0 (V ) belongs to the domain of the Dirichlet form W (see [19]). The eigenvalue
problem (see (2.2) below) on the space H1

0 (V ) has therefore a sequence of eigenfunctions
with corresponding positive eigenvalues. Then there exists a heat kernel k : (0,∞) ×
V ×V → [0,∞) which may be expressed in terms of eigenfunctions and eigenvalues (see
(2.6) below). Several properties of the heat kernel are derived, which imply a strongly
continuous contraction semigroup on L2(V ) = L2(V ; dµ), where µ is the normalized
s-Hausdorff measure on V with s the Hausdorff dimension of V , and µ(O) > 0 for
all open sets O ⊂ V . Such a measure µ exists for a self-similar set satisfying the
open set condition (e.g., post-critically finite self-similar fractals; see [5, 16, 17]). The
Laplacian ∆ in equation (1.1) may also be interpreted as the infinitesimal generator of
this semigroup associated with k (see Section 2).

Recently, a Sobolev-type inequality has been obtained in [14] on post-critically finite
self-similar fractals having regular harmonic structures and satisfying the separation
condition, including the well-known Sierṕınski gasket and Vicsek snowflake in RN (N ≥
2). Consequently, such a Hilbert space H1

0 (V ) and heat kernel k exist (see the detail
in [7, 18] for the case of the Sierṕınski gasket). Whether or not a regular harmonic
structure exists for a general post-critically finite self-similar fractal is still an active
topic.

For such Laplacians, we obtain a maximum principle analogous to the classical result
[10, 23] for smooth domains (see Section 3). In Section 4, we use an iteration scheme
(see, for example, [26]) and the maximum principle to establish the existence of global
solutions to problem (1.1) - (1.2) for suitable f and small initial data u0.
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2. Preliminaries and heat kernels

Let V be a self-similar fractal in RN (N ≥ 1) and V0 its boundary. Define the space

C0(V ) =
{
f : f is continuous on V and f |V0 = 0

}

with the usual supremum norm. Let H1
0 (V ) be a Hilbert space in C0(V ) with norm

‖ · ‖ and inner product (·, ·). Throughout this paper we suppose that H1
0 (V ) is dense in

C0(V ) and
|u(x)− u(y)| ≤ c0|x− y|α‖u‖ (x, y ∈ V ) (2.1)

for all u ∈ H1
0 (V ), where c0 > 0 and α ∈ (0, 1] are constants. This inequality is termed

Morrey-Sobolev imbedding inequality in [23].
There is a class of fractals V when such a Hilbert space exists in a natural way. For

example, let V be the Sierṕınski gasket in RN (N ≥ 2) with boundary V0 defined as the
N + 1 corner points in V , that is V0 = {p0, p1, . . . , pN} for points pi in RN (0 ≤ i ≤ N)
with the property that |pi−pj | = 1 (i 6= j) and V is the closure of V∗ ≡ ∪∞n=1Vn under the
Euclidean metric, where Vn = ∪N

i=0ψi(Vn−1) (n ≥ 1) with ψi(x) = 1
2 (x+pi) (0 ≤ i ≤ N).

There exists a Hilbert space H1
0 (V ) which is dense in C0(V ), and (2.1) holds with

c0 = 2N + 3 and α = log N+2
N

2 log 2 , where ‖u‖2 = W (u, u) for u ∈ H1
0 (V ) with the Dirichlet

form W defined by

W (u, v) = lim
n→∞

(N + 3
N + 1

)n ∑
x,y∈Vn

|x−y|=2−n

(
u(x)− u(y)

)(
v(x)− v(y)

)

for all u, v ∈ H1
0 (V ) (see [18] for N = 2 and [7] for N ≥ 2). More general cases are

treated in [14, 23].
Given the Hilbert space H1

0 (V ) and (2.1), we may solve the eigenvalue problem

∆u = −λu

u|V0 = 0

}
. (2.2)

