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On S-Homogenization of an
Optimal Control Problem
with Control and State Constraints

P. Kogut and G. Leugering

Abstract. We study the limiting behavior of an optimal control problem for a linear elliptic
equation subject to control and state constraints. Each constituent of the mathematical de-
scription of such an optimal control problem may depend on a small parameter €. We study
the limit of this problem when € — 0 in the framework of variational S-convergence which
generalizes the concept of I'-convergence. We also introduce the notion of G*-convergence gen-
eralizing the concept of G-convergence to operators with constraints. We show convergence of
the sequence of optimal control problems and identify its limit. We then apply the theory to
an elliptic problem on a perforated domain.
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1. Introduction

The aim of this paper is to study the homogenization of an optimal control problem
with control and state constraints. Each component of the mathematical model of such
an optimal control problem may depend on a small parameter € (e.g. each component
may contain rapidly oscillating coefficients).

Let €2 be a bounded open set in R™. We define the optimal control problem as
follows:

—div (A:Vy) = bu+ f. in Q (1.1)
y =0 on 0N} (1.2)

ye K., ueU. (1.3)

I (u,y) = /Q C.y?dx + /Q(Vy,NEVy)Rnda: +/QDEu2da; —inf.  (1.4)
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The purpose of this paper is to study the limiting behavior of problem (1.2) - (1.4) as
e — 0.

A similar problem but one without state constraints has been studied by Kesavan
and Saint Jean Paulin [7]. In contrast to the approch in [7], we stay with the optimal
control problem in the original sense and look for its homogenized limit, for which
we establish a solution then. The method of choice, therefore, is the so-called ”direct
approch” which is based on the concept of variational S-convergence [10 - 13, 15]. But
before introducing the formal concept for the homogenization process via S-convergence
we note that the optimal control problem (1.1) - (1.4) can be written in another form

{< inf Is(u,y)>}
(u,y)€Ee e€(0,e0]

where by Z. we denote the set of all admissible pairs, i.e.

—div (A:Vy) = bu+ fo in Q
E. =< (u,y) € L*(Q) x Hy(Q) | y =0 on 99
uelUs, ye K.

Let us remark that we shall differentiate between the notations inf,c4 F'(z) and
(infyea F(z)). In particular, inf,ec 4 F'(z) means the infimum of F' on the set A. By
(inf,ec 4 F(z)) we mean the constrained minimization problem as an object that is de-
fined by the pair (F; A).

We may now return to the main question of our paper. Our aim is to study the
limiting behavior of the optimal control problem (1.1) - (1.4) as ¢ — 0. The homoge-
nization of (1.1) - (1.4) consists in studying the limit properties of the sequence (1.5). As
follows from the concept of variational S-convergence, under some natural assumptions
there exists a so-called absolute variational S-limit of the sequence (1.5) denoted by

<(u,y) inf u—lma<fs|a€><u,y>> (1.6)

G,U_LmEE

where 1 is some topology for the basic space L?(Q) x H} (Q), pu-Lm =, is the topological
limit of {E.}.c(0,e,) in Kuratowski’s sense [19], p-Im®(I|=z,) : 7-LmZ. — R is the
absolute S-limit of the sequence {I. : E. — R}.c(0,c0]-

We emphazise that each of the functionals I, : =, — R has its individual domain.
This is a principal difference between the concept of S-limit and the of theory of I'-
convergence [4]. Note, however, that under some canonical assumptions S-convergence
reduces to I'-convergence [14].

Let us briefly describe the main result of this paper. In Section 2 we recall the
principal results of S-convergence and variational S-convergence which will be used in
the sequel.

The topological convergence of the graph restrictions (i.e. restrictions of graphs of
linear continuous operators 4. to some admissible sets) is discussed in Section 3. We
study this problem for a wide class of control and state constraints. We have shown
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that the topological limit of such graph restrictions can be recovered or identified in
terms of the G-limit operator only for the so-called ”convenient” constraints. In order
to explore this more in detail (Section 3) for the sequence of coercive operators we
introduce the concept of G*-convergence. We prove a G*-compactness theorem and
obtain the sufficient conditions under which the G*-limit operator is invertible. It is
interesting to note that, as a rule, the G*-limit operator A, does not coincide with the
G-limit Ay and, moreover, the G*-limit A, can be constructed as the sum of the H-limit
Ap and some additional term (called ”strange term” by Murat).

Further, in Section 4 we give the application of the above mentioned concept to the
homogenization of optimal control problems. We study the existence of the strong S-
homogenized problem, recover its mathematical description and establish its variational
properties. More precisely, let 1 be the topology for the ”control-state” space L2(Q) x
H} () that equals to the product of the weak topology wrz(q) for L?(€) and the weak
topology w1 (o) for HL (D).

In Section 5 we obtain sufficient conditions of identifiability of the limit set p-Lm =..
In particular, under some natural assumptions, the representation

A*y = B\OJ()_l'U/ + ﬁ)
p—LmE, = ¢ (u,y) € L*(Q) x Hy(Q) | u € wre(q)y-Lm U,
(TS wHé(Q)—LmKe

will be obtained where A, is the G*-limit of {A:}.c(0,c,], fo is the weak limit in H~*(Q)
of {fc}ee(0,e0]> Be is some linear continuos operator from L?(2) into H~1(£2), and Jy is
some linear invertible operator from L?(§)) onto L?().

In Section 6 we consider the problem of identification of the functional

p-lm®(I|=.) : p-LmZE, — R.

Under more general assumption than in [7] we show that the representation

p-lm (I |=,) :/ C’Oyzdx—i—/(Vy,NﬁVy)Rnd:c—l—F(u)
Q Q

holds. Here Cy is a weak-+ limit in L>°(Q) of {C.}.c(0,c0), F is the S-limit of the
sequence of fuctionals {F : U. — R}.¢(0,e,], the matrix N* € [L>® ()] is defined by

N#Vy = w- lim [ALV. + NIy — ALV

where w-lim is the weak limit in [LOO(Q)]”Q, {(ue,y:) € Ectec(o,eo] 15 any sequence
p-converging to (u,y) € T-LmE,, and {t: }.c(0,¢,] is some bounded sequence in HLQ).

In Section 7 we describe some variational properties of the homogenized problem.
In particular, the 7-convergence of the sequence of optimal pairs {(ug,yg)}ge(oﬁo] to
a unique solution of S-homogenized problem is a direct consequence of the variational
S-limits.
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In the last section, Section 8, we give the application of our results to the S-
homogenization of an optimal control problem on perforated domain.

In closing this section we would like to note that the concept pusued in this paper
and the results obtained are different form those of Kesavan and Saint Jean Paulin [7 -
9]. Moreover, our results of homogenization of optimal control problems on perforated
domains differ from their results (see Section 8). They differ in the fact that the state
equation for homogenized control object by the method [9] has another form, namely

—div (AoVy) = u+ xof in 0,
whereas the S-homogenization of similar problem gives
—div (AoVy) = xglu+ f  inQ.

This discrepancy, in our opinion, can be explained in the fact that we stay with the
optimal control problem in the original sense and look for the homogenized optimal
control problem for which we finally obtain a solution. In contrast to this the approach
in [7 - 9] is concerned with the homogenization of the optimality system with respect to
the parameter ¢ and, hence, the convergence of the optimal pairs (u, y?) was obtained.
It is,however, not obvious from their analysis to which optimal control problem the limit
of optimal pairs (u°,4) is in fact the optimal pair.

