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On S-Homogenization of an
Optimal Control Problem

with Control and State Constraints

P. Kogut and G. Leugering

Abstract. We study the limiting behavior of an optimal control problem for a linear elliptic
equation subject to control and state constraints. Each constituent of the mathematical de-
scription of such an optimal control problem may depend on a small parameter ε. We study
the limit of this problem when ε → 0 in the framework of variational S-convergence which
generalizes the concept of Γ-convergence. We also introduce the notion of G∗-convergence gen-
eralizing the concept of G-convergence to operators with constraints. We show convergence of
the sequence of optimal control problems and identify its limit. We then apply the theory to
an elliptic problem on a perforated domain.
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1. Introduction

The aim of this paper is to study the homogenization of an optimal control problem
with control and state constraints. Each component of the mathematical model of such
an optimal control problem may depend on a small parameter ε (e.g. each component
may contain rapidly oscillating coefficients).

Let Ω be a bounded open set in Rn. We define the optimal control problem as
follows:

−div (Aε∇y) = bεu + fε in Ω (1.1)

y = 0 on ∂Ω (1.2)

y ∈ Kε, u ∈ Uε (1.3)

Iε(u, y) =
∫

Ω

Cεy
2dx +

∫

Ω

(∇y, Nε∇y)Rndx +
∫

Ω

Dεu
2dx → inf . (1.4)
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The purpose of this paper is to study the limiting behavior of problem (1.2) - (1.4) as
ε → 0.

A similar problem but one without state constraints has been studied by Kesavan
and Saint Jean Paulin [7]. In contrast to the approch in [7], we stay with the optimal
control problem in the original sense and look for its homogenized limit, for which
we establish a solution then. The method of choice, therefore, is the so-called ”direct
approch” which is based on the concept of variational S-convergence [10 - 13, 15]. But
before introducing the formal concept for the homogenization process via S-convergence
we note that the optimal control problem (1.1) - (1.4) can be written in another form

{〈
inf

(u,y)∈Ξε

Iε(u, y)
〉}

ε∈(0,ε0]

where by Ξε we denote the set of all admissible pairs, i.e.

Ξε =





(u, y) ∈ L2(Ω)×H1
0 (Ω)

∣∣∣∣∣∣∣

− div (Aε∇y) = bεu + fε in Ω

y = 0 on ∂Ω

u ∈ Uε, y ∈ Kε





.

Let us remark that we shall differentiate between the notations infx∈A F (x) and
〈infx∈A F (x)〉. In particular, infx∈A F (x) means the infimum of F on the set A. By
〈infx∈A F (x)〉 we mean the constrained minimization problem as an object that is de-
fined by the pair (F ; A).

We may now return to the main question of our paper. Our aim is to study the
limiting behavior of the optimal control problem (1.1) - (1.4) as ε → 0. The homoge-
nization of (1.1) - (1.4) consists in studying the limit properties of the sequence (1.5). As
follows from the concept of variational S-convergence, under some natural assumptions
there exists a so-called absolute variational S-limit of the sequence (1.5) denoted by

〈
inf

(u,y)∈µ−LmΞε

µ-lma(Iε|Ξε)(u, y)
〉

(1.6)

where µ is some topology for the basic space L2(Ω)×H1
0 (Ω), µ-LmΞε is the topological

limit of {Ξε}ε∈(0,ε0] in Kuratowski’s sense [19], µ-lma(Iε|Ξε) : τ -LmΞε → R is the
absolute S-limit of the sequence {Iε : Ξε → R}ε∈(0,ε0].

We emphazise that each of the functionals Iε : Ξε → R has its individual domain.
This is a principal difference between the concept of S-limit and the of theory of Γ-
convergence [4]. Note, however, that under some canonical assumptions S-convergence
reduces to Γ-convergence [14].

Let us briefly describe the main result of this paper. In Section 2 we recall the
principal results of S-convergence and variational S-convergence which will be used in
the sequel.

The topological convergence of the graph restrictions (i.e. restrictions of graphs of
linear continuous operators Aε to some admissible sets) is discussed in Section 3. We
study this problem for a wide class of control and state constraints. We have shown
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that the topological limit of such graph restrictions can be recovered or identified in
terms of the G-limit operator only for the so-called ”convenient” constraints. In order
to explore this more in detail (Section 3) for the sequence of coercive operators we
introduce the concept of G∗-convergence. We prove a G∗-compactness theorem and
obtain the sufficient conditions under which the G∗-limit operator is invertible. It is
interesting to note that, as a rule, the G∗-limit operator A∗ does not coincide with the
G-limit A0 and, moreover, the G∗-limit A∗ can be constructed as the sum of the H-limit
A0 and some additional term (called ”strange term” by Murat).

Further, in Section 4 we give the application of the above mentioned concept to the
homogenization of optimal control problems. We study the existence of the strong S-
homogenized problem, recover its mathematical description and establish its variational
properties. More precisely, let µ be the topology for the ”control-state” space L2(Ω)×
H1

0 (Ω) that equals to the product of the weak topology wL2(Ω) for L2(Ω) and the weak
topology wH1

0 (Ω) for H1
0 (Ω).

In Section 5 we obtain sufficient conditions of identifiability of the limit set µ-LmΞε.
In particular, under some natural assumptions, the representation

µ− LmΞε =





(u, y) ∈ L2(Ω)×H1
0 (Ω)

∣∣∣∣∣∣∣

A∗y = B̂0J
−1
0 u + f̂0

u ∈ wL2(Ω)-LmUε

y ∈ wH1
0 (Ω)-LmKε





will be obtained where A∗ is the G∗-limit of {Aε}ε∈(0,ε0], f0 is the weak limit in H−1(Ω)
of {fε}ε∈(0,ε0], Bε is some linear continuos operator from L2(Ω) into H−1(Ω), and J0 is
some linear invertible operator from L2(Ω) onto L2(Ω).

In Section 6 we consider the problem of identification of the functional

µ-lma(Iε|Ξε) : µ-LmΞε → R.

Under more general assumption than in [7] we show that the representation

µ-lma(Iε|Ξε
) =

∫

Ω

C0y
2dx +

∫

Ω

(∇y, N ]∇y)Rndx + F (u)

holds. Here C0 is a weak-∗ limit in L∞(Ω) of {Cε}ε∈(0,ε0], F is the S-limit of the
sequence of fuctionals {F : Uε → R}ε∈(0,ε0], the matrix N ] ∈ [L∞(Ω)]n

2
is defined by

N ]∇y = w- lim
ε→0

[At
ε∇ψε + N t

ε∇yε]−At
0∇ψ0

where w-lim is the weak limit in [L∞(Ω)]n
2
, {(uε, yε) ∈ Ξε}ε∈(0,ε0] is any sequence

µ-converging to (u, y) ∈ τ -LmΞε, and {ψε}ε∈(0,ε0] is some bounded sequence in H1
0 (Ω).

In Section 7 we describe some variational properties of the homogenized problem.
In particular, the τ -convergence of the sequence of optimal pairs {(u0

ε, y
0
ε)}ε∈(0,ε0] to

a unique solution of S-homogenized problem is a direct consequence of the variational
S-limits.



398 P. Kogut and G. Leugering

In the last section, Section 8, we give the application of our results to the S-
homogenization of an optimal control problem on perforated domain.

In closing this section we would like to note that the concept pusued in this paper
and the results obtained are different form those of Kesavan and Saint Jean Paulin [7 -
9]. Moreover, our results of homogenization of optimal control problems on perforated
domains differ from their results (see Section 8). They differ in the fact that the state
equation for homogenized control object by the method [9] has another form, namely

−div (A0∇y) = u + χ0f in Ω,

whereas the S-homogenization of similar problem gives

−div (A0∇y) = χ−1
0 u + f in Ω.

This discrepancy, in our opinion, can be explained in the fact that we stay with the
optimal control problem in the original sense and look for the homogenized optimal
control problem for which we finally obtain a solution. In contrast to this the approach
in [7 - 9] is concerned with the homogenization of the optimality system with respect to
the parameter ε and, hence, the convergence of the optimal pairs (u0

ε, y
0
ε) was obtained.

It is,however, not obvious from their analysis to which optimal control problem the limit
of optimal pairs (u0, y0) is in fact the optimal pair.

2. Definitions and axiliary results

Let us start with a brief discussion of the formalism of variational S-convergence. Let
(X, τ) be a Banach space endowed with the weak topology τ , and let {F ε : Xε →
R}ε∈(0,ε0] be a family of functionals, where R = R ∪ {+∞} is the half-extended set of
real numbers. Here {Xε ⊆ X}ε∈(0,ε0] is a collection of sets with E = (0, ε0] an index
space and H is a filter on E. Its lower topological limit, also called the limit inferior, is
the set

τ -Li Xε =
⋂

H∈H]

clτ

( ⋃

ε∈H

Xε

)
,

and its upper topological limit, also called the limit superior, is the set

τ -LsXε =
⋂

H∈H
clτ

( ⋃

ε∈H

Xε

)
,

where H] is the family of subsets of E = (0, ε0] that meet all sets H in H. If τ -Li Xε =
τ -LsXε, this set, denoted as τ -LmXε, is the (Painleve-Kuratowski) topological limit of
the collection {Xε ⊆ X}ε∈(0,ε0].

It will be convenient to have at our disposal the following equivalent expressions for
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the lower and upper topological limit of sets:

τ -Li Xε =
{

x
∣∣∣ ∀V ∈ N (x), ∃H ∈ H, ∀ ε ∈ H : Xε ∩ V 6= ∅

}

=
{

x
∣∣∣ ∃H ∈ H, ∃xε ∈ Xε (ε ∈ H) with xε

H−→x
}

τ -Ls Xε =
{

x
∣∣∣ ∀V ∈ N (x), ∃H ∈ H], ∀ ε ∈ H : Xε ∩ V 6= ∅

}

=
{

x
∣∣∣ ∃H ∈ H], ∃xε ∈ Xε (ε ∈ H) with xε

H−→x
}

where N (x) denotes a system of neighborhoods at x. Assume that τ -Li Xε 6= ∅. By
epi(F ε|Xε) denote the set

epi
(
F ε|Xε) =

{
(x, λ) ∈ Xε × R

∣∣ F ε(x) ≤ λ
}
.

Definition 2.1. The S-lower limit τ -li (F ε|Xε) : τ -Ls Xε → R and the S-upper
limit τ -ls (F ε|Xε) : τ -Li Xε → R are defined by

epi
(
τ -li (F ε|Xε)| τ -LsXε

)
= ρ-Ls (epi(F ε|Xε))

epi
(
τ -ls (F ε|Xε)| τ -Li Xε

)
= ρ-Li (epi(F ε|Xε))

where ρ is the product topology of X × R.
If there exist a set A and a functional F : A → R such that

τ -Li Xε = A = τ -LsXε

τ -li (F ε|Xε) = F = τ -ls (F ε|Xε),

then we write
A = τ -LmXε, F = τ -lma(F ε|Xε)

and we say that the sequence {F ε : Xε → R}ε∈(0,ε0] absolutly S-converges to F or that
F is the absolute S-limit of {F ε : Xε → R}ε∈(0,ε0].

The techniques of S-convergence and the basic topological properties of S-limits are
disscussed more detail in [10, 12 - 14]. We state some results from [14] that we will use
below.