We say that a non-zero function ψ ∈ H1
0 (V ) satisfies this problem if there is a non-

negative value λ such that (ψ, v) = λ
∫

V
ψ(x)v(x) dµ(x) for all v ∈ H1

0 (V ), where (·, ·)
is the inner product of the Hilbert space H1

0 (V ) and µ is the normalized s-Hausdorff
measure on V with s the Hausdorff dimension of V . Such a function ψ is termed
eigenfunction of problem (2.2) with eigenvalue λ. Using (2.1) and the standard method
[20, 27], we have that problem (2.2) has a sequence of solutions ϕn (n ≥ 1) in H1

0 (V )
with eigenvalues λn, and that the ϕn satisfy ‖ϕn‖2 = 1 and form a complete orthogonal
basis of H1

0 (V ), that is

(ϕn, v) = λn

∫

V

ϕn(x)v(x) dµ(x) (v ∈ H1
0 (V )) (2.3)

(ϕi, ϕj) =
∫

V

ϕi(x)ϕj(x) dµ(x) = 0 (i 6= j). (2.4)
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Moreover, the sequence of eigenvalues λn satisfies 0 < λn ↑ ∞ as n →∞ (see [7] for the
Sierṕınski gasket in RN (N ≥ 2)). Next, we suppose that Weyl’s theorem holds, that is

c1λ
ds
2 ≤ ρ(λ) ≤ c2λ

ds
2 (2.5)

for all λ sufficiently large, where c1, c2 > 0, ρ(λ) is the number of the eigenvalues
(with multiplicity) not greater than λ and ds is the spectral dimension of V . This was
addressed in [11] for the Sierṕınski gasket in RN (N ≥ 2) with ds = 2 log N

log(N+2) , in [17]
for post-critically finite fractals and in [24] for variational fractals.

Define

k(t, x, y) =
∞∑

n=1

exp(−λnt)ϕn(x)ϕn(y) (t > 0; x, y ∈ V ) (2.6)

(see, for example, [10]). Then k has the properties of a heat kernel on V , in particular
the semigroup property.

Proposition 2.1.
(i) The series in (2.6) is uniformly convergent for all x, y ∈ V and all t ≥ η > 0,

and so k(t, x, y) is well-defined for all x, y ∈ V and all t > 0.
(ii) For all x, y ∈ V and t, s > 0, k(t + s, x, y) =

∫
V

k(t, x, z)k(s, z, y) dµ(z).

Proof. Taking y ∈ V0 in (2.1) and using (2.3), we have that for some c > 0

sup
x∈V

|ϕn(x)| ≤ c‖ϕn‖ = cλ
1
2
n‖ϕn‖2 = cλ

1
2
n . (2.7)

From (2.5), we see that

b1n
2

ds ≤ λn ≤ b2n
2

ds (n ≥ 1) (2.8)

for some b1, b2 > 0. Thus for t ≥ η > 0

sup
x,y∈V

∣∣ exp(−λnt)ϕn(x)ϕn(y)
∣∣ ≤ c2b2n

2
ds exp(−b1ηn

2
ds )

and so ∞∑
n=1

exp(−λnt)ϕn(x)ϕn(y)

is uniformly convergent on [η,∞) for all x, y ∈ V since
∑∞

n=1 n
2

ds exp(−b1ηn
2

ds ) is
convergent, proving statement (i).

Let η > 0. From (2.4) we see that for t, s ≥ η > 0 and x, y ∈ V∫

V

k(t, x, z)k(s, z, y) dµ(z)

=
∞∑

n=1

∫

V

exp(−λnt)ϕn(x)ϕn(z)

( ∞∑
m=1

exp(−λms)ϕm(z)ϕm(y)

)
dµ(z)

=
∞∑

n=1

exp(−λn(t + s))ϕn(x)ϕn(y)‖ϕn‖22

= k(t + s, x, y)

since ‖ϕn‖2 = 1 (n ≥ 1), proving statement (ii)
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Define the family of mappings {Tt}t>0 on L2(V ) by