2. Definitions and axiliary results

Let us start with a brief discussion of the formalism of variational S-convergence. Let
(X,7) be a Banach space endowed with the weak topology 7, and let {F° : X, —
ﬁ}ee(o,ao] be a family of functionals, where R = R U {400} is the half-extended set of
real numbers. Here {X. C X}.c(0,, is a collection of sets with £/ = (0,g0] an index
space and H is a filter on E. Its lower topological limit, also called the limit inferior, is

the set
rLiXe= () o, (U X5> ,

HecH! e€cH

and its upper topological limit, also called the limit superior, is the set

TLsX. = (] d (U X5> ,

HeH eeH

where H* is the family of subsets of E = (0, g¢] that meet all sets H in H. If 7-Li X, =
7-Ls X, this set, denoted as 7-Lm X, is the (Painleve-Kuratowski) topological limit of
the collection {X. C X}.c(0,c0]-

It will be convenient to have at our disposal the following equivalent expressions for
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the lower and upper topological limit of sets:
rLiX. = {2 ¥V eN(@), 3H e M, Ve e H: XNV £ 0}
= {x dH € H, Jz. € X, (¢ € H) with x, ix}

rLsX. = {a|VV e N(x), IH €W, Ve e H: XV £ 0}

= {x JH e H*, 32, € X, (¢ € H) with xsix}

where N (z) denotes a system of neighborhoods at z. Assume that 7-Li X. # (). By
epi(F¢|X.) denote the set

epi(F°|X.) = {(z,\) € Xe x R| F*(z) < A}

Definition 2.1. The S-lower limit 7-li (Ff|x.) : 7-Ls X. — R and the S-upper
limit 7-Is (F°|x_.) : 7-Li X, — R are defined by
epi(7-li (F®|x_)| 7-Ls X.) = p-Ls (epi(F*°| X))
epi(T-ls <F6|XE)| -Li XE) = p-Li (epi(F€|XE))

where p is the product topology of X x R. _
If there exist a set A and a functional ' : A — R such that

-LiX, =A=7-Ls X,
i (F¢|x.) = F =7-1s (F°|x.),

then we write
A=r7-LmX,, F = 7-lm®(F°

X.)

and we say that the sequence {F°¢ : X, — R}se(o,so] absolutly S-converges to F' or that
F is the absolute S-limit of {F® : X. — R}.c(0,c9)-

The techniques of S-convergence and the basic topological properties of S-limits are
disscussed more detail in [10, 12 - 14]. We state some results from [14] that we will use
below.

Assume that (X, 7) is a separable Banach space and that the sequence of functionals
{F°: X. — R}.c(0,e0] is T-equicoercive, i.e. for every ¢ € R there exists a 7-compact
set K; C X such that

U {zeXF(z)<t}CK’
€€(0,e0]
where 7 is the o(X, X*)-weak topology for X. It is easy to see that {F¢ : X, —
R}.c(0,e0] 18 T-equicoercive if and only if there exists a lower 7-semicontinuous and
lower T-semicompact functional ¥ : X — R such that

Fé(x) > ¥(x) Vee X, Ve e (0,e0].
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Theorem 2.1. Let X be a separable Banach space, {F® : X, — R}Ee(oygo] be a T-
equicoercive sequence of functionals (or the sets {X.}oc(0,e,] are uniformly bounded, i.e.

SUP.c (0.2 WP, l2llx < +0). Suppose T-LiX. # 0. Then {F® : X. — Rhee(o.
absolutly S-converges to F': Xg — R if and only if the following conditions hold:

(i) For every x € Xo, H € H*, and for every sequence {Ye }cenm T-converging to x
we have y. € X for every e € H and F(x) < liminfgys. 0 F¢(ye).

(ii) For every x € Xy and index set H € 'H there exists a sequence {U,}een such
that j.——x,y. € X. for alle € H, and F(x) > lim SUP 750 F (T, )-

It is easy to see that each of the functionals F° : X. — R can be associated
with some constrained minimization problem (inf,cx. F¢(x)), i.e there is a one-to-one
correspondence between the set of such functionals and the elements of the following

sequence
inf FE($)>} . (2.1)
{< z€X, e€(0,e0]

Definition 2.2 The S-lower and S-upper variational limits of sequence (2.1) are
defined by

< inf 7_11(F6|X5)(x)> and < inf T—IS(F€|XE)(90)>,

zer-Ls Xe zer-Li Xe

respectively. If for the sequence of functionals {F*° : X, — @}56(0,50] there exists an
absolute S-limit 7-Im®(F*¢|x_), then the constrained minimization problem

< inf T—lma(FE\XS)(:I:)> (2.2)

zer-Lm X,

is called the absolute variational S-limit of sequence (2.1).

Note that if all the minimization problems in (2.1) correspond to a single optimal
control problem, then problem (2.2) is called the strong S- homogenized optimal control
problem.

Theorem 2.2. Let X = V*, V be a separable Banach space, T be the o(V*,V)-
topology for X, {FE D Xe — R}se(o o] be an equicoercive sequence of functionals,

7-Lm X, # (). Then the following statements hold:

(i) The sets of solutions of the S-lower and S-upper variational S-limits are non-
empty and o(V*,V)-compact.

(ii) We can extract a subsequence from family (2.1) {(infyex, F*(z)) : & —

e}aeHeHﬁ for which there exists an absolute variational S-limit in the o(V*,V')-topology.

Remark 2.1. A similar result can be proved in the case when X = V is a separable
Banach space (i.e. X may be a non-reflexive space), 7 is the o(V, V*)-topology for X,
and the principle of ”compact embedding” holds, i.e. there exists a o(V,V*)-compact
set Xeomp C X such that X, C Xcomp for every e € (0,eq].
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Let us denote by

M(F®; X,) = {xg € X.

€0\ _ €
F (xe)—xlen)geF (m)}

M (F°; X.) = {xs € X.| Fé(z.) < Sup< inf F*(z) + o, _é>}

reXe

the sets of all minimizers and a-minimizers of the constrained minimization problem
(infrex. F°(x)), respectively.

Theorem 2.3. Assume that the sequence {FE X — R}se(o o] absolutly S-
converges to a functional F : 7-Lm X, — R, and F # +o00 on 7-Lm X.. Then the
following statements hold:

(i) minger-m x, F(z) = lim. o inf.cx. F°(2)

M(F;7-1i X.) = Nasom-LiM*(F%; X.) = NasoT-Ls M*(F<; X, ).
(ii) Let 22 be a minimizer of F< in X.. If the sequence {2 € Xc}oe(0,e,] T-cONVETgES

to some element x* (or x* is a T-cluster point of this sequence), then x* is a minimizer
of Fin 7-Lm X, (i.e. z* € M(F;7-Lm X.)), and F(z*) = lim._,o F¢(22).

Morever, if the sequence {F¢ : X, — K}Ee(o’go] 1s T-equicoercive, then the set of
minimizers M(F;7-Lm X.) is non-empty and T-compact.

3. Formalism of G*-convergence of elliptic operators

Let us denote by wg1 the weak topology of H} (), by w2 the weak topology of L?(),

and by sg-1 the strong topology of H~1(2). Let us consider sequences of operators
{Ac}ec(0,e0) and {Bc}ee(0,e0] such that:

(1) (Beu, )iy = Jobeupda for all ¢ € HG(Q), i.e. B are linear continuous
operators from L?(Q) to H~1(), for every € € (0, o).
(ii) (Aey, 0) i) = Jo(Vi, AVy)rnda for all € Hg(Q).

(iii) The family of linear operators {A. € L(Hj (), H '(Q))}.e(0,e0) is uniformly
coercive and uniformly bounded, i.e. there exist two constants Ag and A\; (0 < Ag < A1)
satisfying )‘OHyH?qS(Q) < <A6yay>Hé(Q)7 ||-AE|| < A1

As is well known (see [21, 22]), the family of operators
{A s Hy(Q) = HH (D) }ee(0,0]

is compact with respect to G-convergence, i.e. there exists a coercive bounded operator
Ao : HY(Q) — H71(Q) such that

(SHfl X wHé )—Lm gr (.AE) = gr (.Ao) (3.1)

Ao @iy = [ (Vo AVande Vo € HYQ)  (32)
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where gr (A) is defined as the set {(z,y) € H~1(Q) x H3 ()| x = Ay}. Here the matrix
Ap is the so-called H-limit of the sequence {A.}.c(0,,,)- However, many authors (see,
e.g., [21, 22]) define a sequence of operators {A.}.c(0,c, to be G-convergent to Ay if
AL — ASYf weakly in H}(Q) for any f € H™1(Q). But it is easy to prove that the
last definition of G-convergence is equivalent to that we use in (3.1).