Assume that (X, τ) is a separable Banach space and that the sequence of functionals
{F ε : Xε → R}ε∈(0,ε0] is τ -equicoercive, i.e. for every t ∈ R there exists a τ -compact
set Kt ⊆ X such that ⋃

ε∈(0,ε0]

{
x ∈ Xε|F ε(x) ≤ t

} ⊆ Kt

where τ is the σ(X, X∗)-weak topology for X. It is easy to see that {F ε : Xε →
R}ε∈(0,ε0] is τ -equicoercive if and only if there exists a lower τ -semicontinuous and
lower τ -semicompact functional Ψ : X → R such that

F ε(x) ≥ Ψ(x) ∀x ∈ Xε, ∀ ε ∈ (0, ε0].
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Theorem 2.1. Let X be a separable Banach space, {F ε : Xε → R}ε∈(0,ε0] be a τ -
equicoercive sequence of functionals (or the sets {Xε}ε∈(0,ε0] are uniformly bounded, i.e.
supε∈(0,ε0] supx∈Xε

‖x‖X < +∞). Suppose τ -Li Xε 6= ∅. Then {F ε : Xε → R}ε∈(0,ε0]

absolutly S-converges to F : X0 → R if and only if the following conditions hold:

(i) For every x ∈ X0, H ∈ H], and for every sequence {yε}ε∈H τ -converging to x
we have yε ∈ Xε for every ε ∈ H and F (x) ≤ lim infH3ε→0 F ε(yε).

(ii) For every x ∈ X0 and index set H ∈ H there exists a sequence {yε}ε∈H such
that yε

τ−→x, yε ∈ Xε for all ε ∈ H, and F (x) ≥ lim supH3ε→0 F ε(yε).

It is easy to see that each of the functionals F ε : Xε → R can be associated
with some constrained minimization problem 〈infx∈Xε F ε(x)〉, i.e there is a one-to-one
correspondence between the set of such functionals and the elements of the following
sequence {〈

inf
x∈Xε

F ε(x)
〉}

ε∈(0,ε0]

. (2.1)

Definition 2.2 The S-lower and S-upper variational limits of sequence (2.1) are
defined by

〈
inf

x∈τ-LsXε

τ -li (F ε|Xε)(x)
〉

and
〈

inf
x∈τ-LiXε

τ -ls (F ε|Xε)(x)
〉

,

respectively. If for the sequence of functionals {F ε : Xε → R}ε∈(0,ε0] there exists an
absolute S-limit τ -lma(F ε|Xε), then the constrained minimization problem

〈
inf

x∈τ-LmXε

τ -lma(F ε|Xε)(x)
〉

(2.2)

is called the absolute variational S-limit of sequence (2.1).

Note that if all the minimization problems in (2.1) correspond to a single optimal
control problem, then problem (2.2) is called the strong S- homogenized optimal control
problem.

Theorem 2.2. Let X = V ∗, V be a separable Banach space, τ be the σ(V ∗, V )-
topology for X,

{
F ε : Xε → R

}
ε∈(0,ε0]

be an equicoercive sequence of functionals,
τ -Lm Xε 6= ∅. Then the following statements hold:

(i) The sets of solutions of the S-lower and S-upper variational S-limits are non-
empty and σ(V ∗, V )-compact.

(ii) We can extract a subsequence from family (2.1)
{〈infx∈Xε F ε(x)〉 : ε →

θ
}

ε∈H∈H] for which there exists an absolute variational S-limit in the σ(V ∗, V )-topology.

Remark 2.1. A similar result can be proved in the case when X = V is a separable
Banach space (i.e. X may be a non-reflexive space), τ is the σ(V, V ∗)-topology for X,
and the principle of ”compact embedding” holds, i.e. there exists a σ(V, V ∗)-compact
set Xcomp ⊆ X such that Xε ⊆ Xcomp for every ε ∈ (0, ε0].
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Let us denote by

M(F ε; Xε) =
{

x0
ε ∈ Xε

∣∣∣ F ε(x0
ε) = inf

x∈Xε

F ε(x)
}

Mα(F ε; Xε) =
{

xε ∈ Xε

∣∣∣ F ε(xε) ≤ sup
(

inf
x∈Xε

F ε(x) + α,− 1
α

)}

the sets of all minimizers and α-minimizers of the constrained minimization problem
〈infx∈Xε

F ε(x)〉, respectively.

Theorem 2.3. Assume that the sequence
{
F ε : Xε → R

}
ε∈(0,ε0]

absolutly S-

converges to a functional F : τ -LmXε → R, and F 6≡ +∞ on τ -Lm Xε. Then the
following statements hold:

(i) minx∈τ-Lm Xε F (x) = limε→0 infx∈Xε F ε(x)
M(F ; τ -LiXε) = ∩α>0τ -LiMα(F ε;Xε) = ∩α>0τ -LsMα(F ε; Xε).

(ii) Let x0
ε be a minimizer of F ε in Xε. If the sequence {x0

ε ∈ Xε}ε∈(0,ε0] τ -converges
to some element x∗ (or x∗ is a τ -cluster point of this sequence), then x∗ is a minimizer
of F in τ -Lm Xε (i.e. x∗ ∈ M(F ; τ -Lm Xε)), and F (x∗) = limε→0 F ε(x0

ε).

Morever, if the sequence {F ε : Xε → R}ε∈(0,ε0] is τ -equicoercive, then the set of
minimizers M(F ; τ -LmXε) is non-empty and τ -compact.

3. Formalism of G∗-convergence of elliptic operators

Let us denote by wH1
0

the weak topology of H1
0 (Ω), by wL2 the weak topology of L2(Ω),

and by sH−1 the strong topology of H−1(Ω). Let us consider sequences of operators
{Aε}ε∈(0,ε0] and {Bε}ε∈(0,ε0] such that:

(i) 〈Bεu, ϕ〉H1
0 (Ω) =

∫
Ω

bεuϕdx for all ϕ ∈ H1
0 (Ω), i.e. Bε are linear continuous

operators from L2(Ω) to H−1(Ω), for every ε ∈ (0, ε0].
(ii) 〈Aεy, ϕ〉H1

0 (Ω) =
∫
Ω
(∇ϕ,Aε∇y)Rndx for all ϕ ∈ H1

0 (Ω).

(iii) The family of linear operators {Aε ∈ L(H1
0 (Ω),H−1(Ω))}ε∈(0,ε0] is uniformly

coercive and uniformly bounded, i.e. there exist two constants λ0 and λ1 (0 < λ0 ≤ λ1)
satisfying λ0‖y‖2H1

0 (Ω)
≤ 〈Aεy, y〉H1

0 (Ω), ‖Aε‖ ≤ λ1.

As is well known (see [21, 22]), the family of operators

{Aε : H1
0 (Ω) → H−1(Ω)}ε∈(0,ε0]

is compact with respect to G-convergence, i.e. there exists a coercive bounded operator
A0 : H1

0 (Ω) → H−1(Ω) such that

(sH−1 × wH1
0
)-Lmgr (Aε) = gr (A0) (3.1)

〈A0y, ϕ〉H1
0 (Ω) =

∫

Ω

(∇ϕ,A0∇y)Rndx ∀ϕ ∈ H1
0 (Ω) (3.2)
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where gr (A) is defined as the set {(x, y) ∈ H−1(Ω)×H1
0 (Ω)|x = Ay}. Here the matrix

A0 is the so-called H-limit of the sequence {Aε}ε∈(0,ε0]. However, many authors (see,
e.g., [21, 22]) define a sequence of operators {Aε}ε∈(0,ε0] to be G-convergent to A0 if
A−1

ε f → A−1
0 f weakly in H1

0 (Ω) for any f ∈ H−1(Ω). But it is easy to prove that the
last definition of G-convergence is equivalent to that we use in (3.1).

As we study the state equation

Aεy = Bεu + fε in D′(Ω) (3.3)

under the state- and control-constraints

y ∈ Kε,

u ∈ Uε

(3.4)

instead of the graphs gr (Aε) we have to consider their restrictions

gr (Aε)|Qε×Kε := gr (Aε) ∩ [Qε ×Kε] (3.5)

where by Qε we denote the images of the sets Uε in H−1(Ω) under the maps Hε :
L2(Ω) → H−1(Ω), where Hεu = Bεu + fε, i.e.

Qε =
{

g ∈ H−1(Ω)
∣∣∣ g = Bεu + fε ∀u ∈ Uε

}
. (3.6)

Therefore we would like to have sufficient conditions under which the topological limit
of the restricted graphs with respect to the τ = sH−1 × wH1

0
-topology

τ -Lm [gr (Aε)|Qε×Kε ]

can be recovered. However, in the general case, this turns out to be impossible because
by the properties of topological limits in the Kuratowski sense we have the inclusion

τ -Ls (gr (Aε) ∩ [Qε ×Kε]) ⊆ τ -Ls [gr (Aε)] ∩
[
(sH−1)-Ls Qε × (wH1

0
)-Ls Kε

]
.

Therefore, if
(sH−1)-Ls Qε = ∅ (3.7)

or if there is not a single sequence of admissible pairs {(uε, yε) ∈ Uε × Kε} for which
{(Bεuε + fε, yε)} is τ -convergent, we obtain

{
τ -Ls [gr (Aε)|Qε×Kε ]

}
= ∅.

Example 3.1. Let Ω be a bounded open set of Rn. For each ε ∈ (0, ε0] T ε
i (1 ≤ i ≤

n(ε)) there is some closed subset, which is called a ”hole”. The domain Ωε is defined
by removing the holes T ε

i from Ω, that is

Ωε = Ω \ ∪n(ε)
i=1 T ε

i .
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Let Uε be the closure in H−1(Ω) of the set of all functions u ∈ C∞(Ω) with supp u
contained in Ωε such that u > 0 in Ωε. We denote by χε the characteristic function of
the perforated domain Ωε and we shall assume that the following conditions are fulfilled:

(i) Every weak-∗ limit in L∞(Ω) of {χε} is positive a.e. in Ω.
(ii) Bεu + fε = u for every ε ∈ (0, ε0].

In this case (3.7) holds. Indeed, suppose the converse. Then there are a sequence
{uε}ε∈H , where H ∈ H] such that uε ∈ Uε for every ε ∈ H and {uε} converges strongly
in H−1(Ω) to some u∗ ∈ H−1(Ω). This, however, is impossible as, with any element
g ∈ L1(Ω), ∫

Ω

uεg dx =
∫

Ω

uεχεg dx,

and passing to the limit (using the strong convergence of uε to u∗ and the weak-∗
convergence of χεg to χ0g for the term on the right-hand side), we get

∫

Ω

u∗g dx =
∫

Ω

χ0u
∗g dx.

Since g was arbitrarily chosen in L1(Ω), it follows that u∗ = χ0u
∗ in H−1(Ω), which is

not generally true (except when u∗ = 0) if χ0 6≡ 1. Hence (3.7) holds.

Hence, in the general case we are not able to study the convergence of the graph re-
strictions {gr (Aε)|Qε×Kε}ε→0 with respect to the τ -topology. Consequently, one should
then work with a weaker topology on H−1(Ω) ×H1

0 (Ω). To this end we shall consider
the convergence of graph restrictions {gr (Aε)|Qε×Kε}ε∈(0,ε0] with respect to the τ∗ -
topology, which is defined as the product of the weak topology for H−1(Ω) and the
weak topology for H1

0 (Ω).
We introduce the following hypotheses:

(A1) There exist a subset Lε ⊂ H−1(Ω) such that Qε∩Aε(Kε) ⊆ Lε for all ε ∈ (0, ε0]
where Aε(Kε) is the image of the set Kε under the operator Aε.

(A2) For every ε ∈ (0, ε0] there is a real reflexive separable Banach space Yε with
norm ‖ · ‖ε and a continuous linear mapping Pε of Yε into H1

0 (Ω) such that
supε∈(0,ε0] ‖Pε‖ = c0 < ∞.

(A3) For every ε ∈ (0, ε0] there exists a linear mapping R+
ε of Y ∗

ε into Lε ⊂ H−1(Ω)
such that if g ∈ Y ∗

ε , then P ∗ε (R+
ε g) = g for every ε ∈ (0, ε0].

Now we introduce the following concept.

Definition 3.1. We shall call the family of real reflexive separable Banach spaces
{Yε}ε∈(0,ε0] coordinated with the control object (3.3) - (3.4) if hypotheses (A1) - (A3) hold
true and there is a sequence of convex closed subsets {Q̂ε ⊆ H−1(Ω)}ε∈(0,ε0] such that
R+

ε P ∗ε : Q̂ε → Q̃ε where Q̃ε satisfies Q̃ε ∩ Aε(Kε) = Qε ∩ Aε(Kε) for every ε ∈ (0, ε0]
and H−1-Li Q̂ε 6= ∅.