Ttf(x) =
∫

V

k(t, x, y)f(y) dµ(y) (x ∈ V ) (2.9)

for f ∈ L2(V ). Clearly, each Tt is linear and symmetric, and satisfies the semigroup
property TtTs = Tt+s (t, s > 0) by virtue of Proposition 2.1/(ii). Moreover, we have

Proposition 2.2. Each Tt (t > 0) is a contraction on L2(V ), that is

‖Ttf‖2 ≤ ‖f‖2 (f ∈ L2(V )). (2.10)

Moreover,
lim
t↓0

‖Ttf − f‖2 = 0 (f ∈ L2(V )). (2.11)

Proof. Note that H1
0 (V ) is dense in L2(V ) since H1

0 (V ) is dense in C0(V ), and
so by (2.3) we see that {ϕn}n≥1 is also a complete orthonormal basis of L2(V ). Let
f ∈ L2(V ). By Parseval’s relation, ‖f‖22 =

∑∞
n=1 a2

n, where an =
∫

V
f(y)ϕn(y) dµ(y).

Therefore, by (2.9), (2.6) and (2.4), it follows that for t > 0

‖Ttf‖22 =
∞∑

n=1

a2
n exp(−2λnt) ≤

∞∑
n=1

a2
n = ‖f‖22

giving (2.10). Further, for f =
∑∞

n=1 anϕn ∈ L2(V ),

‖Ttf − f‖22 =
∞∑

n=1

a2
n

(
exp(−λnt)− 1

)2 → 0 (t ↓ 0) (2.12)

since
∑∞

n=1 a2
n(exp(−λnt) − 1)2 is uniformly convergent on t ≥ 0, giving statement

(2.11)

By Proposition 2.2 we see that {Tt}t>0 is a strongly continuous contraction semi-
group on L2(V ). Thus we can define the infinitesimal generator ∆ of it by

∆f = lim
h↓0

h−1(Thf − f) (2.13)

where the limit is taken in the L2-norm. Let

D(∆) =
{

f ∈ L2(V ) : lim
h↓0

h−1(Thf − f) exists in L2(V )
}

. (2.14)

Then D(∆) is dense in L2(V ) (see [28]).

Let ∆ be given by (2.13). Then

∆ϕn(x) = −λnϕn(x) pointwise in V \V0 (n ≥ 1) (2.15)
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where {ϕn} is the sequence of eigenfunctions in (2.2). From (2.9), (2.6) it is easily seen
that Tt is self-adjoint, that is for f, g ∈ L2(V )

∫

V

Ttf(x)g(x) dµ(x) =
∫

V

Ttg(x)f(x) dµ(x)

and so ∫

V

∆f(x)g(x) dµ(x) = lim
h↓0

h−1

∫

V

(Thf − f)g(x) dµ(x)

= lim
h↓0

h−1

∫

V

f(x)(Thg − g) dµ(x)

=
∫

V

∆g(x)f(x) dµ(x).

Therefore, for f, g ∈ L2(V ) and ∆f, ∆g ∈ L2(V ) we get the Gauss-Green formula

∫

V

∆f(x)g(x) dµ(x) =
∫

V

∆g(x)f(x) dµ(x). (2.16)

Proposition 2.3. Let k be as in (2.6). Then for all x ∈ V , t0 > 0 and y0 ∈ V ,
there exists ∂k

∂t (t0, x, y0) and

∂k

∂t
(t0, x, y0) = ∆k(t0, x, y0). (2.17)

Proof. Let t0 > 0. From (2.7) - (2.8) the series

∞∑
n=1

λn exp(−λnt0)ϕn(x)ϕn(y0)

is uniformly convergent for all x, y0 ∈ V . Thus ∂k
∂t (t0, x, y0) exists and

∂k

∂t
(t0, x, y0) = −

∞∑
n=1

λn exp(−λnt0)ϕn(x)ϕn(y0) (2.18)

for all x ∈ V , t0 > 0 and y0 ∈ V . On the other hand, we see that for fixed t0 and y0,
using (2.6) and Proposition 2.1/(ii),

lim
h↓0

h−1
(
Thk(t0, x, y0)− k(t0, x, y0)