As we study the state equation
Ay = B.u+ fe in D'(Q2) (3.3)

under the state- and control-constraints

y € KE7
(3.4)
u € U,
instead of the graphs gr(.A.) we have to consider their restrictions
gr (Ac)lQ. xk. = gr (Ac) N[Qe x K] (3.5)

where by Q. we denote the images of the sets U, in H~!(2) under the maps H¢ :
L?(Q) — H=1(Q), where H°u = B.u + f-, i.e.

QE:{geH‘l(Q)‘g:Bsu-i—fsVuEUE}. (3.6)

Therefore we would like to have sufficient conditions under which the topological limit
of the restricted graphs with respect to the 7 = sg-1 % W -topology

7-Lm [gr (A:)]g. x k. ]

can be recovered. However, in the general case, this turns out to be impossible because
by the properties of topological limits in the Kuratowski sense we have the inclusion

7-Ls (gr (A:) N[Q. x K.]) C m-Ls[gr (A.)] N [(sg-1)-Ls Q. x (wp)-Ls K.].

Therefore, if
(sr-1)-Ls Q- =10 (3.7)

or if there is not a single sequence of admissible pairs {(u.,y.) € U x K.} for which
{(B:ue + f-,ye)} is T-convergent, we obtain

{7-Ls[gr (A:)lq.xx.]} = 0.
Example 3.1. Let €2 be a bounded open set of R™. For each € € (0,¢0] 77 (1 <i <

n(e)) there is some closed subset, which is called a "hole”. The domain €. is defined
by removing the holes T from (2, that is

Qe =0 \ U:'L:(El)Tia'
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Let U. be the closure in H~1(Q) of the set of all functions u € C°°(Q2) with suppu
contained in €2, such that v > 0 in 2.. We denote by x. the characteristic function of
the perforated domain 2. and we shall assume that the following conditions are fulfilled:
(i) Every weak-* limit in L>°(Q) of {x.} is positive a.e. in Q.
(i) B-u + f. = u for every € € (0,¢eq].
In this case (3.7) holds. Indeed, suppose the converse. Then there are a sequence

{u.Yecn, where H € H* such that u. € U, for every ¢ € H and {u.} converges strongly
in H=1(Q) to some u* € H~1(Q2). This, however, is impossible as, with any element

ge L),
/usgdxz/uaxagdx,
Q Q

and passing to the limit (using the strong convergence of u. to u* and the weak-x
convergence of y.g to xog for the term on the right-hand side), we get

/u*gdx:/xgu*gdx.
Q Q

Since g was arbitrarily chosen in L'(€), it follows that u* = you* in H~1(Q), which is
not generally true (except when u* = 0) if x¢ # 1. Hence (3.7) holds.

Hence, in the general case we are not able to study the convergence of the graph re-
strictions {gr (A.)|g.x k. }—0 with respect to the 7-topology. Consequently, one should
then work with a weaker topology on H~(Q) x H}(2). To this end we shall consider
the convergence of graph restrictions {gr (A:)|q. xk. }ee(0,e,] With respect to the 7 -
topology, which is defined as the product of the weak topology for H~!()) and the
weak topology for Ha ().

We introduce the following hypotheses:

(A1) There exist a subset L® C H~1(Q) such that Q- NA.(K.) C L* for all ¢ € (0, &
where A, (K.) is the image of the set K. under the operator A..

(A2) For every € € (0,g0] there is a real reflexive separable Banach space Y. with
norm || - |[c and a continuous linear mapping P. of Y. into Hg(f2) such that
SUP¢¢(0,¢0] HP€|| = o < 00.

(A3) For every ¢ € (0,¢e0] there exists a linear mapping R of Y* into L C H~1(Q)
such that if g € Y*, then P*(RZ1g) = g for every € € (0,¢eq].

Now we introduce the following concept.

Definition 3.1. We shall call the family of real reflexive separable Banach spaces
{Yo}oe(0,e0] coordinated with the control object (3.3) - (3.4) if hypotheses (A1) - (A3) hold
true and there is a sequence of convex closed subsets {@e C H () }ce(0,60] Such that
RIP*: Q. - Q. where Q. satisfies Q. N A (K:) = Q: N A(K,) for every e € (0, &q]
and p-1-LiQ. # 0.

Definition 3.2. For problem (3.3) - (3.4) with a coordinated collection of spaces
{Yo}oe(0,60) the sets

Gr(A) = {(f.y) € H'(Q) x H}(Q)| Ay = R PIf }
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are called prototypes of the operator graphs gr (A;).

Thus instead of the problem of topological convergence for the graph restrictions

{gr (A) Q. x k. }se(O,so]

in the 7*-topology we may consider the topological convergence of their graph prototypes
in the 7 topology for H~1(Q) x H}(£2). This fact leads to the following notation of G*-
convergence.

Definition 3.3. Let A, € L(H{(Q); H '(Q)) be a coercive operator. We say
that the sequence of operators {A. € L(Hg(Q); H_l(Q))}ee(o,eo]
operator A, (in symbols, A A,) if -Lm Gr(A;) = gr (A.).

Remark 3.1. We note that the G*-limit of the operators A. is defined in terms
of the T-topology. Moreover, if we put Y. = H}(Q), P.y = y, RTg = g for every
y € H}(Q), g€ H1(Q) and ¢ € (0,e0], then Q. = Q. and each of the graph prototypes

Gr (A;) coincides with the corresponding graph gr (A.). Then Definition 3.3 reduces to
the well known definition of G-convergence.

G*-converges to the

Proposition 3.1. Suppose that the for the original constrained state equation there
is a coordinated collection of Banach spaces {Y:}oc(0,c0]- Let Ax € E(H&(Q);Hil(ﬂ))
be a coercive operator, {A. € E(H&(Q);Hil(Q))}Ee(Oﬁo]
formly bounded and uniformly coercive operators. Then the sequence {Ac}oc(0,c9) G*-
converges to A, if and only if AZ'RIPXf — A;Lf weakly in HY(Q) for any f €
HYQ).

be a G*-compact set of uni-

Proof. Assume that AEG—*> A.. Then, by definition of G*-convergence,
AT'RIPYf — A7 weakly in H)(Q)

and the ”only if” part of the statement is proved.

Let us prove the "if” part. Suppose that AZ'RIP*f — A;lf weakly in HJ ()
for any f € H™(Q). By G*-compactness of the set {A-}.c(0,c,], there exists an index
set H € H* and a subsequence {A.}.c i such that A.c y <, ﬁ*, where A, is a linear
bounded coercive operator from H{ () into H~1(Q2). Consequently, for A, there exists
an invertible bounded operator ﬁ*_l. The definition of G*-convergence implies that

AZNf = AZYf for any f € H-Y(Q). Therefore A;! = A;7! and A, = A,. Thus
G*
A&:(k) —>A*
Theorem 3.1. Let the following assumptions hold:
(i) {A. € L(H}(Q), HH(Q))}

formly bounded operators.

c€(0,00] s a sequence of uniformly coercive and uni-
K

(ii) The collection of Banach spaces {Yz}.c(0,e,] 5 coordinated with the constrained
state equation (3.3) — (3.4) in the sense of Definition 3.1.

Then there exist an index set H € H*, a subsequence {Ac}een and a coercive linear
operator A, of H(Q) into H=*(Q) such that A5 A, e, 7 Lm Gr (A:) = gr (Ay).
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Proof. Since the space Hj(f2) is separable and reflexive, there exists a metric d
such that for any sequence {y.}.c(0,,) the following conditions are equivalent:

(1) y. — y weakly in H}(Q)

(2) {¥e}ee(0,60) is bounded and d(ye,y) — 0
(see, e.g., [6]). We denote by u the topology associated with the metric d on H}(Q).
This topology has a countable base.