Definition 3.2. For problem (3.3) - (3.4) with a coordinated collection of spaces
{Yε}ε∈(0,ε0] the sets

Gr(Aε) =
{

(f, y) ∈ H−1(Ω)×H1
0 (Ω)

∣∣∣Aεy = R+
ε P ∗ε f

}
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are called prototypes of the operator graphs gr (Aε).

Thus instead of the problem of topological convergence for the graph restrictions
{
gr (Aε)|Qε×Kε

}
ε∈(0,ε0]

in the τ∗-topology we may consider the topological convergence of their graph prototypes
in the τ topology for H−1(Ω)×H1

0 (Ω). This fact leads to the following notation of G∗-
convergence.

Definition 3.3. Let A∗ ∈ L(
H1

0 (Ω); H−1(Ω)
)

be a coercive operator. We say
that the sequence of operators

{Aε ∈ L
(
H1

0 (Ω);H−1(Ω)
)}

ε∈(0,ε0]
G∗-converges to the

operator A∗ (in symbols, Aε
G∗−→A∗) if τ -LmGr(Aε) = gr (A∗).

Remark 3.1. We note that the G∗-limit of the operators Aε is defined in terms
of the τ -topology. Moreover, if we put Yε = H1

0 (Ω), Pεy = y, R+
ε g = g for every

y ∈ H1
0 (Ω), g ∈ H−1(Ω) and ε ∈ (0, ε0], then Q̂ε = Qε and each of the graph prototypes

Gr (Aε) coincides with the corresponding graph gr (Aε). Then Definition 3.3 reduces to
the well known definition of G-convergence.

Proposition 3.1. Suppose that the for the original constrained state equation there
is a coordinated collection of Banach spaces {Yε}ε∈(0,ε0]. Let A∗ ∈ L

(
H1

0 (Ω);H−1(Ω)
)

be a coercive operator,
{Aε ∈ L

(
H1

0 (Ω); H−1(Ω)
)}

ε∈(0,ε0]
be a G∗-compact set of uni-

formly bounded and uniformly coercive operators. Then the sequence {Aε}ε∈(0,ε0] G∗-
converges to A∗ if and only if A−1

ε R+
ε P ∗ε f −→ A−1

∗ f weakly in H1
0 (Ω) for any f ∈

H−1(Ω).

Proof. Assume that Aε
G∗−→A∗. Then, by definition of G∗-convergence,

A−1
ε R+

ε P ∗ε f → A−1
∗ f weakly in H1

0 (Ω)

and the ”only if” part of the statement is proved.
Let us prove the ”if” part. Suppose that A−1

ε R+
ε P ∗ε f → A−1

∗ f weakly in H1
0 (Ω)

for any f ∈ H−1(Ω). By G∗-compactness of the set {Aε}ε∈(0,ε0], there exists an index

set H ∈ H] and a subsequence {Aε}ε∈H such that Aε∈H
G∗−→Â∗, where Â∗ is a linear

bounded coercive operator from H1
0 (Ω) into H−1(Ω). Consequently, for Â∗ there exists

an invertible bounded operator Â−1
∗ . The definition of G∗-convergence implies that

Â−1
∗ f = A−1

∗ f for any f ∈ H−1(Ω). Therefore Â−1
∗ = A−1

∗ and Â∗ = A∗. Thus

Aε(k)
G∗−→A∗.

Theorem 3.1. Let the following assumptions hold:

(i)
{Aε ∈ L

(
H1

0 (Ω),H−1(Ω)
)}

ε∈(0,ε0]
is a sequence of uniformly coercive and uni-

formly bounded operators.
(ii) The collection of Banach spaces {Yε}ε∈(0,ε0] is coordinated with the constrained

state equation (3.3)− (3.4) in the sense of Definition 3.1.

Then there exist an index set H ∈ H], a subsequence {Aε}ε∈H and a coercive linear

operator A∗ of H1
0 (Ω) into H−1(Ω) such that Aε

G∗−→A∗, i.e. τ -LmGr (Aε) = gr (A∗).
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Proof. Since the space H1
0 (Ω) is separable and reflexive, there exists a metric d

such that for any sequence {yε}ε∈(0,ε0] the following conditions are equivalent:

(1) yε → y weakly in H1
0 (Ω)

(2) {yε}ε∈(0,ε0] is bounded and d(yε, y) → 0

(see, e.g., [6]). We denote by µ the topology associated with the metric d on H1
0 (Ω).

This topology has a countable base.
Since the topology sH−1 × µ has a countable base, by Kuratowski’s compactness

theorem [19], there exists a subsequence {Gr (Aε)}ε∈H , with H ∈ H], convergeing to a
set C ⊂ H−1(Ω)×H1

0 (Ω) in the sH−1 × µ-topology.
We proceed to prove C = τ -LmGr (Aε). To this end we show

τ -LsGr (Aε) ⊆ C, (3.8)
C ⊆ τ -LiGr (Aε). (3.9)

Firstly, let us verify (3.8). Suppose (f, y) ∈ τ -LsGr (Aε). Then there exist an index set
H ∈ H] and a sequence {(f̂ε, yε)}ε∈H converging to (f, y) in the topology τ such that
(f̂ε, yε) ∈ Gr (Aε) for every ε ∈ H. Since (1) implies (2), we see that (f̂ε, yε) converges
to (f, y) with respect to the topology sH−1 × µ. Hence, (f, y) ∈ C.

As for (3.9), let (f, y) ∈ C. Then there exists a sequence {(f̂ε, yε)} converging to
(f, y) in the topology sH−1×µ such that (f̂ε, yε) ∈ Gr (Aε) for all ε small enough. Since
{f̂ε} is bounded in H−1(Ω),

yε = A−1
ε R+

ε P ∗ε f̂ε = PεΛ−1
ε P ∗ε f̂ε

is bounded in H1
0 (Ω) as well. Then the equivalence between conditions (1) and (2)

yields weak convergence of {yε} to y. Hence, {(f̂ε, yε)}ε∈(0,ε0] converges to (f, y) in the
τ -topology, which implies (3.9).

Finally, we prove the existence of an invertible linear bounded operator A∗ : H1
0 (Ω)

→ H−1(Ω) with C = gr (A∗). Using Proposition 3.1, we see that there exists a linear
operator C∗ : H−1(Ω) → H1

0 (Ω) such that for all f ∈ H−1(Ω)

yε = A−1
ε R+

ε P ∗ε f −→ C∗f weakly in H1
0 (Ω).

Then by analogy with [17] (see Proposition 1.7) it can be proved that there is a constant
α > 0 such that the inequalities

‖f − g‖2H−1 ≤ α ‖C∗f − C∗g‖2H1
0

(3.10)

〈f − g, C∗f − C∗g〉 ≥ α−1‖C∗f − C∗g‖2H1
0

(3.11)

hold for every f, g ∈ H−1(Ω). Therefore from (3.10) - (3.11) we deduce that for any
f ∈ H−1(Ω)

‖f‖2H−1 ≤ α ‖C∗f‖2H1
0
, (3.12)

〈f, C∗f〉 ≥ α−1‖C∗f‖2H1
0
. (3.13)

Consequently, the operator C∗ is invertible, i.e. we may set A∗ = C−1
∗ . Moreover,

we obtain for the operator A∗ the properties of boundedness and coerciveness taking
arbitrary y ∈ H1

0 (Ω) and substituting f = A∗y into (3.12) - (3.13). The theorem is
proved
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Now we are in the position to state the main result of this section.

Theorem 3.2. Suppose that the following conditions hold true:

(i)
{Aε ∈ L(

H1
0 (Ω), H−1(Ω)

)}
ε∈(0,ε0]

is a sequence of uniformly coercive and
uniformly bounded operators.

(ii) For the constrained state equation (3.3) − (3.4) there exists a coordinated col-
lection of Banach spaces {Yε}ε∈(0,ε0].

(iii) {Kε}ε∈(0,ε0] is a sequence of weakly closed convex subsets of H1
0 (Ω) for which

there exists a non-empty topological limit (wH1
0
)-Lm Kε 6= ∅.

(iv) There are an index set H ∈ H and a τ -converging sequence {(f̂ε, yε) ∈ Q̂ε ×
Kε}ε∈H such that Aεyε = R+

ε P ∗ε f̂ε for every ε ∈ H.

Then there exist a subsequence {ε}ε∈H , where H ∈ H], and a coercive bounded

linear operator A∗ ∈ L
(
H1

0 (Ω),H−1(Ω)
)

such that Aε
G∗−→A∗ and

τ -Lm
[
Gr (Aε)|Q̂ε×Kε

]
= gr (A∗)|(sH−1 )-Lm [Q̂ε]×(w

H1
0
)-Lm [Kε]

. (3.14)

For the proof we need the following result (see [16]).

Lemma 3.1. Let (X, τ) be a locally convex vector space, let {Wε} and {Rε} be
sequences of τ -closed convex subsets of X for which the following conditions hold:

(a) Wε ∩Rε 6= ∅ for every ε ∈ (0, ε0].
(b) There exists topological limits τ -Lm Wε and τ -LmRε.
(3) τ -Li (Wε ∩Rε) 6= ∅.

Then for the sequence of subsets {Wε ∩Rε}ε∈(0,ε0] there exists a topological limit in the
τ -topology such that τ -Lm (Wε ∩Rε) = τ -LmWε ∩ τ -Lm Rε.

Proof of Theorem 3.2. In accordance with Lemma 3.1 we need to verify condi-
tions (a) - (c) for the sets Wε = Gr (Aε) and Rε = Q̂ε ×Kε, where Q̂ε are defined in
Definition 3.1. Condition (a) follows immediately from the uniformly regular property
of the original control object, that is from supposition (iv). Since the sequence of oper-
ators {Aε}ε∈(0,ε0] is compact with respect to G∗-convergence and the strong topology
for H−1(Ω) has a countable base, by the Kuratowski compactness theorem [19] there
exist an index subset H ∈ H], a set ∅ 6= Q ⊆ H−1(Ω), and a coercive bounded operator
A∗ ∈ L(H1

0 (Ω), H−1(Ω)) such that, for ε ∈ H,

τ -LmGr (Aε) = gr (A∗)
τ -Lm [Q̂ε ×Kε] =

[
(sH−1)-Lm Q̂ε × (wH1

0
)-LmKε

]
= Q× (wH1

0
)-Lm Kε.

Therefore condition (b) of Lemma 3.1 holds. Finally, condition (c) is obvious from (iv).
Hence, by Lemma 3.1 we have

τ -Lm
[
Gr (Aε)|Q̂ε×Kε

]
= τ -Lm

(
Gr (Aε) ∩ [Q̂ε ×Kε]

)

= τ -Lm [Gr (Aε)] ∩
[
(sH−1)-Lm Q̂ε × (wH1

0
)-Lm Kε

]
.

This implies (3.14)



S-Homogenization of an Optimal Control Problem 407

Remark 3.2. We stress that as follows from Remark 3.1 the concept of G∗-
convergence may be viewed as a generalization of the well known notion of the operator
G-convergence. However, even though the sequence of uniformly coercive and uniformly
bounded operators

{Aε ∈ L(
H1

0 (Ω),H−1(Ω)
)}

ε∈(0,ε0]
is compact with respect to the

G-convergence, the topological limit of the graph restrictions
{
gr (Aε)|Qε×Kε

}
ε∈(0,ε0]

in the τ -topology may not be recovered in the terms of the G-limit operator. However, if
we asume that for the for control object (3.3) - (3.4) there exists a sequence of admissible
pairs

{
(uε, yε) ∈ Uε ×Kε

}
ε∈(0,ε0]

such that

Kε 3 yε → y∗

Qε 3 gε = Bεuε + fε → g

Aεyε = Bεuε + fε

weakly in

strongly in

for every

H1
0 (Ω)

H−1(Ω)

ε ∈ (0, ε0],

then, indeed, we have {
τ -Li [gr (Aε)|Qε×Kε ]

} 6= ∅.
Therefore, if we put Yε = H1

0 (Ω) and take the operators Pε and R+
ε to be the identities,

by Theorem 3.2 we obtain

Aε
G−→A0, Q̂ε = Qε ∀ ε ∈ (0, ε0]

Gr (Aε)|Q̂ε×Kε
= gr (Aε)|Qε×Kε ∀ ε ∈ (0, ε0]

τ -Lm [gr (Aε)|Qε×Kε ] = gr (A0)|(sH−1 )-Lm [Qε]×(w
H1

0
)-Lm [Kε],

i.e. the topological limit of graph restrictions {gr (Aε)|Qε×Kε} in the τ = wH−1 × sH1
0
-

topology is recovered in terms of G-limit operator A0.