)
= lim

h↓0
h−1

(
k(t0 + h, x, y0)− k(t0, x, y0)

)

=
∂k

∂t
(t0, x, y0)

giving (2.17) by using (2.13) and the dominated convergence theorem
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Proposition 2.4. Let k be as in (2.6). Then

k(t, x, y) ≥ 0∫

V

k(t, x, y) dµ(y) ≤ 1



 (t > 0, x ∈ V ). (2.19)

Proof. Let f ∈ L2(V ). We write f(x) =
∑∞

n=1 anϕn(x). Then

∫

V

f(x)Ttf(x) dµ(x) =
∞∑

n=1

exp(−λnt)a2
n ≤

∞∑
n=1

a2
n = ‖f‖22

whence
0 ≤

∫

V

f(x)Ttf(x) dµ(x) ≤ ‖f‖22
(
t > 0, f ∈ L2(V )

)
. (2.20)

We claim that, for all f ∈ L2(V ) with f ≥ 0,

Ttf(x) ≥ 0 (t > 0). (2.21)

To see this, suppose that this is false. Then there exist x0 ∈ V and t0 > 0 such that
Tt0f(x0) < 0. By the continuity of Ttf , we see that there is a neighborhood O of x0

in V such that Tt0f(x) < 0 for x ∈ O. Since µ(O) > 0 we have that, taking f(x) = 1
for x ∈ O and f(x) = 0 for x ∈ V \O,

∫
V

f(x)Tt0f(x) dµ(x) < 0 which contradicts with
(2.20). From (2.21) and the continuity of the heat kernel k we immediately get that
k(t, x, y) ≥ 0 on (0,∞)× V × V .

From (2.20) we have that
∫

V

f(x)(f(x)− Ttf(x)) dµ(x) ≥ 0 (t > 0)

for all f ∈ L2(V ) which yields that, for all f : V → [0, 1], Ttf(x) ≤ maxx∈V f(x) ≤ 1
for all t > 0 and x ∈ V . We take f ≡ 1 on V to give (2.19)

3. The maximum principle

We state the maximum principle on the fractal V . See [13] in the framework of Bauer
harmonic spaces.

Proposition 3.1. Let T > 0. Suppose that v(t, ·) ∈ D(∆) is continuous on [0, T ]
and satisfies

∆v − av − ∂v
∂t ≤ 0

v|t=0 = v0(x) ≥ 0

v|V0 = 0

(t > 0, x ∈ V \V0)

(x ∈ V )

(t ≥ 0)





(3.1)

where a > 0 and D(∆) is as in (2.14). Then

v(t, x) ≥ 0
(
(t, x) ∈ (0, T ]× V

)
. (3.2)
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Proof. Suppose (t0, x0) ∈ (0, T ] × V is such that v(t0, x0) < 0. Since v(t, x) is
continuous on [0, T ]×V and v0(x) ≥ 0, there must exist (t1, x1) ∈ (0, T ]×V such that v
reaches its negative minimum at (t1, x1). Note that ∂v

∂t (t1, x1) ≤ 0, and ∆v(t1, x1) ≥ 0
since using (2.19)

Thv(t1, x1)− v(t1, x1) ≥ v(t1, x1)
(∫

V

k(h, x1, y) dµ(y)− 1
)
≥ 0.

Therefore,

0 ≤ ∆v(t1, x1)− ∂v

∂t
(t1, x1) ≤ av(t1, x1) < 0.