Since the topology sy-1 X p has a countable base, by Kuratowski’s compactness
theorem [19], there exists a subsequence {Gr (A:)}een, with H € H*, convergeing to a
set C C H™1(Q) x H}(Q) in the sg-1 x p-topology.

We proceed to prove C' = 7-Lm Gr (\A.). To this end we show

7-Ls Gr (A.) C C, (3.8)

C C 7-LiGr (A,). (3.9)
Firstly, let us verify (3.8). Suppose (f,y) € 7-Ls Gr (A¢). Then there exist an index set
H € H* and a sequence {(f.,y:)}ec # converging to (f,y) in the topology 7 such that
(fe,ye) € Gr (A.) for every e € H. Since (1) implies (2), we see that (fe,y.) converges
to (f,y) with respect to the topology sp-1 x u. Hence, (f,y) € C.

As for (3.9), let (f,y) € C. Then there exists a sequence {(ﬁ,ys)} converging to
(f,y) in the topology spz-1 X u such that (f-,y.) € Gr (A.) for all € small enough. Since
{f-} is bounded in H~1(Q),

ye = AZ'RIP! f. = P.AC' P! .

is bounded in H{(Q2) as well. Then the equivalence between conditions (1) and (2)
yields weak convergence of {y.} to y. Hence, {(f;, Ye)}ee(0,e] CONVerges to (f,y) in the
T-topology, which implies (3.9).

Finally, we prove the existence of an invertible linear bounded operator A, : Hg (£2)
— H7Y(Q) with C = gr (A.). Using Proposition 3.1, we see that there exists a linear
operator Cy : H™Y(Q2) — H}(Q) such that for all f € H~1(Q)

ye = A'RIPYf — O.f weakly in Hj(€).

Then by analogy with [17] (see Proposition 1.7) it can be proved that there is a constant
a > 0 such that the inequalities

If = gllfr—1 < @l|Cf = Cuglify (3.10)

(f =9.Cuf = Cug) 2 0| Cuf = Cugllip (3.11)

hold for every f,g € H~1(Q)). Therefore from (3.10) - (3.11) we deduce that for any
feH Q)

£ < allC. fI2, (3.12)

(f,Cuf) 2 a M Cufl1F (3.13)

Consequently, the operator C, is invertible, i.e. we may set A, = C;!. Moreover,
we obtain for the operator A, the properties of boundedness and coerciveness taking
arbitrary y € HJ(Q) and substituting f = A,y into (3.12) - (3.13). The theorem is
proved B
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Now we are in the position to state the main result of this section.
Theorem 3.2. Suppose that the following conditions hold true:
(i) {A. € L(H}(Q),H1(Q))}

uniformly bounded operators.

e (0.20] 1s a sequence of uniformly coercive and
10

(ii) For the constrained state equation (3.3) — (3.4) there exists a coordinated col-
lection of Banach spaces {Y:}ce(0,e,]-

(iii) {K:}ee(0,e0] 5 a sequence of weakly closed convex subsets of H}(Q) for which
there exists a non-empty topological limit (wHé)—Lm K. #0.

(iv) There are an index set H € H and a T-converging sequence {(jz,yg) € Q\E X
K .}ee g such that Acy. = R PX f. for everye € H.

Then there exist a subsequence {e}.c g, where H € HE, and a coercive bounded
linear operator A, € L(H}(Q), H*(Q)) such that A S5 A, and

7-Lm [Gr (A.)| (3.14)

(:2\6><K6:| = gr ("4*)|(5H71)-Lm [(/Q\g]x(wHé)—Lm [K:]®

For the proof we need the following result (see [16]).

Lemma 3.1. Let (X,7) be a locally convex vector space, let {W.} and {R.} be
sequences of T-closed convexr subsets of X for which the following conditions hold:

(&) WeN R. # 0 for every e € (0,¢&0].
(b) There exists topological limits T-Lm W and 7-Lm R..
(3) 7-Li (W-.NR.) # 0.

Then for the sequence of subsets {W N R.}.c(0,e,] there exists a topological limit in the
T-topology such that T-Lm (W, N R.) = 7-Lm W, N 7-Lm R..

Proof of Theorem 3.2. In accordance with Lemma 3.1 we need to verify condi-
tions (a) - (c) for the sets W. = Gr (A.) and R. = Q. x K., where Q. are defined in
Definition 3.1. Condition (a) follows immediately from the uniformly regular property
of the original control object, that is from supposition (iv). Since the sequence of oper-
ators {Ac}ee(o,e,] s compact with respect to G*-convergence and the strong topology
for H=1(Q2) has a countable base, by the Kuratowski compactness theorem [19] there
exist an index subset H € H*, aset ) # Q € H~(Q), and a coercive bounded operator
A, € L(H(Q), H1(Q)) such that, for e € H,

7-Lm Gr (A.) = gr (A,)
7-Lm [Qe x K.] = [(sg-1)-Lm Qz x (wyn)-Lm K.| = Q x (wpyz)-Lm K.

Therefore condition (b) of Lemma 3.1 holds. Finally, condition (c) is obvious from (iv).
Hence, by Lemma 3.1 we have

r-Lan [Gr (A5, .| = 7L (Gr (A) N [Qe x K.))

= 7-Lm [Gr (A)] N [(s5-1)-Lm @ x (wy1)-Lm K.].

@xKE]

This implies (3.14)
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Remark 3.2. We stress that as follows from Remark 3.1 the concept of G*-
convergence may be viewed as a generalization of the well known notion of the operator
G-convergence. However, even though the sequence of uniformly coercive and uniformly
bounded operators {A. € E(H(%(Q)’H_I(Q))}ee(o,eo] is compact with respect to the

G-convergence, the topological limit of the graph restrictions

{gI‘ |QE><K }66(0 co]

in the 7-topology may not be recovered in the terms of the G-limit operator. However, if
we asume that for the for control object (3.3) - (3.4) there exists a sequence of admissible

pairs { Ue,Ye) € Us X K, } (0,20 Such that

K>y —y* weakly in  Hj(Q)
Qe 39 =Beuc+ fe — g strongly in H_1<Q)
Aeye = Beue + fe for every SIS (07 50];
then, indeed, we have
{T_Li [gr (A5)|Q€ XK&]} % Q)'

Therefore, if we put Y. = H3(2) and take the operators P. and RT to be the identities,
by Theorem 3.2 we obtain

As i>-AO; Q\E = Qe Ve e (0750]
Gr (AE)’@\EXKE = gr (Aff)’QsXKs VE € (0780]

7-Lm [gr (Ae)|q@.xkx.] = gr (Ao)|(s,,_1)-Lm Q)% (wgy )-Ln [K.]

i.e. the topological limit of graph restrictions {gr (A:)|q.xk.} in the 7 = wy-1 X sp1-
topology is recovered in terms of G-limit operator Ag.

Remark 3.3. Since in general the maps F. : H~1(Q) — H~1(Q) defined by
feEef f=RIPT

are multi-valued, one might suspect that the topological limit of the graph prototypes
may depend on the choice of sequences {f:}.c(0,c,]- This, however, does not turn out
to be true. Indeed, suppose that for some sequence {fc}.c(0,co C H ~1(Q) there exist

two sequences of prototypes {J/C\sl}EG(O,Eo] and {E}EE(O,EO] such that
(i) f} — 71 strongly in H=YQ)

(ii) f2 — f2 strongly in H=1(Q)

(i) ! # P2

(iv) RFPrfl = f. = RFP* f2 for every ¢ € (0, ).

RO o

Then for sequences of corresponding solutions

yl=AZ'RIPIfY and 2 = AZ'RIPIJ?
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we have y! = y2 for every e € (0,e0]. Since {y’}.c(0,,] are bounded in Hy(Q), there
exists an element y* € H}(2) such that y! — y* and y2 — y* weakly in H} (), that
is (fLy*) € gr(A.) and (f2,y*) € gr(As). At the same time, by Theorem 3.1, the

operator A, has a single-valued inverse. This implies that f*l = fz Thus the G*-limit
of the sequence {Ac}.c(0,c,] does not depend on the choice of functions prototypes for

{f}ae(o,ao]-

The following example shows that in the genaral case the G*-limit A, of the oper-
ators {A.} may not coincide with the G-limit Ay of this sequence.