Remark 3.3. Since in general the maps Fε : H−1(Ω) → H−1(Ω) defined by

f
Fε7−→ f̂ , f = R+

ε P ∗ε f̂

are multi-valued, one might suspect that the topological limit of the graph prototypes
may depend on the choice of sequences {f̂ε}ε∈(0,ε0]. This, however, does not turn out
to be true. Indeed, suppose that for some sequence {fε}ε∈(0,ε0] ⊂ H−1(Ω) there exist
two sequences of prototypes {f̂1

ε }ε∈(0,ε0] and {f̂2
ε }ε∈(0,ε0] such that

(i) f̂1
ε −→ f̂1

∗ strongly in H−1(Ω)

(ii) f̂2
ε −→ f̂2

∗ strongly in H−1(Ω)

(iii) f̂1
∗ 6= f̂2

∗
(iv) R+

ε P ∗ε f̂1
ε = fε = R+

ε P ∗ε f̂2
ε for every ε ∈ (0, ε0].

Then for sequences of corresponding solutions

y1
ε = A−1

ε R+
ε P ∗ε f̂1

ε and y2
ε = A−1

ε R+
ε P ∗ε f̂2

ε
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we have y1
ε = y2

ε for every ε ∈ (0, ε0]. Since {yi
ε}ε∈(0,ε0] are bounded in H1

0 (Ω), there
exists an element y∗ ∈ H1

0 (Ω) such that y1
ε −→ y∗ and y2

ε −→ y∗ weakly in H1
0 (Ω), that

is (f̂1
∗ , y

∗) ∈ gr (A∗) and (f̂2
∗ , y

∗) ∈ gr (A∗). At the same time, by Theorem 3.1, the
operator A∗ has a single-valued inverse. This implies that f̂1

∗ = f̂2
∗ . Thus the G∗-limit

of the sequence {Aε}ε∈(0,ε0] does not depend on the choice of functions prototypes for
{f}ε∈(0,ε0].

The following example shows that in the genaral case the G∗-limit A∗ of the oper-
ators {Aε} may not coincide with the G-limit A0 of this sequence.

Example 3.2. Let Ω be an open bounded domain of Rn, and let {Ωε}ε∈(0,ε0] be a
sequence of open domains of Rn that are contained in Ω. Let {Aε}ε∈(0,ε0] be a sequence
of linear uniformly coercive and uniformly bounded operators from H1

0 (Ω) into H−1(Ω).
For every ε ∈ (0, ε0] we put:

(i) Lε be the closure in H−1(Ω) of the set of all functions f ∈ C∞(Ω) with supp f
contained in Ωε.

(ii) Yε = H1
0 (Ωε).

(iii) Pε : H1
0 (Ωε) → H1

0 (Ω) be the extension operator defined for every y ∈ H1
0 (Ωε)

by (Pεy)|Ωε = y, (Pεy)|Ω\Ωε
= 0. Since Pε is a linear continuous operator, the conjugate

operator P ∗ε : H−1(Ω) → H−1(Ωε) is defined.
(iv) R+

ε : H−1(Ωε) → (Lε ⊂ H−1(Ω)) be the extension operator defined for every
y ∈ H−1(Ωε) by (R+

ε f)|Ωε = f , (R+
ε f)|Ω\Ωε

= 0.

Assume furhter that each of operators {Aε}ε∈(0,ε0] has the representation

A−1
ε = PεΛ−1

ε P ∗ε ,

where Λε ∈ L(Yε;Y ∗
ε ) are invertible operators, and if y ∈ C∞0 (Ω), then there exist a

constant ν > 0 and a sequence {yε ∈ Kε}ε∈(0,ε0] such that yε → y weakly in H1
0 (Ω) and

for every closed cube S ⊂ Ω,

lim sup
ε→0

∫

S

|∇yε|2dx ≤ ν

∫

S

(|∇y|2 + y2) dx,

where by Kε we denote the closure in H1
0 (Ω) of the set of all functions y ∈ C∞(Ω) with

supp y contained in Ωε.

Thus, Aε
G∗−→A∗ if and only if

A−1
ε R+

ε P ∗ε f ≡ PεΛ−1
ε P ∗ε f −→ A−1

∗ f weakly in H1
0 (Ω),

for every f ∈ H−1(Ω). Therefore, in view of Kovalevsky’s theorem (see [18]) we deduce
that for the G∗-limit operator A∗ the representation

A∗ = A0 + Fµ

holds where A0 is the G-limit of {Aε}ε∈(0,ε0] in the usual sense, and the operator
Fµ : H1

0 (Ω) → H−1(Ω) is defined by 〈Fµy, z〉 =
∫
Ω

µ(x)yz dx.
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4. Setting of the homogenization problem

Let Ω be a bounded open set in Rn with Lipschitz boundary. We define the optimal
control problem as follows:

−div (Aε∇y) = bεu + fε in Ω (4.1)

y = 0 on ∂Ω (4.2)

u ∈ Uε, y ∈ Kε (4.3)

Iε(u, y) =
∫

Ω

Cεy
2dx +

∫

Ω

(∇y,Nε∇y)Rndx +
∫

Ω

Dεu
2dx −→ inf . (4.4)

In the sequel we impose the following asumptions:

(a) {Kε}ε∈(0,ε0] is a family of weakly closed convex subsets of H1
0 (Ω) such that there

exists a non-empty topological limit (wH1
0
)-Lm Kε.

(b) {Uε}ε∈(0,ε0] is a family of weakly closed convex subsets of L2(Ω) such that there
exists a non-empty topological limit (wL2)-Lm Uε.

(c) There exist linear mappings Jε : L2(Ω) → L2(Ω) and a family of closed subsets
{Ûε}ε∈(0,ε0] ⊆ L2(Ω) such that Uε =

{
u ∈ L2(Ω)|u = Jεv, v ∈ Ûε

}
for every

ε ∈ (0, ε0].
(d) There exists an invertible linear operator J0 : L2(Ω) → L2(Ω) such that Jε −→

J0 in the weak operator topology, i.e. 〈u, Jεv〉L2 −→ 〈u, J0v〉L2 for every u, v ∈
L2(Ω) and the inclusion (wL2)-Ls Ûε ⊆ J−1

0 [(wL2)-Lm Uε] holds.
(e) For every sequence {uε ∈ Uε}ε∈(0,ε0] weakly converging in L2(Ω) there exists a

sequence of prototypes {vε ∈ Ûε}ε∈(0,ε0] satisfying uε = Jεvε for every ε ∈ (0, ε0]
and uε → u = J0v weakly in L2(Ω) where v ∈ L2(Ω) is the weak limit of
{vε ∈ Ûε}ε∈(0,ε0].

(f) The sequence {fε ∈ H−1(Ω)}ε∈(0,ε0] is compact with respect to the weak topol-
ogy of H−1(Ω).

(g) The sequence {bε ∈ L∞(Ω)}ε∈(0,ε0] is compact with respect to the strong topol-
ogy of L∞(Ω).

(h) Aε, Nε ∈ [L∞(Ω)]n
2

for every ε ∈ (0, ε0], and there are two positive constants
0 < β0 ≤ β1 satisfying β|ξ|2 ≤ (ξ,Nεξ)Rn , (ξ, Aεξ)Rn ≤ β1|ξ|2 a.e. in Ω, β0 ≤
Cε ≤ β1, for any ξ ∈ Rn and ε ∈ (0, ε0].

(i) {Dε}ε∈(0,ε0] is compact with respect to the strong topology of L∞(Ω).
(j) The boundary value problem (4.1) - (4.3) is uniformly regular, i.e.

Ξε =





(u, y) ∈ L2(Ω)×H1
0 (Ω)

∣∣∣∣∣∣∣

− div (Aε∇y) = bεu + fε in Ω

y = 0 on ∂Ω

u ∈ Uε, y ∈ Kε




6= ∅

for every ε ∈ (0, ε0].
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(k) For the control object (4.1) - (4.3) hypotheses (A1) - (A3) hold true.

(l) For every ε ∈ (0, ε0] there exist a linear continuous operator B̂ε from L2(Ω) into
H−1(Ω) and an element f̂ε ∈ H−1(Ω) such that

R+
ε P ∗ε (B̂εv + f̂ε) = bεJεv + fε for every v ∈ Ûε

f̂ε → f̂0 strongly in H−1(Ω)

B̂ε −→ B̂0 ∈ L(L2(Ω); H−1(Ω)) in the uniform operator topology

i.e. lim
ε→0

‖Bε − B0‖L(L2(Ω); H−1(Ω)) = 0.

Remark 4.1. As follows from conditions (k) - (l) and Definition 3.1, there is a
collection of real reflexive separable Banach spaces {Yε}ε∈(0,ε0] coordinated with the
constrained state equation (4.1) - (4.3). Therefore, by virtue of Theorem 3.1, there

exists a coercive linear operator A∗ of H1
0 (Ω) into H−1(Ω) such that Aε

G∗−→A∗, where
Aε ∈ L

(
H1

0 (Ω);H−1(Ω)
)

are defined as

〈Aεy, ϕ〉H1
0 (Ω) =

∫

Ω

(∇ϕ, Aε∇y)Rndx ∀ϕ ∈ H1
0 (Ω).

We are now in the position to apply the procedure of S-homogenization to the
optimal control problem (4.1) - (4.4). Recall that our approach is based on the following
representation {〈

inf
(u,y)∈Ξε

Iε(u, y)
〉}

ε∈(0,ε0]

. (4.5)

of the optimal control problem.

We shall consider the homogenization of the optimal control problem (4.1) - (4.4)
with respect to the µ-topology for L2(Ω)×H1

0 (Ω) by passing to the limit in the sequence
(4.5). Namely, the µ-topology is the most natural one for the homogenization procedure
in our case. Indeed, the sequence of optimal pairs {(u0

ε, y
0
ε)}ε∈(0,ε0] for the original

problem (4.1) - (4.4) is bounded and hence we may assume that it is compact with
respect to this topology. Therefore, thanks to Theorem 2.3, each of the cluster points
of this sequence in the µ-topology will be a minimizer for S-homogenized problem as
well.

We also note that by virtue of condition (h) the sequence of cost functionals {Iε :
Ξε → R}ε∈(0,ε0] is µ-equicoercive, and by property (j) there exists a non-empty lower
topological limit for the sequence of sets of admissible pairs {Ξε}ε∈(0,ε0] in the µ-
topology, i.e. µ-Li Ξε 6= ∅. Therefore, Theorems 2.2 and 2.3 immediately give the
following result.

Theorem 4.1. Suppose that assumptions (a) - (l) hold true and for the sequence
{Ξε}ε∈(0,ε0] there exists a non-empty topological limit in the µ-topology. Then the fol-
lowing statements hold:

(i) We can extract a subsequence from the sequence of constrained minimization
problems (4.5) (still indexed by ε) for which there exists an absolute variational S-limit
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in sense of Definition 2.2, i.e. the strongly S-homogenized optimal control problem has
the representation 〈

inf
(u,y)∈µ-LmΞε

µ-lma(Iε|Ξε
)(u, y)

〉
. (4.6)

(ii) The sequence of optimal pairs {(u0
ε, y

0
ε)}ε∈(0,ε0] for family (4.1)− (4.4) is com-

pact with respect to the µ-topology.
(iii) If (u, y) is a cluster point of the sequence of optimal pairs {(u0

ε, y
0
ε)}ε∈(0,ε0] in

the µ-topology, then
(u, y) ∈ M(µ-lma(Iε|Ξε

); µ-Lm Ξε)

τ -lma(Iε|Ξε)(u, y) = lim
ε→0

Iε(u0
ε, y

0
ε).