But this is a contradiction, proving the statement

Corollary 3.2. Let T > 0. Suppose that w(t, ·) ∈ D(∆) is continuous on [0, T ] and
satisfies

∆w − aw − ∂w
∂t ≥ 0

w|t=0 = w0(x) ≤ 0

w|V0 = 0

(t > 0, x ∈ V \V0)

(x ∈ V )

(t ≥ 0)





(3.3)

where a > 0 and D(∆) is as in (2.14). Then

w(t, x) ≤ 0
(
(t, x) ∈ (0, T ]× V

)
. (3.4)

Proof. Let v(t, x) = −w(t, x). Then the statement follows immediately from
Proposition 3.1

4. Existence of solutions

We establish the existence of solutions to problem (1.1) - (1.2) for suitable f and small
initial data by using an iteration scheme and the maximum principle. To do this, we
first investigate the linear problem

∂u
∂t = ∆u

u|t=0 = φ(x)

u|V0 = 0

(t > 0, x ∈ V \V0)

(x ∈ V )

(t ≥ 0)





. (4.1)

From (2.16), (2.17) and (2.11) we see that this problem has a unique solution

u(t, x) =
∫

V

k(t, x, y)φ(y) dµ(y) (4.2)

if φ ∈ L2(V ). The following proposition states the continuity of solutions to problem
(4.1). The results on regular sets were addressed in [3].
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Proposition 4.1. Let u = u(t, x) be the solution of the linear problem (4.1). If the
initial data φ ∈ C0(V ), then u is continuous on [0,∞)× V .

Proof. Since u is the solution of problem (4.1), we see that

u(t, x) =
∫

V

k(t, x, y)φ(y) dµ(y) =
∞∑

n=1

an exp(−λnt)ϕn(x) (t > 0, x ∈ V ) (4.3)

where an =
∫

v
ϕn(y)φ(y) dµ(y). It is easily seen that u is continuous in (0,∞)×V since∑∞

n=1 an exp(−λnt)ϕn(x) is uniformly convergent for all x ∈ V and t ≥ η > 0.
It remains to prove that u is continuous at {0} × V . To see this, we first assume

that φ ∈ H1
0 (V ). We write φ(x) =

∑∞
n=1 anϕn(x). From (2.3), ‖ϕn‖2 = λn where ‖ · ‖

is the norm of H1
0 (V ). Thus

‖u(t, ·)− φ(·)‖2 =
∥∥∥∥
∞∑

n=1

an

(
exp(−λnt)− 1

)
ϕn(·)

∥∥∥∥
2

=
∞∑

n=1

a2
n

(
exp(−λnt)− 1

)2
λn

for all t > 0 which implies limt↓0 ‖u(t, ·)− φ(·)‖ = 0 since
∑∞

n=1 a2
n

(
exp(−λnt)− 1

)2
λn

is uniformly convergent in t ≥ 0 by noting that
∞∑

n=1

a2
n

(
exp(−λnt)− 1

)2
λn ≤ 4

∞∑
n=1

a2
nλn = 4‖φ‖2 (t ≥ 0).

Therefore, it follows from (2.1) that for φ ∈ H1
0 (V )

lim
t↓0

‖u(t, ·)− φ(·)‖∞ ≤ c lim
t↓0

‖u(t, ·)− φ(·)‖ = 0 (4.4)

where c > 0. For φ ∈ C0(V ), there is a sequence {ψn} in H1
0 (V ) such that

‖ψn − φ‖∞ → 0 (n →∞) (4.5)

since H1
0 (V ) is dense in C0(V ). On the other hand, setting

un(t, x) =
∫

V

k(t, x, y)ψn(y) dµ(y)

we have that for t > 0, using (2.19),
∥∥u(t, ·)− un(t, ·)∥∥∞ = sup

x∈V

∣∣∣∣
∫

V

k(t, x, y)
(
ψn(y)− φ(y)

)
dµ(y)

∣∣∣∣ ≤ ‖ψn − φ‖∞.