Example 3.2. Let Q be an open bounded domain of R", and let {Q.}.c(0,¢,] be a
sequence of open domains of R™ that are contained in €. Let {Ac}.c(0,,] be a sequence
of linear uniformly coercive and uniformly bounded operators from H}(Q) into H~1(Q).
For every ¢ € (0,e0] we put:

(i) L¢ be the closure in H~1(Q) of the set of all functions f € C°°(2) with supp f
contained in €)..

(if) Yo = Hg(k).

(iii) P. : H3 () — H () be the extension operator defined for every y € H}(Q.)
by (Pzy)|a. =y, (Pzy)|o\o. = 0. Since P. is a linear continuous operator, the conjugate
operator P*: H=1(Q) — H~1(£.) is defined.

(iv) RY : H1(Q.) — (L € H~1(Q)) be the extension operator defined for every
y € H71(Q:) by (R f)la. = £, (R f)lave. =0.

Assume furhter that each of operators {.A. }.¢(0,¢,) has the representation
Aa_l _ PsAg_lpg*y

where A, € L(Y;;Y) are invertible operators, and if y € C§°(£2), then there exist a
constant v > 0 and a sequence {y. € K. }.c (0, such that y. — y weakly in Hj(2) and
for every closed cube S C €2,

limsup/ Vye|?dx < 1//(|Vy|2+y2) dx,
S S

e—0

where by K. we denote the closure in H} () of the set of all functions y € C*°(2) with
supp y contained in €)..

Thus, A, A, if and only if
AT'RIP f =P AP f — AJ'f weakly in H}(Q),

for every f € H=1(Q). Therefore, in view of Kovalevsky’s theorem (see [18]) we deduce
that for the G*-limit operator A, the representation

holds where Ag is the G-limit of {Ac}.c(0,c, in the usual sense, and the operator
F,: Hj(Q) — H1(Q) is defined by (F,y,z) = [, u(x)yzdx.
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4. Setting of the homogenization problem

Let © be a bounded open set in R™ with Lipschitz boundary. We define the optimal
control problem as follows:

—div (A:Vy) =bu+ f. in (4.1)
y=0 on 0N (4.2)

ueclU, yeckK. (4.3)

I (u,y) = /QC’Ede:B + /Q(Vy,NEVy)Rndx + /Q D.u’dr — inf.  (4.4)

In the sequel we impose the following asumptions:

(a)
(b)
(c)

(d)

(e)

(f)

(g)

(h)

(i)
@)

{K.}ee(0,60] 18 a family of weakly closed convex subsets of Hj(£2) such that there
exists a non-empty topological limit (w1 )-Lm K..

{Uc}ee(0,e0) is @ family of weakly closed convex subsets of L?(£2) such that there
exists a non-empty topological limit (wp2)-Lm Us.

There exist linear mappings J. : L?(Q) — L?*(Q2) and a family of closed subsets
{ﬁg}se(ovso] C L?*(Q) such that U. = {u € L*(Q)|u = Jv, v € ﬁg} for every
e € (0,e0].

There exists an invertible linear operator Jo : L?(Q) — L?(Q) such that J. —
Jo in the weak operator topology, i.e. (u, Jov) 2 — (u, Jov) 2 for every u,v €
L2(€) and the inclusion (wz2)-Ls U. C Jy H(wg2)-Lm U.] holds.

For every sequence {u. € Us}ce(0,c,] Weakly converging in L*(Q) there exists a
sequence of prototypes {v. € ﬁs}ge(o,go] satisfying u. = J.v. for every e € (0, &¢]
and ue — u = Jov weakly in L?(Q) where v € L?(Q) is the weak limit of
{UE S Us}aE(O,ao]-

The sequence {f. € H™(Q)}ce(0,¢,] is compact with respect to the weak topol-
ogy of H=1(Q).

The sequence {b. € L>(Q)}ce(0,c,] is compact with respect to the strong topol-
ogy of L>(2).

Ac, N. € [L=(Q)]"" for every € € (0,20], and there are two positive constants

0< ﬁO S 61 satisfying ﬁ‘€|2 S (gaNES)Rna (571455)1[{” S ﬁl|§|2 a.e. in Q? 60 S
C. < [, for any £ € R™ and ¢ € (0, &g].

{Dc}ec(0,e0] is compact with respect to the strong topology of L>(£2).
The boundary value problem (4.1) - (4.3) is uniformly regular, i.e.

—div (A:Vy) = beu + fo in Q
E. =< (u,y) € LA(Q) x Hy(Q) | y =0 on 99 # 0
uels, yeK.

for every ¢ € (0, o).
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(k) For the control object (4.1) - (4.3) hypotheses (A1) - (A3) hold true.

(1) For every e € (0, 0] there exist a linear continuous operator B. from L?(Q) into
H=1(Q) and an element f. € H~(Q) such that

R;’P:(ggv + ﬁ-) =b.J.v+ f. for every v € ﬁs
J?g — ]/”E) strongly in H~1(Q)
B. — By L(L*(Q); H*(Q)) in the uniform operator topology

ie. ;1_I)I(l) ||B€ - BO||£(L2(Q);H—1(Q)) = 0.

Remark 4.1. As follows from conditions (k) - (1) and Definition 3.1, there is a
collection of real reflexive separable Banach spaces {Yz}.c(0,-,) coordinated with the
constrained state equation (4.1) - (4.3). Therefore, by virtue of Theorem 3.1, there

exists a coercive linear operator A, of Hg(2) into H~1(Q) such that A. <, A, where
A. € L(HG(Q); H1(Q)) are defined as

(Acy, 0) 1 () =/Q(V90,A5Vy)uandx Vo e Hy(Q).

We are now in the position to apply the procedure of S-homogenization to the
optimal control problem (4.1) - (4.4). Recall that our approach is based on the following

representation
{< inf Ie(u,y)>} . (4.5)
(uzy)e:*e 66(0,60]

of the optimal control problem.

We shall consider the homogenization of the optimal control problem (4.1) - (4.4)
with respect to the u-topology for L2(2) x Hg (2) by passing to the limit in the sequence
(4.5). Namely, the u-topology is the most natural one for the homogenization procedure
in our case. Indeed, the sequence of optimal pairs {(ug,yg)}ae(o,ao] for the original
problem (4.1) - (4.4) is bounded and hence we may assume that it is compact with
respect to this topology. Therefore, thanks to Theorem 2.3, each of the cluster points
of this sequence in the p-topology will be a minimizer for S-homogenized problem as
well.

We also note that by virtue of condition (h) the sequence of cost functionals {I. :
=2 — E}EG(O,EQ} is p-equicoercive, and by property (j) there exists a non-empty lower
topological limit for the sequence of sets of admissible pairs {Zc}.c(o,c, in the pu-
topology, i.e. u-LiZ. # (). Therefore, Theorems 2.2 and 2.3 immediately give the
following result.

Theorem 4.1. Suppose that assumptions (a) - (1) hold true and for the sequence
{Ec}ec(0,e0) there eists a non-empty topological limit in the u-topology. Then the fol-
lowing statements hold:

(1) We can extract a subsequence from the sequence of constrained minimization
problems (4.5) (still indexed by €) for which there exists an absolute variational S-limit
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in sense of Definition 2.2, i.e. the strongly S-homogenized optimal control problem has
the representation

(L) ) ). (46)

(U,y)G[J-LmEE

(ii) The sequence of optimal pairs {(u?, yg)}se(o,so] for family (4.1) — (4.4) is com-
pact with respect to the p-topology.
(iii) If (u,y) is a cluster point of the sequence of optimal pairs {(u2,y2)}ec(0,0] i

the p-topology, then
(u,y) € M(p-Im*(Ic|z, ); p-Lm =)

T_lma(IE ’55)(’&, y) = hH(l) IE (Ug, yg)
£—
In order to recover the strong S-homogenized problem (4.5) we shall use the follow-

ing result.