In order to recover the strong S-homogenized problem (4.5) we shall use the follow-
ing result.

Lemma 4.1. A set E is the tological limit of the sequence {Eε}ε∈(0,ε0] ⊂ X if and
only if the following conditions are satisfied:

(i) For every x ∈ E there exist an index set H ∈ H and a sequence {xε}ε∈H

converging to x in X such that xε ∈ Eε for every ε ∈ H.
(ii) If H is any index set of H], {xε}ε∈H is a sequence converging to x in X such

that xε ∈ Eε for every ε ∈ H, then x ∈ E.

5. The topological limit of the set of admissible solutions

We begin this subsection with the following result.

Lemma 5.1. If assumptions (a) - (l) hold true, then

∅ 6= (wH−1)-Lm Q̂ε =
{

g ∈ H−1(Ω)
∣∣∣ g = B̂0J

−1
0 u + f̂0 ∀u ∈ (wL2)-LmUε

}
(5.1)

where f̂0 is a limit of {f̂ε} in the strong topology of H−1(Ω) and Q̂ε are convex closed
subsets defined by

Q̂ε =
{

g ∈ H−1(Ω)
∣∣∣ g = B̂εv + f̂ε ∀ v ∈ Ûε

}
. (5.2)

Proof. Let g∗ = B̂0J
−1
0 u∗ + f̂0 be any element of the set

{
g ∈ H−1(Ω)

∣∣∣ g = B̂0J
−1
0 u + f̂0 ∀u ∈ (wL2)-Lm Uε

}
.

Then since u∗ ∈ (wL2)-Lm Uε, it follows that there exist an index set H ∈ H, a sequence
{u∗ε}ε∈H converging to u∗ in the weak topology of L2(Ω), and a sequence of prototypes
{v∗ε}ε∈H weakly converging to v∗ in L2(Ω) such that

u∗ε = Jεv
∗
ε ∈ Uε, v∗ε ∈ Ûε ∀ ε ∈ H and u∗ = J0v

∗.



412 P. Kogut and G. Leugering

Therefore, by property (l), B̂εv
∗
ε + f̂ε ∈ Q̂ε for every ε ∈ H. At the same time we have

‖B̂εv
∗
ε − B̂0v

∗‖ ≤ ‖(B̂ε − B̂0)v∗ε‖+ ‖B̂0(v∗ε − v∗)‖
≤ ‖B̂ε − B̂0‖ ‖v∗ε‖+ sup

‖φ‖
H1

0
=1

〈B̂∗0φ, v∗ε − v∗〉.

Hence,

B̂εv
∗
ε + f̂ε → B̂0v

∗ + f̂0 = B̂0J
−1
0 u∗ + f̂0 strongly in H−1(Ω).

On the other hand, if H is any index set of H] and {gε ∈ Q̂ε}ε∈H is a sequence
converging to g in the strong topology of H−1(Ω), then there is a sequence of control
prototypes {vε ∈ Ûε}ε∈H such that gε = B̂εvε + f̂ε for every ε ∈ H. Since the sequence
B̂εvε is bounded in H−1(Ω) and the operators B̂ε are compact with respect to the
uniform operator topology, it follows the the sequence {vε}ε∈H is bounded as well.
Hence we may assume that there is an element v0 ∈ (wL2)-Ls Ûε such that vε → v0

weakly in L2(Ω). Consequently,

gε = B̂εvε + f̂ε ∈ Q̂ε for every ε ∈ H

gε → B̂0v0 + f̂0 = g0 strongly in H−1(Ω).

But property (d) there is an element u0 in (wL2)-LmUε satisfying v0 = J−1
0 u0. Therefore

g0 = B̂0J
−1
0 u0 + f̂0. Thus, with Lemma 4.1 we are done

By virtue of the G∗-compactness Theorem 3.1 we obtain the following result.

Theorem 5.1. Suppose that conditions (a) - (l) hold true and that there is an index
set H ∈ H and some µ-converging sequence of admissible pairs {(uε, yε) ∈ Ξε}ε∈H for
the original optimal control problem (4.1) − (4.4). Then for the sequence of admissible
pairs sets {Ξε}ε∈(0,ε0] there exists a topological limit in the µ-topology satisfying

µ-Lm Ξε = X (5.3)

where

X =

{
(u, y) ∈ L2(Ω)×H1

0 (Ω)

∣∣∣∣∣
A∗y = B̂0J

−1
0 u + f̂0

u ∈ (wL2)-Lm Uε, y ∈ (wH1
0
)-LmKε

}

and A∗ ∈ L
(
H1

0 (Ω); H−1(Ω)
)

is the G∗-limit of the sequence of operators {Aε} in the
sense of Definition 3.3.

Proof. First of all we note that by the standing assumptions there is some sequence
of admissible pair {(uε, yε) ∈ Ξε}ε∈H such that (uε, yε)

µ−→ (u0, y0). However, by prop-
erty (e) there can be found a sequence of control prototypes {vε ∈ Ûε}ε∈(0,ε0] satisfying
uε = Jεvε for every ε ∈ (0, ε0] and uε → u0 = J0v

0 weakly in L2(Ω), where v0 ∈ L2(Ω)
is the weak limit of {vε ∈ Ûε}ε∈(0,ε0]. Therefore, in view of condition (l) instead of the
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original sequence of admissible pairs we may consider the sequence of their prototypes
{(vε, yε) ∈ Ξ̂ε}ε∈H , where the sets Ξ̂ε are defined by

Ξ̂ε =

{
(v, y) ∈ L2(Ω)×H1

0 (Ω)

∣∣∣∣∣
Aεy = R+

ε P ∗ε (B̂εv + f̂ε)

v ∈ Ûε, y ∈ Kε

}
.

Consequently, by Lemma 5.1 and condition (e) we have

Q̂ε 3 B̂εvε + f̂ε → B̂0J
−1
0 u0 + f̂0 ∈ (sH−1)-Lm Q̂ε strongly in H−1(Ω),

i.e. all assumptions on Theorem 3.2 hold true. Therefore, for the topological limit of
prototype graph restrictions

[
Gr (Aε)|Q̂ε×Kε

]
representation (3.14) holds.

Let (û∗, ŷ∗) be any pair of X. Then, by Lemma 5.1,

ĝ∗ = B̂0J
−1
0 û∗ + f̂0 ∈ (sH−1)-Lm Q̂ε

where the sets Q̂ε are defined in (5.2). Using Theorem 3.2 we deduce that

(ĝ∗, ŷ∗) ∈ gr (A∗) ∩
[
(sH−1)-Lm Q̂ε × (wH1

0
)-LmKε

]
.

Here A∗ is the G∗-limit of the operators sequence {Aε}ε∈(0,ε0]. Then in accordance with
Theorem 3.2 we obtain

(ĝ∗, ŷ∗) ∈ τ -LmGr (Aε) ∩
[
(sH−1)-Lm Q̂ε × (wH1

0
)-Lm Kε

]

= τ -Lm
[
Gr (Aε)|Q̂ε×Kε

]
.

Therefore, by the properties of topological limits (see Lemmas 4.1 and 5.1) there exist
an index set H ∈ H and sequences {ŷε}ε∈H , {ûε}ε∈H , {v̂ε}ε∈H such that

Kε 3 ŷε −→ ŷ∗

Ûε 3 v̂ε −→ v̂∗

Uε 3 Jεv̂ε = ûε −→ û∗ = J0v̂
∗

Q̂ε 3 ĝε = B̂εv̂ε + f̂ε −→ B̂0J
−1
0 û∗ + f̂0 = ĝ∗

Aεŷε = R+
ε P ∗ε ĝε = bεûε + fε

weakly in H1
0 (Ω)

weakly in L2(Ω)

weakly in L2(Ω)

strongly in H−1(Ω)

for every ε ∈ H.

Thus for the pair (û∗, ŷ∗) we have found the index set H ∈ H and constructed a sequence
{(ûε, ŷε)}ε∈H such that

(ûε, ŷε)
µ−→ (û∗, ŷ∗) and (ûε, ŷε) ∈ Ξε for every ε ∈ H,

i.e. condition (i) of Lemma 4.4 holds.
Now we consider any index set H of H]. Let {(ûε, ŷε)}ε∈H be a sequence µ-

converging to some pair (u, y) such that (ûε, ŷε) ∈ Ξε for every ε ∈ H. We have
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to show that (u, y) ∈ X. Indeed, in this case there exists a sequence of prototypes
{v̂ε}ε∈H weakly converging to v in L2(Ω) such that

ûε = Jεv̂ε ∈ Uε, v̂ε ∈ Ûε ∀ ε ∈ H and u = J0v.

Consequently,

ĝε = B̂εv̂ε + f̂ε −→ B̂0J
−1
0 u + f̂0 = ĝ0

ŷε = A−1
ε R+

ε P ∗ε ĝε −→ y

strongly in H−1(Ω)

weakly in H1
0 (Ω)

and by virtue of Theorem 3.2 we have

(ĝ0, y) ∈ gr (A∗)|(sH−1 )-Lm Q̂ε×(w
H1

0
)-Lm Kε

.

Therefore y = A−1
∗ ĝ0 = A−1

∗ (B̂0J
−1
0 u+ f̂0), i.e. we have the inclusion (u, y) ∈ X. Thus,

using Lemma 4.1, we deduce that the set X is the topological limit of the sequence of
admissible pairs sets {Ξε}ε∈(0,ε0]. This completes the proof

Remark 5.1. It is easily shown that we are able to omit the assumptions of this
theorem with respect to existence some µ-converging sequence of admissible pair for
the original optimal control problem (4.1) - (4.4). Indeed, thanks to the uniformly
coerciveness property of the cost functionals Iε the sequence of optimal pairs is bounded.
Hence we may assume that this sequence is compact in the µ-topology.

6. On the explicit representation of the absolute S-limit
of the cost functional

In this section we shall prove that, under some reasonable assumptions, there exist
a convex closed subset U0 ⊆ (wL2)-Lm Uε

∂ , a functional F : U0 → R, and a matrix
N ] ∈ [L∞(Ω)]n

2
such that

µ-lma(Îε|Ξ̂ε
) =

∫

Ω

C0y
2dx +

∫

Ω

(∇y, N ]∇y)Rndx + F (u).

To this end we inroduce the following concept.

Definition 6.1. We say that the sequence of operators
{Aε ∈ L

(
H1

0 (Ω);H−1(Ω)
)}

strongly G∗-converges to the operator A∗ (in symbols, Aε
G∗=⇒A∗) if the sequence {Aε}

G∗-converges to the operator A∗, and there exists a matrix A∗ ∈ [L∞(Ω)]n
2

such that
for every sequence {ĝε} strongly converging in H−1(Ω) to ĝ the conditions

〈A∗y, ϕ〉H1
0 (Ω) =

∫

Ω

(∇ϕ,A∗∇y)Rndx ∀ϕ ∈ H1
0 (Ω) (6.1)

Aε∇yε −→ A∗∇y0 weakly in [L∞(Ω)]n
2

(6.2)

hold where yε = A−1
ε R+

ε P ∗ε ĝε and y0 = A∗ĝ.

Now we establish the following result.
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Lemma 6.1. Let {(uε, yε)}ε∈(0,ε0] be any sequence such that

(uε, yε)
µ−→ (u0, y0), (uε, yε) ∈ Ξε ∀ ε ∈ (0, ε0].