Hence, we see that for φ ∈ C0(V ), using (4.4) and (4.5),

lim
t↓0

‖u(t, ·)− φ(·)‖∞

≤ lim
t↓0

[
‖u(t, ·)− un(t, ·)‖∞ + ‖un(t, ·)− ψn(·)‖∞ + ‖ψn − φ‖∞

]

≤ lim
t↓0

[
‖un(t, ·)− ψn(·)‖∞ + 2‖ψn − φ‖∞

]

= 2‖ψn − φ‖∞
→ 0

as n →∞ giving the continuity of u at {0} × V
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Corollary 4.2. Suppose that h = h(t, x) is continuous on [0,∞)× V . Let v(t, ·) ∈
D(∆) be the solution of the linear diffusion problem

∂v
∂t + av = ∆v + h(t, x)

v|t=0 = v0(x)

v|V0 = 0

(t > 0, x ∈ V \V0)

(x ∈ V )

(t ≥ 0)





where a is a constant and D(∆) is as in (2.14). Then v is continuous on [0,∞)× V if
the initial data v0 ∈ C0(V ).

Proof. Let w(t, x) = v(t, x) exp(at). Then w satisfies

∂w
∂t = ∆w + exp (at)h(t, x)

w|t=0 = v0(x)

w|V0 = 0

(t > 0, x ∈ V \V0)

(x ∈ V )

(t ≥ 0)





.

Therefore,

w(t, x) = u(t, x) +
∫ t

0

dτ

∫

V

k(t− τ, x, y) exp(aτ)h(τ, y) dµ(y) (4.6)

where u is the solution of problem (4.1) with the initial data v0. From Proposition 4.1,
u is continuous on [0,∞) × V since v0 ∈ C0(V ). The second term on the right-hand
side of (4.6) is also continuous on [0,∞)× V since h is continuous on [0,∞)× V

We require the concepts of upper and lower solutions. Let T > 0 and ΓT = (0, T ]×V .
A function u1 : ΓT → R is an upper solution of problem (1.1) - (1.2) on ΓT if u1(t, ·) ∈
D(∆) for t ∈ (0, T ] and satisfies

∆u1 + f(u1)− ∂u1
∂t ≤ 0

u1|t=0 ≥ u0(x)

u1|V0 = 0

(in ΓT )

(x ∈ V )

(t ≥ 0)





. (4.7)

Analogously, a function v1 : ΓT → R is a lower solution of problem (1.1) - (1.2) on ΓT

if v1(t, ·) ∈ D(∆) for t ∈ (0, T ] and satisfies

∆v1 + f(v1)− ∂v1
∂t ≥ 0

v1|t=0 ≤ u0(x)

v1|V0 = 0

(in ΓT )

(x ∈ V )

(t ≥ 0)





. (4.8)

As before, ∆ is the generator of the semigroup {Tt}t>0 associated with the heat kernel
k.

Given upper and lower solutions u1 and v1 in ΓT with v1 ≤ u1, we choose M0 > 0 so
large that M0 > Lf , where Lf is the Lipschitz constant of f , that is |f(w2)− f(w1)| ≤
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Lf |w2 − w1| for w1, w2 : ΓT → R such that minΓT
v1 ≤ w1 and w2 ≤ maxΓT

u1. Let
z1 : ΓT → R be continuous and v1 ≤ z1 ≤ u1. We define z2 by

∆z2 −M0z2 − ∂z2
∂t = −(f(z1) + M0z1)

z2|t=0 = u0(x)

z2|V0 = 0

(in ΓT )

(x ∈ V )

(t ≥ 0)





. (4.9)

From Corollary 4.2, the solution z2 of problem (4.9) is continuous on [0, T ] × V if
u0 ∈ C0(V ). Using Propositon 3.1 and (4.7), (4.9) we see that z2 ≤ u1 in ΓT . Similarly,
we have v1 ≤ z2 by using Corollary 3.2 and (4.8), (4.9).

Let F be a mapping given by z2 = Fz1, where z2 is the solution of problem (4.9)
corresponding to z1. Let Ω = {z : ΓT → R| v1 ≤ z ≤ u1}. Then F is a mapping from
Ω to Ω.

Proposition 4.3. F is a monotone mapping in the sense of Collatz, that is

Fu ≤ Fv if u ≤ v (4.10)

for min v1 ≤ u, v ≤ maxu1.