Lemma 4.1. A set E is the tological limit of the sequence {E¢}cc(0,c,) C X if and
only if the following conditions are satisfied:

(i) For every x € E there exist an index set H € H and a sequence {T:}ec
converging to x in X such that x. € E. for everye € H.

(ii) If H is any index set of H*, {x.}ecy is a sequence converging to x in X such
that x. € E. for everye € H, then x € F.

5. The topological limit of the set of admissible solutions

We begin this subsection with the following result.
Lemma 5.1. If assumptions (a) - (1) hold true, then

0 +# (wg-1)-LmQ. = {g € H_I(Q)‘ g = BoJ; 'u+ foVue (sz)—Lng} (5.1)

where ﬁ) 1 a limit of {f;} in the strong topology of H=1(Q) and @5 are convex closed
subsets defined by

Q- ={gen(@)|g=Bv+ [ voel.} (5.2)
Proof. Let g* = goJo_lu* + ﬁ) be any element of the set
{g € H_I(Q)‘ g =BoJ; 'u+ foVue (sz)—Lng}.
Then since u* € (wy2)-Lm Uy, it follows that there exist an index set H € H, a sequence
{uf}een converging to u* in the weak topology of L?(f2), and a sequence of prototypes

{v}}een weakly converging to v* in L?(Q) such that

ur =JvlelU,, vielU.Vee H and u* = Jov*.
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Therefore, by property (1), gev;‘ + ]/”\5 € @5 for every € € H. At the same time we have

|Bev? — Bov*|| < [|(Be — Bo)vZ|| + ||Bo (v —v™)|

<|IBe = Boll [lz[| + sup  (By, vz —v).
6y =1

Hence,
B\Ev;‘ + fe N gov* + ﬁ) — B\Ojo_lu* + ]?0 strongly in H 1 ().

On the other hand, if H is any index set of H* and {g. € @E}ge g is a sequence
converging to g in the strong topology of H~1(£2), then there is a sequence of control

prototypes {v. € Uc}ce g such that g. = B.v. + f- for every ¢ € H. Since the sequence

B.v. is bounded in H~1(Q) and the operators B. are compact with respect to the
uniform operator topology, it follows the the sequence {v.}.cy is bounded as well.

Hence we may assume that there is an element vy € (wpz2)-Ls [75 such that v. — g
weakly in L?(€2). Consequently,

ge = ggvg + J?E € @5 for every ¢ € H
ge — govo + ﬁ) = go strongly in H™1(Q).

But property (d) there is an element ug in (w2 )-Lm U, satisfying vg = J; 'ug. Therefore
go = BOJo_luo + fo. Thus, with Lemma 4.1 we are done i

By virtue of the G*-compactness Theorem 3.1 we obtain the following result.

Theorem 5.1. Suppose that conditions (a) - (1) hold true and that there is an index
set H € H and some p-converging sequence of admissible pairs {(ue,ye) € Ec}eeny for
the original optimal control problem (4.1) — (4.4). Then for the sequence of admissible
pairs sets {Ec}oc(0,e,] there exists a topological limit in the p-topology satisfying

p-Lm=, =X (5.3)

where

_ iz 71 ~
X= {(U,y) € L2(Q) % H&(Q) Ay = BoJy u+ fo }

u€ (wr2)-LmUs, y € (wpy)-Lm K.

and A, € L(H}(Q); H1(Q)) is the G*-limit of the sequence of operators {A.} in the
sense of Definition 3.3.

Proof. First of all we note that by the standing assumptions there is some sequence
of admissible pair {(ue,y:) € Zc}eec i such that (ue,y.)—— (u°,4°). However, by prop-
erty (e) there can be found a sequence of control prototypes {v. € (76}56(0’50] satisfying
u. = J.v. for every e € (0,e0] and u. — u® = Jyv° weakly in L?(Q), where v° € L?(Q)
is the weak limit of {v. € (75}56(0’50]. Therefore, in view of condition (1) instead of the
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original sequence of admissible pairs we may consider the sequence of their prototypes
{(ve, ye) € _E}EEH, where the sets Z. are defined by

(1

Ay = RFP*(Bov + -
= (v,y) € L2(Q) x HA Q)| 7Y (Bev+ /) |
vel,, ye K.

Consequently, by Lemma 5.1 and condition (e) we have
Q. > Bev. + f. — goJo_luO +foe€ ($g-1)-Lm Q. strongly in H1(Q),

i.e. all assumptions on Theorem 3.2 hold true. Therefore, for the topological limit of
prototype graph restrictions [Gr (Ag)|§ w K. | representation (3.14) holds.

Let (u*,y*) be any pair of X. Then, by Lemma 5.1,
G = BoJ; 0 + fo € (sg—1)-Lm Q.
where the sets @E are defined in (5.2). Using Theorem 3.2 we deduce that

(g%, y") € gr(As)N [(stl)—Lm@E X (wHé)—LmKE].

Here A, is the G*-limit of the operators sequence {A. }.c(0,c,- Then in accordance with
Theorem 3.2 we obtain
(9%,9") € -Lm Gr (A:) N [(SH—I)—LH] @E X (wHé)-Lm Ks}

= 7-Lm [Gr (A5)|§E><KJ'

Therefore, by the properties of topological limits (see Lemmas 4.1 and 5.1) there exist
an index set H € H and sequences {Y: teec i, {Ue}ee 1, {V:}ee g such that

K.>y. —y" weakly in HJ ()

U.50. — 0" weakly in L?(9)

U.> J.v. =u, — u* = Jyv* weakly in L*(Q)
0.5 =B+ Fo— Bl 4 fo—g  strongly in (@)

Ay = RTPg. = b, + f- for every € € H.

Thus for the pair (u*, y*) we have found the index set H € H and constructed a sequence
{(We,Yc)}ce m such that

(Ue, Ye) LN (u*,y") and (U, y:) € E. for every € € H,

i.e. condition (i) of Lemma 4.4 holds.

Now we consider any index set H of H*. Let {(U.,7.)}ce m be a sequence pu-
converging to some pair (u,y) such that (u.,y.) € E. for every ¢ € H. We have
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to show that (u,y) € X. Indeed, in this case there exists a sequence of prototypes
{0.}.c g weakly converging to v in L?(Q) such that

u. = J.u. € Ug, 0, 6175 Vee H and u = Jyv.
Consequently,
G- = B, + f. — goJo_lu +Fo =70 strongly in H~1(Q)
5. = AT\ REPIG — y weakly in H{ ()
and by virtue of Theorem 3.2 we have

(90,y) € gr (A*)|(SH_1 )-Lm Q. x (wyp)-Lm K’

Therefore y = A; gy = A;l(l/g\oJo_lu—i— 7o), i-e. we have the inclusion (u,y) € X. Thus,
using Lemma 4.1, we deduce that the set X is the topological limit of the sequence of
admissible pairs sets {Z. }.¢(0,c,- This completes the proof B

Remark 5.1. It is easily shown that we are able to omit the assumptions of this
theorem with respect to existence some p-converging sequence of admissible pair for
the original optimal control problem (4.1) - (4.4). Indeed, thanks to the uniformly
coerciveness property of the cost functionals I. the sequence of optimal pairs is bounded.
Hence we may assume that this sequence is compact in the p-topology.