Then, under conditions (a) - (l) and Aε
G∗=⇒A∗,

(∇yε, Nε∇yε)Rn −→ (∇y0, N
]∇y0)Rn in D′(Ω)

where the matrix N ] depends only on {Nε}ε∈(0,ε0] and {Aε}ε∈(0,ε0] and N ] is given by
formula (6.9) below.

Proof. First of all we define the functions in {ψε ∈ H1
0 (Ω)}ε∈(0,ε0] by

− div(At
ε∇ψε) = div(N t

ε∇yε) in Ω (6.4)
ψε = 0 on ∂Ω. (6.5)

Under our assumptions, it is easy to see that ‖ψε‖H1
0 (Ω) ≤ C, where the constant C is

independent of ε.
Let ϕ ∈ D(Ω) be an arbitrary function. Here by D(Ω) we denote the space of all

smooth real valued functions on Ω which are compactly supported in Ω. Let ζε ∈ Yε be
functions such that ϕψε = Pεζε for every ε ∈ (0, ε0]. Then by property (A3) we have

〈
R+

ε P ∗ε (B̂εv̂ε + f̂ε), ψεϕ
〉
(H1

0 ;H−1)
=

〈
R+

ε P ∗ε (B̂εv̂ε + f̂ε), P ∗ε ζεϕ
〉
(H1

0 ;H−1)

=
〈
P ∗ε (B̂εv̂ε + f̂ε), ζεϕ

〉
(Yε;Y ∗ε )

=
〈B̂εv̂ε + f̂ε, ψεϕ

〉
(H1

0 ;H−1)
,

where the value of F ∈ H−1(Ω) at µ ∈ H1
0 (Ω) is denoted by 〈F, µ〉(H1

0 ;H−1) and
{v̂}ε∈(0,ε0] are the prototypes of the sequence of original controls {uε}ε∈ (0,ε0] satisfying
condition (e).

Now, equation (4.5), when multiplied by ϕψε and integrated by parts, gives

0 = 〈B̂εv̂ε + f̂ε, ψεϕ〉(H1
0 ;H−1) −

∫

Ω

(Aε∇yε,∇ϕ)Rnψεdx

+
∫

Ω

(N t
ε∇yε,∇ϕ)Rnyεdx +

∫

Ω

(∇yε, Nε∇yε)Rnϕdx

+
∫

Ω

(At
ε∇ψε,∇ϕ)Rnyεdx.

(6.6)

We may now pass to the limit in (6.6) as ε → 0, since each of the term in the right-
hand side is a product of two sequences, one converging weakly and the other strongly
in L2(Ω). Thus by property (e) we have

lim
ε→0

∫

Ω

(∇yε, Nε∇yε

)
Rnϕdx = −〈B̂0J

−1
0 u0 + f̂0, ψ0ϕ

〉
(H1

0 ;H−1)

+
∫

Ω

(
A∗∇y0,∇ϕ

)
Rnψ0dx

− lim
ε→0

∫

Ω

(
[N t

ε∇yε + At
ε∇ψε],∇ϕ

)
Rny0dx.
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Note also that, since

B̂εuε + f̂ε −→ B̂0J
−1
0 u0 + f̂0 strongly in H−1(Ω),

by definition of the strong G∗-limit (see [21]), we have

yε −→ y0

Aε∇yε −→ A∗∇y0

ψε −→ ψ0

weakly in H1
0 (Ω)

weakly in [L∞(Ω)]n
2

weakly in H1
0 (Ω)

and
−div (A∗∇y0) = B̂0J

−1
0 u0 + f̂0. (6.7)

Hence,

lim
ε→0

∫

Ω

(∇yε, Nε∇yε)Rnϕdx

= −〈B̂0J
−1
0 u0 + f̂0, ψ0ϕ

〉
(H1

0 ;H−1)

− 〈
div(A∗∇y0), ϕψ0

〉
(H1

0 ;H−1)
−

∫

Ω

(A∗∇y0,∇ψ0)Rnϕdx

+ lim
ε→0

∫

Ω

(
[N t

ε∇yε + At
ε∇ψε],∇y0

)
Rnϕ dx

+ lim
ε→0

〈
div([N t

ε∇yε + At
ε∇ψε]), ϕy0

〉
(H1

0 ;H−1)
.

Now, using (6.4) and (6.7) we obtain

lim
ε→0

∫

Ω

(∇yε, Nε∇yε)Rnϕdx = lim
ε→0

∫

Ω

(
[At

ε∇ψε + N t
ε∇yε]−At

∗∇ψ0,∇y0

)
Rnϕdx

for every ϕ ∈ D(Ω).

Since ∇ψ0 is a homogeneous function with respect to ∇y0 it follows that we may
write the previous expression as

lim
ε→0

∫

Ω

(∇yε, Nε∇yε)Rnϕdx =
∫

Ω

(∇y0, N
]∇y0)Rnϕdx, (6.8)

where
N ]∇y0 = w- lim

ε→0
[At

ε∇ψε + N t
ε∇yε]−At

0∇ψ0. (6.89

Here by w- limε→0 we denote the weak-∗ limit in [L∞(Ω)]n
2
. Finally, note that (6.8)

is true for every sequence {(uε, yε)}ε∈(0,ε0] satisfying (6.3). Consequently, the matrix
N ] ∈ [L∞(Ω)]n

2
depends only on {Nε}ε∈(0,ε0] and {Aε}ε∈(0,ε0]. This concludes the

proof
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Let ΠU be the linear operator from L2(Ω)×H1
0 (Ω) into L2(Ω defined by

ΠU [Σ] =
{

u ∈ L2(Ω)
∣∣∣ ∃ y ∈ H1

0 (Ω) such that (u, y) ∈ Σ
}

for every Σ ⊆ L2(Ω)×H1
0 (Ω). We denote by F : ΠU [µ-Lm Ξε] → R the absolute S-limit

of the collection of functionals
{

Fε(u) =
∫

Ω

Dεu
2dx

∣∣∣∣∣ u ∈ ΠU [Ξε]

}

ε∈(0,ε0]

with respect to the weak topology for L2(Ω). Note that, by the standing assumptions (a)
- (l), the absolute S-limit F : ΠU [µ-LmΞε] → R exists, since the sequence of functionals
{F : Uε → R}ε∈(0,ε0] is wL2-equicoercive. Taking into account this fact and Theorem
2.1 we obtain the following analytical representation for the absolute S-limit of the cost
functional sequence {Iε : Ξε → R}ε∈(0,ε0].

Theorem 6.1. Under the suppositions of Lemma 6.1 the following representation
for the homogenized cost functional

µ-lma(Iε|Ξε) =
∫

Ω

C0y
2dx +

∫

Ω

(∇y,N ]∇y)Rndx + F (u) (6.10)

holds for every (u, y) ∈ µ-LmΞε.

Proof. Indeed, for every µ-converging sequence of admissible pairs {(uε, yε)}ε∈(0,ε0]

we have
∫

Ω

Cεy
2
εdx +

∫

Ω

(∇yε, Nε∇yε)Rndx −→
∫

Ω

C0y
2
0dx +

∫

Ω

(∇y0, N
]∇y0)Rndx.

Therefore by virtue of Lemma 6.1 and Theorem 2.1 the proof of formula (6.10) is trivial

Remark 6.1. Let Kε = H1
0 (Ω) and Uε = U0 for every ε ∈ (0, ε0], where U0 is some

convex closed subset of L2(Ω). Then, by the properties of S-limits, for the functional
F : ΠU [Ξε] → R the representation F (u) =

∫
Ω

D0u
2dx holds. However, in the general

case we have only the estimate

F (u) ≥
∫

Ω

D0u
2dx ∀u ∈ ΠU [µ-LmΞε].

This from the basic properties of S-limits. Indeed, by definition of S-limit we have

(wL2)-lma(Fε|ΠU [Ξε])(u) ≥ Γ(wL2)- lim Fε(u)

for every u ∈ ΠU [µ-LmΞε]. Since

Γ(wL2)- lim Fε(u) = Γ(wL2)- lim
∫

Ω

Dεu
2dx =

∫

Ω

D0u
2dx
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we are done.

Corollary 6.2 (The one-dimensional periodic case). Let

Ω = (c, d) ⊂ R1, Yε = H1
0 (Ω), R+

ε P ∗ε = 1, Aε = a
(x

ε

)
, Qε = q

(x

ε

)

where a(·) and q(·) are periodic functions on [0, 1]. Then, under the conditions of
Theorem 6.1,

µ-lma(Iε|Ξε
) =

∫ d

c

C0y
2dx + q]

∫ d

c

y2dx + F (u)

where

q] =
[∫ 1

0

a−1(ξ) dξ

]−2

·
∫ 1

0

q(ξ)
a2(ξ)

dξ.

Proof. Let {(uε, yε) ∈ Ξε}ε∈(0,ε0] be any sequence such that (uε, yε)
µ−→ (u, y),

where (u, y) is an arbitrary pair of µ-LmΞε. Then the functions uε, yε, and ψε satisfy
the equations

− d

dx

(
a
(x

ε

)dyε

dx

)
= bεuε + fε

− d

dx

(
a
(x

ε

)dψε

dx
+ q

(x

ε

)dyε

dx

)
= 0





.

By dε we denote the expression

a
(x

ε

)dψε

dx
+ q

(x

ε

)dyε

dx
.

Then, using (6.9), we obtain

lim
ε→0

∫ d

c

g
(x

ε

)(dyε

dx

)2

dx = lim
ε→0

∫ d

c

dε
dy

dx
dx− a0

∫ d

c

dy

dx
ψ dx

where
a0 = [

∫ 1

0
a−1(ξ) dξ]−1 is the H-limit of

{
a
(x

ε

)}

ψ is a weak limit of {ψε} in H1
0 (c, d).

In order to find the limit of {dε}ε∈(0,ε0] we note that there exists a constant γ0 > 0
such that

‖yε‖H1
0 (c,d),

∥∥a
(

x
ε

)
dyε

dx

∥∥
H1(c,d)

, ‖ψε‖H1
0 (c,d), |dε| ≤ γ0 for every ε ∈ (0, ε0].

Let η be the strong limit of the sequence
{
a
(

x
ε

)
dyε

dx

}
ε∈(0,ε0]

in L2(c, d). Then:

ψε −→ ψ weakly in H1
0 (c, d) (6.12)

yε −→ y weakly in H1
0 (c, d) (6.13)

dε −→ d0 as numerical sequence (6.14)

a
(

x
ε

)
dyε

dx −→ η strongly in L2(c, d) (6.15)
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where η = a0
dy
dx , by the definition of the H-limit. Now we can pass to the limit as ε → 0

in the relationship

0 =
dε

a(x
ε )
− dψε

rdx
− q(x

ε )
a2(x

ε )

[
a
(x

ε

)dyε

dx

]
.

Using (6.12) - (6.15) we get

0 = d0

∫ 1

0

a−1(ξ) dξ − dψ

dx
−

∫ 1

0

q(ξ)a−2(ξ) dξ · η

= d0

∫ 1

0

a−1(ξ) dξ
dψ

dx
−

∫ 1

0

q(ξ)a−2(ξ) dξ · a0
dy

dx

which yields

d0 = a0
dψ

dx
+ a2

0

∫ 1

0

q(ξ)a−2(ξ) dξ
dy

dx
.

Substituting d0 into (6.11) we obtain

lim
ε→0

∫ d

c

q
(x

ε

)[dyε

dx

]2

dx = q]

∫ d

c

(dy

dx

)2

dx.

We can further proceed as in Theorem 6.1

7. Identification of the strongly S-homogenized optimal
control problem and its variational properties

We now apply the procedure of S-homogenization to the optimal control problem (1.1)
- (1.4). We shall assume that the conditions (a) - (l) from Section 4 hold. Recall that
our approch is based on representation (4.5) of the original optimal control problem.
Note that the family of cost functionals {Iε : Ξε → R}ε∈(0,ε0] is equicoercive in the
µ-topology. Therefore, by virtue of the compactness theorem for absolute variational
S-convergence in Banach spaces (see Theorem 3.3) we obtain the following result.