Proof. Let u ≤ v for min v1 ≤ u, v ≤ max u1. Then

∆Fu−M0Fu− ∂Fu
∂t = −(f(u) + M0u)

Fu|t=0 = u0(x)

Fu|V0 = 0

(in ΓT )

(x ∈ V )

(t ≥ 0)





and
∆Fv −M0Fv − ∂Fv

∂t = −(f(v) + M0v)

Fv|t=0 = u0(x)

Fv|V0 = 0

(in ΓT )

(x ∈ V )

(t ≥ 0)





.

Therefore, setting w = Fv −Fu,

∆w −M0w − ∂w
∂t = −(

f(v)− f(u) + M0(v − u)
)

w|t=0 = 0

w|V0 = 0

(in ΓT )

(x ∈ V )

(t ≥ 0)





.

Since u ≤ v and M0 > Lf , we see that f(v)−f(u)+M0(v−u) ≥ 0. Thus by Proposition
3.1 we have w ≥ 0, giving the statement

We now obtain a solution to problem (1.1) - (1.2) by an iteration procedure.

Lemma 4.4. If u0 ∈ C0(V ) and there are upper and lower solutions u1 and v1

of problem (1.1)− (1.2) satisfying (4.7) and (4.8), respectively, then there is a function
u ∈ L∞(ΓT ) satisfying

u(t, x) =
∫

V

k(t, x, y)u0(y) dµ(y) +
∫ t

0

dτ

∫

V

k(t− τ, x, y)f(u(τ, y)) dµ(y) (4.11)
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with the property that v1 ≤ u ≤ u1 in ΓT , where T > 0.

Proof. Inductively, we define un : ΓT → R by

un+1 = Fun (n ≥ 1)

where u1 is the upper solution of problem (1.1) - (1.2). Since F is monotone and
u2 ≤ u1, we see that

un+1 = Fun ≤ Fun−1 = un (n ≥ 2),

that is the sequence {un} is decreasing in n for all (t, x) ∈ ΓT . On the other hand, we
define

vn+1 = Fvn (n ≥ 1)
where v1 is a lower solution of problem (1.1) - (1.2). It follows by Corollary 3.2 that
v2 ≥ v1. Thus the sequence {vn} is increasing in n for all (t, x) ∈ ΓT . Moreover, vn ≤ un

for all n ≥ 1 since v1 ≤ u1, and vn = Fvn−1 ≤ Fun−1 = un if vn−1 ≤ un−1. Thus

v1 ≤ un ≤ u1 in ΓT for n ≥ 1. (4.12)

Therefore, there exists u : ΓT → R with the property v1 ≤ u ≤ u1 such that

lim
n→∞

un(t, x) = u(t, x) pointwise in ΓT . (4.13)

We have
un+1(t, x) = Fun(t, x)

=
∫

V

k(t, x, y)u0(y) dµ(y)

+
∫ t

0

dτ

∫

V

k(t− τ, x, y)
[
f(un(τ, y)) + M0

(
un(τ, y)− un+1(τ, y)

)]
dµ(y)

giving the statement by letting n →∞ and using the dominated convergence theorem

Proposition 4.5. Let u = u(t, x) be bounded and satisfying (4.11). Suppose that
f ∈ C1(R) and u0 = u0(x) is such that

∂

∂t
Ttu0 exists and is bounded for all t > 0 and x ∈ V (4.14)

where Ttu0 =
∫

V
k(t, x, y)u0(y) dµ(y). Then u satisfies equation (1.1) pointwise, where

∆ is the generator of the semigroup {Tt}t>0 associated with the heat kernel k = k(t, x, y).