6. On the explicit representation of the absolute S-limit
of the cost functional

In this section we shall prove that, under some reasonable assumptions, there exist
a convex closed subset Uy C (wpz2)-LmUj, a functional F' : Uy — R, and a matrix

Nt € [L>(2)]"" such that

p-lm® (I |z ) =/ Condw+/(Vy,NﬁVy)RnderF(U)
Q Q

£

To this end we inroduce the following concept.
Definition 6.1. We say that the sequence of operators {A. € L(H}(Q); H ()}

strongly G*-converges to the operator A, (in symbols, A, <, A.) if the sequence {A.}
G*-converges to the operator A, and there exists a matrix A, € [L*> (Q)]”2 such that
for every sequence {g.} strongly converging in H~1(2) to g the conditions

Aty = [ (Ve AVyods Vo € HY(@) (6.1)

A Vy. — A Vyo weakly in [L*(02)]" (6.2)

hold where y. = AZ'RF P*g. and yo = A.J.

Now we establish the following result.
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Lemma 6.1. Let {(uc,y:)}ee(0,c0) be any sequence such that
(te,ye) == (u0,%0), (ue,ye) € e Ve € (0, ).
Then, under conditions (a) - (1) and A, %A*,
(Vye, NoVy)re — (Vyo, N¥*Vyo)rn in D' (Q)

where the matriz N* depends only on {N:}Yee0,00) and {Ac}tec(o,e,] and Nt is given by
formula (6.9) below.

Proof. First of all we define the functions in {1. € Hg(2)}ce(0,e0] by

— div(ALVy.) = div(N!Vy.) in Q (6.4)
e =0 on 0N. (6.5)

Under our assumptions, it is easy to see that ||| s1(q) < C, where the constant C' is
independent of €.

Let ¢ € D(Q2) be an arbitrary function. Here by D(2) we denote the space of all
smooth real valued functions on 2 which are compactly supported in €. Let (. € Y. be
functions such that pi. = P.(. for every € € (0,&0]. Then by property (A3) we have

(REPI(B0: + J2), o) ya.pg 1) = (REPE(BBe + f2), PECp) (g )
= <Pg* (B\eﬁs + f/;), C590>(y6;y;)
= <B\€66 + f/;'h w€¢>(Hé;H—1)7

where the value of FF € HY(Q) at u € H}(Q) is denoted by (F, ) (zr2.-1) and
{U}2c(0,e0] are the prototypes of the sequence of original controls {u. }.¢ (0, satisfying
condition (e).

Now, equation (4.5), when multiplied by ¢, and integrated by parts, gives

0= (B.9. + ]?anaSD)(Hé;H—l) - /Q(Asvyav Vo)rnped
+/(N;vyaavsp)R”ysdx‘i_/(vyaNsvys)R”SDd-T (66)
Q Q

+ / (ALY, Vo) mnyda.
Q

We may now pass to the limit in (6.6) as ¢ — 0, since each of the term in the right-
hand side is a product of two sequences, one converging weakly and the other strongly
in L?(2). Thus by property (e) we have

lim (Vyg,Ngvyg)Rn(,O dr = _<B\OJO—1UO + .fb7¢090>(H6;H71)

e—0 o)

+/ (A*VyOvVSD)Rn@DOd:E
Q

= lim [ ([NIVye + ALV, Vi) g, oda.
E— QO
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Note also that, since
B.u. + ]?5 — B\Ojo_luo + fo strongly in H (1),

by definition of the strong G*-limit (see [21]), we have

Ye — Yo weakly in H}(Q)
A Vy. — A Vyo weakly in [L"O(Q)]”2
Ye — Yo weakly in H}(Q)
and
—div (A, Vyo) = BoJy tug + fo. (6.7)
Hence,

lim [ (Vye, NoVye)rnpdx
e—0 Q

- _<B\OJO_1UO + Lﬁ)7¢0¢>(Hé;H71)
— <div(A*Vyo),<p¢o>(Hé;H_1) - /Q(A*Vymvwo)ﬂ%"@dx

+ liII(lJ ([N;Vyg + ALV, Vyo)Rngodx
E— QO
+ lim (div([NZ Ve + AZVC]), 000) (1.1

Now, using (6.4) and (6.7) we obtain

lim [ (Vye, N-Vyo )gnpde = liH(l)/ ([ALVYe + NEVy.] — Aivwo,Vyo)Rngodx
Q e=0Jq

e—0

for every ¢ € D(Q).

Since Vg is a homogeneous function with respect to Vyg it follows that we may
write the previous expression as

lim | (Vye, N.Vye)rnpde = / (Vyo, N¥Vyo) g dz, (6.8)
Q Q

e—0

where

N#Vyo = w- lim[ALVY. + N!Vy.] — A4V, (6.89
e—

Here by w-lim._,g we denote the weak-* limit in [LOO(Q)]”Q. Finally, note that (6.8)
is true for every sequence {(uc,¥:)}ze(0,c,] Satisfying (6.3). Consequently, the matrix

Nt € [L>=(Q)]" depends only on {Nec}ec(o,e0] @and {Ac}ec(o,0)- This concludes the
proof i
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Let IIy be the linear operator from L?(2) x HJ(Q) into L?(Q defined by
Iy [X] = {u € LQ(Q)‘ Jy € Hy(Q) such that (u,y) € E}

for every ¥ C L2(2) x H}(2). We denote by F : IIy[u-Lm =] — R the absolute S-limit
of the collection of functionals

{Fg(u) = /Q D.u’dx

with respect to the weak topology for L?(2). Note that, by the standing assumptions (a)
- (1), the absolute S-limit F : Iy [u-Lm Z.] — R exists, since the sequence of functionals
{F: U — R}ae(o,ao] is wr2-equicoercive. Taking into account this fact and Theorem
2.1 we obtain the following analytical representation for the absolute S-limit of the cost
functional sequence {I. : Z. — K}se(o,so]-

u € HU[EE]}

e€(0,e0]

Theorem 6.1. Under the suppositions of Lemma 6.1 the following representation
for the homogenized cost functional

p-lm®(I:|=.) = / Coyzda:+/(Vy,NﬁVy)Rndx—l—F(u) (6.10)
Q Q

holds for every (u,y) € u-LmE..

Proof. Indeed, for every u-converging sequence of admissible pairs {(uz, ¥z) }ee(0,0]
we have

/C’gygda;—i—/(Vyg,NEVyg)RndxH/Coygd:c—i—/(VyO,NﬁVyo)Rndx.
Q Q Q Q

Therefore by virtue of Lemma 6.1 and Theorem 2.1 the proof of formula (6.10) is trivial B

Remark 6.1. Let K. = H}(Q) and U. = U, for every € € (0, gg], where Uy is some
convex closed subset of L?(€). Then, by the properties of S-limits, for the functional
F : Hy[E:] — R the representation F(u) = [, Dou*dz holds. However, in the general
case we have only the estimate

F(u) > / Dou’dax Vu € y[p-Lm E].
Q
This from the basic properties of S-limits. Indeed, by definition of S-limit we have

(sz )‘lma(FE‘HU[EE])(U) > F(sz )— lim F:S (u)

for every u € IIy[pu-Lm Z.]. Since

['(wp2)-lim FE(u):F(sz)-lim/DEqu:c:/Dou2da:
Q Q
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we are done.

Corollary 6.2 (The one-dimensional periodic case). Let
_ 1 _ 1 + px . X - x
Q_<Cad)CR7 Y;:‘—HO(Q)7 Rng =1, Aa—a<_>7 QE—Q<_)
€ €

where a(-) and q(-) are periodic functions on [0,1]. Then, under the conditions of
Theorem 6.1,

d d
petm(I.=,) = / CoyPda + ¢t / y2dz + F(u)

o[ [ s

Proof. Let {(uc,y:) € Ec}cec(0,eo) Pe any sequence such that (u,y.) - (u, y),
where (u,y) is an arbitrary pair of yu-Lm =.. Then the functions u., y., and 1. satisfy

the equations
(o) ) = e i

) a5 o

By d. we denote the expression
z\ dipe z\ dye
a<€> dx +q<5> dx

where )

Then, using (6.9), we obtain

d

) T\ (dy\?%, .. 4 dy 4 dy
fimy | o(2) () e = 1y ) d%dx—%/c e

where )
ap = [[,a 1 (€)dg]™" is the H-limit of {“(g)}
¢ is a weak limit of {1.} in Hj(c,d).