Theorem 7.1. Suppose conditions (a) - (l) hold. Then for the family of constrained
minimization problems (4.5) there exist a subsequence {ε ∈ H ∈ H]} for which

〈
inf

(u,y)∈µ-Lm Ξε

µ-lma(Iε|Ξε)(u, y)
〉

(7.1)

is the absolute variational S-limit in the µ-topology.

Remark 7.1. By properties of the S-limit we know that the functional µ-lma(Iε|Ξε)
is µ-lower semicontinuous and µ-coercive. Since the topological limit (in the Kuratowski
sence) µ-LmΞε is a µ-closed subset of L2(Ω)×H1

0 (Ω), it follows that the set of solutions
of (7.1) is non-empty and µ-compact.

Now for the identification of the minimization problem (7.1) we can use Theorems
5.1 and 6.1.
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Theorem 7.2. Suppose that there is a coercive operator A∗ ∈ L
(
H1

0 (Ω),H−1(Ω)
)

such that Aε
G∗=⇒A∗. Then, under conditions (a) - (l) the constrained minimization

problem (7.1) corresponds the optimal control problem

−div(A∗∇y) = B̂0J
−1
0 u + f̂0 in Ω (7.2)

y = 0 on ∂Ω (7.3)

u ∈ wL2(Ω)-LmUε, y ∈ wH1
0 (Ω)-LmKε (7.4)

I0(u, y) =
∫

Ω

C0y
2dx +

∫

Ω

(∇y, Q]∇y)Rndx + F (u) −→ inf . (7.5)

Further note that, since the sets Uε ×Kε are convex µ-closed, the optimal control
problem (4.1) - (4.4) is uniformly regular (i.e. ∅ 6= Ξε ⊂ Uε ×Kε), the functionals Iε

are strictly convex and µ-coercive, it follows easily that [20] for every ε ∈ (0, ε0] there
exists a unique solution (u0

ε, y
0
ε) ∈ Uε × Kε of problem (4.1) - (4.4). Using the initial

conditions (a) - (l), we see that there is a constant C1 not depending on ε such that

‖u0
ε‖L2(Ω) + ‖y0

ε‖H1
0 (Ω) ≤ C1 for every ε ∈ (0, ε0].

Consequently, there exists a subsequence {(u0
ε, y

0
ε)}ε∈H where H ∈ H] such that

(u0
ε, y

0
ε)

µ−→ (u∗, y∗).

By properties of the topological limit µ-LmΞε we have (u∗, y∗) ∈ µ-LmΞε. On the
other hand, it is easy to see that S-homogenized problem has a unique solution (u0, y0).
Then from Theorem 2.3 we immediatly obtain the following result.

Theorem 7.3. Let {(u0
ε, y

0
ε)}ε∈H be a sequence of optimal pairs for problem (4.1)−

(4.4) where the index set H ∈ H] corresponds to the choice in Theorem 7.1. Then under
conditions (a) - (l) we have

(u0
ε, y

0
ε)

µ−→ (u0, y0) (7.6)

inf
(u,y)∈Ξε

Iε(u, y)
µ−→ inf

(u,y)∈µ-Lm Ξε

I0(u, y) (7.7)

where (u0, y0) is the optimal pair for the strongly S-homogenized problem (7.2).

Remark 7.2. Suppose that the assumptions of Remark 3.2 hold true. Moreover,
we shall assume that Kε = H1

0 (Ω), Dε = D0 = const and Cε = 0 for every ε ∈ (0, ε0], the
sets Uε do not depend on ε, Jε are identity operators, the sequence {fε} is compact with
respect to the strong topology of H−1(Ω). Then the original optimal control problem
(4.1) − (4.4) reduces to the problem that was considered by Kesavan and Saint Jean
Paulin in [7]. Since in this case {R+

ε P ∗ε } are identity operators it follows that

B̂ε = Bε, f̂ε = fε, Ûε = Uε for every ε ∈ (0, ε0] and Aε
G∗−→A0
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where A0 is the strong G-limit of the sequence
{Aε ∈ L

(
H1

0 (Ω),H−1(Ω)
)}

ε∈(0,ε0]
and

〈A0y, ϕ〉H1
0 (Ω) =

∫

Ω

(∇ϕ,A0∇y)Rndx ∀ ϕ ∈ H1
0 (Ω)

Aε −→ A0 in the sense of H-convergence [21].

An additional point to emphasize is that by Remark 6.1 we have F (u) = D0

∫
Ω

u2 dx.

Thus under assumptions (a) - (l) the S-homogenized optimal control problem has
the representation

−div(A0∇y) = b0u + f0 in Ω

y = 0 on ∂Ω

u ∈ wL2(Ω)-Lm Uε

I0(u, y) =
∫

Ω

(∇y, Q]∇y)Rndx + D0

∫

Ω

u2dx −→ inf .

In addition, by virtue of Theorem 7.3 we have the following variational properties for
the sequence of optimal pairs {(u0

ε, y
0
ε)}ε∈H :

(u0
ε, y

0
ε)

µ−→ (u0, y0)

inf
(u,y)∈Ξε

Iε(u, y)
µ−→ inf

(u,y)∈µ-Lm Ξε

I0(u, y)

u0
ε −→ u0 strongly in L2(Ω)

where (u0, y0) is the optimal pair for the above-mentioned S-homogenized problem.

8. Homogenization of an optimal control problem
on a perforated domain

In this section we consider the application of the procedure of S-homogenization and
the results of previous sections to an optimal control problem on a perforated domain.

Our example deals with a non-classical situation in homogenization theory of opti-
mal control problems. Let Ω be a bounded open set of R2. For each value of ε ∈ (0, ε0],
we cover R2 by cubes Zε

i of size 2ε. From each cube we remove the ball T ε
i of radius

rε = exp
( − 1

ε2

)
centered at the very center of the cube. In this way, R2 is perforated

by spherical identical holes. Set

Sε = R2 \
⋃

T ε
i and Ωε = Ω ∩Qε = Ω \

n(ε)⋃

i=1

T ε
i .

This means that we removed from Ω small balls of radius rε whose centers are the nodes
of a lattice in R2 with cell size 2ε.
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Let f ∈ L2(Ω) and consider the following optimal comtrol problem in Ω:

−∆y = u + χεf in D′(Ω) (8.1)

y ∈ H1
0 (Ω) (8.2)

y ∈ Kε, u ∈ Uε (8.3)

I(u, y) =
∫

Ω

y2 dx +
∫

Ω

u2dx −→ inf (8.4)

where χε is the characteristic function of the perforated domain Ωε, Kε is the closure
in H1

0 (Ω) of the set y ∈ C∞(Ω) with supp y contained in Ωε and Uε is the closure in
L2(Ω) of the set u ∈ C∞(Ω) with supp u contained in Ωε as well.

As follows from [20], for any ε ∈ (0, ε0] there exists unique optimal solution (u0
ε, y

0
ε) ∈

Uε
∂ ×H1

0 (Ω) such that y0
ε vanishes in the holes T ε

i (1 ≤ i ≤ n(ε)), i.e. optimal control
problem (8.1) - (8.4) is uniformly regular for every ε ∈ (0, ε0].

For ε ∈ (0, ε0], we set Yε = H1
0 (Ωε). We define the operators Pε and R+

ε as in
Example 3.2. Note that for the control constraints the epresentation

Uε = {u ∈ L2(Ω)|u = χεû for all û ∈ L2(Ω)Big} for every ε ∈ (0, ε0]

holds. Thus, Jε = χε and for the prototypes of control functions û there are not any
constraints, i.e. Ûε = L2(Ω). Moreover, for the sequence of sets {Uε ×Kε} there exists
topological limit in the µ-topology

µ-Lm [Uε ×Kε] = L2(Ω)×H1
0 (Ω).

As for the limit of the operators {Jε} in the weak operator topology we have Jε → J0 =
χ0, where χ0 is the weal-∗ limit point in L∞(Ω) of {χε}. Besides Cioranescu and Saint
Jean Paulin [3] have shown that, when Ω is perforated periodically, χ0 will be a positive
constant, i.e. J0 is invertible operator.

Finally, since R+P ∗ε û = Jεû = χεû for every ε ∈ (0, ε0] and û ∈ L2(Ω), it follows
that we may rewrite the original optimal control problem (8.1) - (8.4) in another form

−∆y = R+
ε P ∗ε (û + f) in D′(Ω) (8.5)

y = 0 on ∂Ω (8.6)

I(u, y) =
∫

Ω

y2dx +
∫

Ω

χεû
2dx −→ inf . (8.7)

Thus, it is easy to see that all conditions (a) - (l) for problem (8.1) - (8.4) hold true.
However, in order to apply Theorem 7.2 we note that in our case we may omit the
assumption about the existence of the strong G∗-limit for operator −∆ in (8.5), because
we shall not use the result of Lemma 6.1.

We may define the structure of the G∗-limit operator A∗ for our control object (8.5)
- (8.6) by (see Proposition 3.1)

−∆−1R+
ε P ∗ε g −→ A−1

∗ g for every g ∈ H−1(Ω).
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However, for every û ∈ L2(Ω) and f ∈ L2(Ω), by virtue of [2: Theorem 1.2] (see also
[5]), the solutions yε(û) of (8.5) - (8.6) satisfy

yε(û) = −∆−1R+
ε P ∗ε (û + f) −→ A−1

∗ (û + f) = y(û) weakly in H1
0 (Ω),

where y(û) is the unique solution of

−∆y + π
2 y = û + f

y = 0

in D′(Ω)

on ∂Ω

}
,

i.e. A∗y = −∆y + π
2 y.

Since, by property (d), for every û ∈ L2(Ω) there is an element u ∈ (wL2)-Lm Uε

such that û = χ−1
0 u, we obtain

−∆y +
(

π
2

)
y = χ−1

0 u + f

y = 0

in D′(Ω)

on ∂Ω

}
.

Finally, it is easy to see that

(wL2)-lma

(∫

Ω

u2dx

∣∣∣∣∣
Uε

)
= lim

ε→0

∫

Ω

χεû
2dx =

∫

Ω

χ0û
2dx

where û is some prototype of the original control u. Then we have û = χ−1
0 u, i.e.

(wL2)-lma

(∫

Ω

u2dx

∣∣∣∣∣
Uε

)
=

∫

Ω

χ−1
0 u2dx = I∗(u, y).

Thus have proved the following result (see Theorem 7.2).

Theorem 8.1. For the optimal control problem (8.1)− (8.4) there exists a unique
strong S-homogenized problem in the µ-topology of L2(Ω)×H1

0 (Ω) which has the form

−∆y +
(π

2

)
y = χ−1

0 u + f in D′(Ω)

y = 0 on ∂Ω

I∗(u, y) =
∫

Ω

y2dx +
∫

Ω

χ−1
0 u2dx −→ inf .

Furthermore, the sequence of optimal pairs {(u0
ε, y

0
ε)}ε∈H µ-converges to the unique

solutions (u0, y0) of the above homogenized problem and I(u0
ε, y

0
ε) → I∗(u0, y0).

Now we consider the second example that deals with homogenization of an optimal
control problem on perforated domain. Let Ω be a bounded open set in Rn. Given a
sequence of parameters ε ∈ (0, ε0] which tends to zero, we perforate the domain Ω be
”holes paramertrized by ε”. Mathematically speaking, we consider a family of closed
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subsets Sε ⊂ Ω and set Ωε = Ω \ Sε, which we call the perforated domain. We denote
by χε the characteristic function of the domain Ωε.

We define the constituents of the optimal control problem (4.1) - (4.4) as follows:

(H1) Cε = 0, Dε = 1, bε = 1, fε = χεf̂ , f̂ ∈ L2(Ω) for all ε ∈ (0, ε0].