Proof. Set u0(t, x) = Ttu0(x). Since u satisfies (4.11) we have that for δ > 0

u(t + δ, x)− u(t, x) = u0(t + δ, x)− u0(t, x)

+
∫ t+δ

0

dτ

∫

V

k(τ, x, y)f
(
u(t + δ − τ, y)

)
dµ(y)

−
∫ t

0

dτ

∫

V

k(τ, x, y)f
(
u(t− τ, y)

)
dµ(y)

= u0(t + δ, x)− u0(t, x)

+
∫ t+δ

t

dτ

∫

V

k(τ, x, y)f
(
u(t + δ − τ, y)

)
dµ(y)

+
∫ t

0

dτ

∫

V

k(τ, x, y)
[
f
(
u(t + δ − τ, y)

)− f
(
u(t− τ, y)

)]
dµ(y).
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Letting
g(t) = sup

x∈V
|u(t + δ, x)− u(t, x)| (t > 0)

we see that, using (2.19) and (4.14),

g(t) ≤ M1

(
δ +

∫ t

0

g(t− τ) dτ

)
(t > 0)

since f is Lipschitz and u is bounded, where M1 is a constant. Applying Gronwall’s
inequality, it follows that

g(t) ≤ M1δ exp(M1t) (t > 0) (4.15)

which implies u(t, x) is uniformly Lipschitz on t ∈ (0, T ] for all x ∈ V and all T > 0,
and so ∂u

∂t exists for almost every t > 0 and all x ∈ V . Thus the second term on the
right-hand side of (4.11) is differentiable with respect to t > 0 and its derivative equals

∫

V

k(t, x, y)f(u0(y)) dµ(y) +
∫ t

0

dτ

∫

V

k(τ, x, y)
∂f(u)

∂u
(t− τ, y)

∂u

∂t
(t− τ, y) dµ(y)

for all x ∈ V and t > 0. It is not hard to verify that ∆u exists for all t > 0 and all
x ∈ V since ∂u

∂t exists for all t > 0 and all x ∈ V , and

∆u(t, x) =
∂u

∂t
(t, x)− f(u(t, x))

for all t > 0 and all x ∈ V (see [6])

Note that if u0(x) =
∫

V
w0(y)k(δ, x, y0) dµ(y) where δ > 0 and w0 ∈ L1(V ), then u0

satisfies (4.14). Another example when (4.14) holds is that u0 =
∑∞

n=1 anϕn ∈ L2(V )

with
∑∞

n=1 |an|λ
3
2
n < ∞.

Theorem 4.6. Suppose that |f(r)| ≤ λ1|r| for |r| ≤ b, for some b > 0, and that
u0 ∈ C0(V ) satisfies |u0(x)| ≤ Mϕ1(x) in V where λ1 is the smallest eigenvalue of (2.2)
with eigenfunction ϕ1 and M so small that max ϕ1 ≤ b

M . Then for any T > 0 there
exists u ∈ L∞((0, T )× V ) satisfying (4.11). Moreover, if f ∈ C1 and the initial data u0

satisfies (4.11), then u = u(t, x) satisfies equation (1.1) pointwise for all t > 0 and all
x ∈ V \V0.

Proof. The proof here is motivated by [9]. Note that the eigenfunction ϕ1 in (2.2)
can be taken to be non-negative on V . Let u1(t, x) = Mϕ1(x). Then

∂u1
∂t − λ1u1 = ∆u1

u1|t=0 = Mϕ1(x)

u1|V0 = 0

(t > 0, x ∈ V \V0)

(x ∈ V )

(t ≥ 0)





.

It is not hard to verify that u1 is an upper solution. Similarly, v1(t, x) = −Mϕ1(x) is a
lower solution. The result follows immediately from Lemma 4.4 and Proposition 4.5
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For a specific example, let f(r) = r|r|p−1 (p > 1). Then problem (1.1) - (1.2) has a
global solution if the initial data are sufficiently small. I mention in passing here that a
partial existence result in Theorem 4.6 might be obtained from the perturbation theory
on Bauer harmonic spaces (see [12, 25]).
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25). Basel: Birkhäuser Verlag 1996, pp. 155 – 160.

[24] Posta, G.: Spectral asymptotics for variational fractals. Z. Anal. Anw. 17 (1998), 417 –
430.

[25] Rhouma, N. Bel Hadj, Boukricha, A. and M. Mosbah: Perturbations et espaces har-
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