(H2) Uε =
{
u ∈ L2(Ω)|u = χεû for all û ∈ Û

}
, for every ε ∈ (0, ε0], where Û = {u ∈

L2(Ω)|ψ1 ≤ u ≤ ψ2 a.e. in Ω}, ψ1 and ψ2 are given functions in L2(Ω).
(H3) Yε = {y ∈ H1(Ωε)| y = 0 on ∂Ω}.
(H4) Pε : Yε → H1

0 (Ω) is an extension operator such that, for every y ∈ Yε,
(Pεy)|Ωε

= y and ‖∇Pεy‖L2(Ω) ≤ C ‖y‖L2(Ωε). Since Pε is a linear continu-
ous operator, the adjoint operator P ∗ε : H−1(Ω) → Y ∗

ε is defined.
(H5) R∗ε : Y ∗

ε → H−1(Ω) be a linear operator such that P ∗ε Rεg = g and RεP
∗
ε f = χεf

for every f ∈ H−1(Ω) and g ∈ Y ∗
ε .

(H6) Kε = {y = Pεz ∈ H1
0 (Ω)| z ∈ Yε, Aε∇z · nε = 0 on ∂Sε}, where nε is the unit

outward normal on Sε.

In addition to these assumptions, following Kesavan and Saint Jean Paulin [9], we
assume that the following conditions hold:

(H7) Every weak-∗ limit point in L∞(Ω) of {χε} is positive a.e. in Ω.
(H8) If χε → χ0 in L∞(Ω) weak-∗, then χ−1

0 ∈ L∞(Ω).

Thus we have the following optimal control problem:

−div(Aε∇y) = uχεf̂ in Ω (8.8)

y = 0 on ∂Ω (8.9)

u ∈ Uε y ∈ Kε (8.10)

Iε(u, y) =
∫

Ω

(∇y, Nε∇y)Rndx

∫

Ω

u2dx −→ inf (8.11)

where the matrices Aε and Nε satisfy condition (h). Our aim is to study the limiting
behaviour of this problem as ε → 0. Note that Uε and Kε are convex closed subsets of
L2(Ω) and H1

0 (Ω), respectively. Besides, it is obvious that assumptions (b) - (d) from
Section 4 hold true. Indeed, since Cioranescu and Saint Jean Paulin [3] have shown that,
when Ω is perforated periodically, the hypotheses (H4), (H5), (H7) and (H8) above are
satisfied and, in particular, χ0 will be a positive constant, we have

J0 = χ0 and (wL2)-Lm Uε =
{
u ∈ L2(Ω)

∣∣ χ0ψ1 ≤ u ≤ χ0ψ2 a.e. in Ω
}
.

Further, by virtue of conditions (H2) and (H5) we obtain

uχεf̂ = Jεvχεf̂ = χε(vf̂) = RεP
∗
ε (B̂εvf̂)

for every v ∈ Û . Hence B̂ε = 1, i.e. B̂ε is the canonical isomorphism of L2(Ω) into
H−1(Ω).

As for the existence of the topological limit for the sets {Kε}ε∈(0,ε0] we have the
following result.



S-Homogenization of an Optimal Control Problem 425

Proposition 8.1. (wH1
0
)-LmKε = H1

0 (Ω).

Proof. Since condition (ii) of Lemma 4.1 is obvious, we need to verify (i). Let y
be any element of H1

0 (Ω) and g be the element of H−1(Ω) such that

A∗y = g (8.13)

where A∗ is the G∗-limit of the sequence {Aε} with respect to the above defined op-
erators Rε : Y ∗

ε → H−1(Ω) and P ∗ε : H−1(Ω) → Y ∗
ε . We consider the sequence of

elements {zε ∈ Yε}ε∈(0,ε0] each of which is defined by zε = Λ−1
ε P ∗ε g. Here the operators

Λε : Yε → Y ∗
ε are constructed as

Λεz = P ∗ε g ⇐⇒
{−div(Aε∇z) = P ∗ε g in Ω

z = 0 on ∂Ω
Aε∇z · nε = 0 on ∂Sε.

(8.14)

As follows from Briane, Damlamian and Donato [1], there exists a unique solution of
this problem for every g ∈ H−1(Ω), i.e. zε = Λ−1

ε P ∗ε g.
Now we put yε = Pεzε for every ε ∈ (0, ε0]. Then the sequence {yε}ε∈(0,ε0] is

coordinated with the collection {Kε}ε∈(0,ε0], i.e. yε ∈ Kε for every ε ∈ (0, ε0]. Since

yε = Pεzε = PεΛ−1
ε P ∗ε g = PεΛ−1

ε (P ∗ε Rε)P ∗ε g = (PεΛ−1
ε P ∗ε )RεP

∗
ε g,

we denote by Tε the operator PεΛ−1
ε P ∗ε . As the operators Λε ∈ L(Yε; Y ∗

ε ) are uniformly
coercive and bounded, we deduce that there is a constant α > 0 such that

‖f‖2H−1 ≤ α‖Tεf‖2H1
0
, 〈f, Tεf〉 ≥ α−1‖Tεf‖2H1

0
(8.15)

for every f ∈ H−1(Ω). Consequently, the operators Tε are invertible, i.e. we may set
Âε = T−1

ε . Moreover, we conclude that the operators Âε are uniformly bounded and
coercive. Therefore the elements {yε ∈ Kε} may be defined as the solutions of the
equations Âεyε = RεP

∗
ε g. However, by condition (H5), we obtain

P ∗ε ÂεPεzε = P ∗ε Âεyε = P ∗ε RεP
∗
ε g = P ∗ε g,

i.e. for the operators Λε we have the representation

Λε = P ∗ε ÂεPε for every ε ∈ (0, ε0].

Thus in view of (8.14) the operators Âε ∈ L(H1
0 (Ω); H−1(Ω)) can be defined as

〈Âεy, ϕ〉H1
0 (Ω) =

∫

Ω

(∇ϕ,Aε∇y)Rndx ∀ y, ϕ ∈ H1
0 (Ω),

i.e. Âε = Aε for every ε ∈ (0, ε0], where the operators Aε correspond to the control
object (8.8) - (8.10). It follows that the sequence {yε ∈ Kε}ε∈(0,ε0] has the representation
yε = A−1

ε RεP
∗
ε g for all ε ∈ (0, ε0].
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It has been proved by Briane, Damlamian and Donato [1] that the solution of
problem (8.14) satisfies Pεzε → z0 weakly in H1

0 (Ω), where

−div(A0∇z0) = g in Ω (8.16)
z0 = 0 on ∂Ω (8.17)

and the matrix A0 is the H0-limit of the sequence {Aε}. Since yε = Pεzε = A−1
ε RεP

∗
ε g,

it follows that (see Proposition 3.1) yε = A−1
ε RεP

∗
ε g → A−1

∗ g = z0. Thus, by (8.16) -
(8.17), the G∗-limit operator A∗ is defined as

〈A∗y, ϕ〉H1
0 (Ω) =

∫

Ω

(∇ϕ,A0∇y)Rndx ∀ϕ ∈ H1
0 (Ω), (8.18)

and by virtue of (8.13) we have z0 = y. Thus for any element y ∈ H1
0 (Ω) it is possible

to construct the sequence {yε ∈ Kε}ε∈(0,ε0] such that yε → y weakly in H1
0 (Ω), i.e. in

view of Lemma 4.1 equality (8.12) holds

Corollary 8.1. For the operator sequence {Aε ∈ L(H1
0 (Ω); H−1(Ω))} associated

with (8.8) − (8.11) there exists the G∗-limit A∗ such that A∗ is a bounded coercive
operator for which representation (8.18) holds, whith A0 being the H0-limit of the matrix
sequence {Aε}.

As follows from the proof of Proposition 8.1, for any ε ∈ (0, ε0] and any admissible
control u∗ = Jεv

∗ ∈ Uε there is an element z∗ε ∈ Yε such that z∗ε is the unique solution
of problem (8.14) for g = v∗f , i.e. z∗ε = Λ−1

ε P ∗ε (v∗f). Therefore if we set yε = Pεz
∗
ε ,

then
yε ∈ Kε and yε = A−1

ε RεP
∗
ε (v∗f) = A−1

ε (u∗χεf),

that is, yε is the unique solution of original problem (8.8) - (8.11) corresponding to the
control u∗. Thus we obtain the following conclusion.

Corollary 8.2. The original optimal control problem (8.8) − (8.11) is uniformly
regular, i.e. assumption (j) of Section 4 is satisfied.

Corollary 8.3. If (u∗ε, y
∗
ε ) is any admissible pair for the original optimal control

problem (8.8)− (8.11), then there are elements v∗ε ∈ L2(Ω) and z∗ε ∈ Yε such that

y∗ε = Pεz
∗
ε and u∗ε = χεv

∗
ε

and, consequently, the pair (v∗ε , z∗ε ) is admissible for the optimal control problem

−div(Aε∇z) = P ∗ε (vf) in Ωε (8.19)

z = 0 on ∂Ωε (8.20)

Aε∇z · nε = 0 on ∂Sε (8.21)

v ∈ Û (8.22)

Iε(u, y) =
∫

Ω

(∇Pεz,Nε∇Pεz)Rndx

∫

Ωε

v2dx −→ inf . (8.23)
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Remark 8.1. It is obvious that we can consider the optimal control problem (8.19)
- (8.23) as a prototype of Kesavan and Saint Jean Paulin’s problem on a perforated
domain [9]. At the same time this problem can be reduced to their original problem if
∇Pεzε = 0 a.e. in int (Sε) and (P ∗ε g)|Ωε = g for all g ∈ H−1(Ω).

Remark 8.2. As for the strong G∗-convergence of {Aε} to the operator A∗ we
note that this can also be proved by the results in [1] after some minor modifications.
Namely, for every g ∈ H−1(Ω), the solution zε ∈ Yε of problem (8.14) satisfies

Pεzε −→ z0

Aε∇[Pεzε] −→ A0∇z0

(instead of (Aε∇zε)∼ −→ A0∇z0

weakly in H1
0 (Ω)

weakly in [L2(Ω)]n

weakly in [L2(Ω)]n in [1])

where z0 is the solution of problem (8.16) - (8.17) and a matrix A0 is H0-limit of the
sequence {Aε}.

Since yε = Pεzε = A−1
ε RεP

∗
ε g, it follows that (see Proposition 3.1 and Definition

6.1) the sequence {Aε} strongly G∗-converges to the operator A∗ with representation
(8.18).

In particular, as for every v ∈ Û there is an element u ∈ (wL2)-Lm Uε such that
v = χ−1

0 u, we infer

yε = A−1
ε RεP

∗
ε (vf̂) −→ A∗(vf̂) = A∗(χ−1

0 uf̂) weakly in H1
0 (Ω).

Finally, taking into account the above mentioned results we see that all assumptions
of Theorems 7.1. - 7.3 hold true with respect to the optimal control problem (8.8) -
(8.11). Moreover, by Lemma 6.1 and the properties of S-limits, we can show

µ-lma(Iε|Ξε)(u, y) =
∫

Ω

(∇y, N ]∇y)Rndx +
∫

Ω

χ−1
0 u2dx.

Thus, we are now in the positon to state the main result about the S-homogenization
of the optimal control problem (8.8) - (8.11) as follows.

Theorem 8.2. For the optimal control problem (8.8)− (8.11) there exists a unique
strongly S-homogenized problem in the µ-topology of L2(Ω)×H1

0 (Ω) with

−div(A0∇z) = χ−1
0 uf̂ in Ω

y = 0 on ∂Ω

u ∈ (wL2)-Lm Uε =
{
u ∈ L2(Ω)|χ0ψ1 ≤ u ≤ χ0ψ2 a.e. in Ω

}

I(u, y) =
∫

Ω

(∇y, N ]∇y)Rndx +
∫

Ω

χ−1
0 u2dx −→ inf

where A0 is H0-limit of {Aε} in the sense of Briane, Damlamian and Donato [1].
Furthermore, the sequence of the optimal pairs {(u0

ε, y
0
ε)}ε∈H µ-converges to the unique

solutions (u0, y0) of the above homogenized problem and Iε(u0
ε, y

0
ε) → I(u0, y0).
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