In order to find the limit of {d.}.c(o,-,] We note that there exists a constant v > 0
such that

d
el a3 ey lla (%) &

H(c,d)’ ||77Z}E||Hé(c,d)a |dE| < 7 forevery €€ (0750]'

dye

dx }se(o,so] in L?(¢,d). Then:

Let n be the strong limit of the sequence {a(f)

Y. — 9 weakly in Hj(c,d)
Y. — y weakly in Hj(c,d)
d. — dy as numerical sequence

a(2) % — 1 strongly in L?(c, d)
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where n = a()%, by the definition of the H-limit. Now we can pass to the limit as e — 0
in the relationship

Using (6.12) - (6.15) we get

1 1

o:do/0 a (&) d ———/ a(€)a>(€) de -
1

:do/oa dg——/ ‘aoj—i

d

1
do —a0d¢ —|—a0/0 Q(f)G_Q(g)df%~

which yields

Substituting dy into (6.11) we obtain

iy [a(E)[ %) o=t [ (L)

We can further proceed as in Theorem 6.1 B

7. Identification of the strongly S-homogenized optimal
control problem and its variational properties

We now apply the procedure of S-homogenization to the optimal control problem (1.1)
- (1.4). We shall assume that the conditions (a) - (1) from Section 4 hold. Recall that
our approch is based on representation (4.5) of the original optimal control problem.
Note that the family of cost functionals {I. : Z. — E}ae(o,so] is equicoercive in the
u-topology. Therefore, by virtue of the compactness theorem for absolute variational
S-convergence in Banach spaces (see Theorem 3.3) we obtain the following result.

Theorem 7.1. Suppose conditions (a) - (1) hold. Then for the family of constrained
minimization problems (4.5) there exist a subsequence {e € H € H*} for which

(il (T2 ) 0,0)) (1)

(%?J)GH'LIH e

15 the absolute variational S-limit in the p-topology.

Remark 7.1. By properties of the S-limit we know that the functional p-lm® (I |z_)
is p-lower semicontinuous and p-coercive. Since the topological limit (in the Kuratowski
sence) p-Lm Z. is a p-closed subset of L2(2) x H}(Q), it follows that the set of solutions
of (7.1) is non-empty and p-compact.

Now for the identification of the minimization problem (7.1) we can use Theorems
5.1 and 6.1.
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Theorem 7.2. Suppose that there is a coercive operator A, € L(H{ (), H1(Q))

such that AE%A*. Then, under conditions (a) - (1) the constrained minimization
problem (7.1) corresponds the optimal control problem

—div(A.Vy) = BoJg tu+ fo in Q (7.2)
y=0 on 0 (7.3)
u € wre)-LmU;, yewHol(Q)—Lng (7.4)
Iy(u,y) = / Coy?dx + / (Vy, Q*Vy)gndzr + F(u) — inf . (7.5)
Q Q

Further note that, since the sets U, x K. are convex p-closed, the optimal control
problem (4.1) - (4.4) is uniformly regular (i.e. () # Z. C U. x K_.), the functionals I.
are strictly convex and p-coercive, it follows easily that [20] for every e € (0,&¢] there
exists a unique solution (u?,y?) € U. x K. of problem (4.1) - (4.4). Using the initial
conditions (a) - (1), we see that there is a constant C; not depending on ¢ such that

2| 20 + ||yg||Hg(Q) <Ci for every € € (0, &)
Consequently, there exists a subsequence {(u?,3°)}.cx where H € H* such that

(u2, y2) -5 (u*,y").

By properties of the topological limit pu-LmZE, we have (u*,y*) € pu-LmZ.. On the
other hand, it is easy to see that S-homogenized problem has a unique solution (u?,3°).
Then from Theorem 2.3 we immediatly obtain the following result.

Theorem 7.3. Let {(ul,y%)}cc u be a sequence of optimal pairs for problem (4.1)—
(4.4) where the index set H € H* corresponds to the choice in Theorem 7.1. Then under
conditions (a) - (1) we have

(u2,y2) == (u”,y°) (7.6)
inf  I.(u,y) > inf Io(u,y) (7.7)
(U‘?y)eEE (uvy)eﬂ_Lm Ee

where (u®,y°) is the optimal pair for the strongly S-homogenized problem (7.2).

Remark 7.2. Suppose that the assumptions of Remark 3.2 hold true. Moreover,
we shall assume that K. = HJ (Q), D. = Do = const and C. = 0 for every ¢ € (0, g¢], the
sets U. do not depend on ¢, J. are identity operators, the sequence { f.} is compact with
respect to the strong topology of H~1(Q). Then the original optimal control problem
(4.1) — (4.4) reduces to the problem that was considered by Kesavan and Saint Jean
Paulin in [7]. Since in this case { RT P*} are identity operators it follows that

~

B. = B., fg = fe, (75 = U, for every ¢ € (0, &] and A, G—*>A0
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where Ay is the strong G-limit of the sequence {A. € L(H}(Q), H~*(2))} d

e€(0,e0] an

(ot 9y = | (Vi Aa)enda ¥ € HY(S)

A, — Ap in the sense of H-convergence [21].

An additional point to emphasize is that by Remark 6.1 we have F(u) = Dy [, u? dx.

Thus under assumptions (a) - (1) the S-homogenized optimal control problem has
the representation

—diV(Aong) = bou + fo in €2
y =10 on 0f)

u € wL2(Q)—Lm U,

Iy(u,y) = /Q(Vy,QﬁVy)Rndx + Dy /Q u*dr — inf .

In addition, by virtue of Theorem 7.3 we have the following variational properties for
the sequence of optimal pairs {(u2,y?)}ecn:

(u2, y2) - (u°, )

inf_ IL(uy) == inf _ To(u,y)
(u,y)EE. (u,y)Epu-Lm =,

u? — u’ strongly in L*(Q)

where (u%, %) is the optimal pair for the above-mentioned S-homogenized problem.

8. Homogenization of an optimal control problem
on a perforated domain

In this section we consider the application of the procedure of S-homogenization and
the results of previous sections to an optimal control problem on a perforated domain.

Our example deals with a non-classical situation in homogenization theory of opti-
mal control problems. Let © be a bounded open set of R?. For each value of ¢ € (0, g¢],
we cover R? by cubes Z¢ of size 2. From each cube we remove the ball T of radius
re = exXp ( — E%) centered at the very center of the cube. In this way, R? is perforated

by spherical identical holes. Set

n(e)
S*=R*\|JTr and Q.=QnQ.=0\ [ JT; .

1=1

This means that we removed from €2 small balls of radius r. whose centers are the nodes
of a lattice in R? with cell size 2e.
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Let f € L?*(Q2) and consider the following optimal comtrol problem in Q:

—Ay=u+x.f inD(Q) (8.1)
y € Hy(Q) (8.2)

ye K., uel. (8.3)
I(u,y) = /Qy2 dx + /Qqux — inf (8.4)

where y. is the characteristic function of the perforated domain 2., K. is the closure
in Hi(Q) of the set y € C°°(Q) with suppy contained in . and U. is the closure in
L?(Q) of the set u € C°°(£) with supp u contained in €. as well.

As follows from [20], for any € € (0, g] there exists unique optimal solution (u?,y?) €
US x Hy(f2) such that y? vanishes in the holes 77 (1 <4 < n(e)), i.e. optimal control
problem (8.1) - (8.4) is uniformly regular for every € € (0, eq].

For € € (0,e0], we set Y. = HE(2.). We define the operators P. and R} as in
Example 3.2. Note that for the control constraints the epresentation

U. = {uc L*(Q)|u= x.u for all u € L*(Q)Big} for every € € (0, £¢]

holds. Thus, J. = x. and for the prototypes of control functions u there are not any
constraints, i.e. U. = L?(€). Moreover, for the sequence of sets {U. x K.} there exists
topological limit in the p-topology

p-Lm [U. x K] = L*(Q) x Hy(Q).

As for the limit of the operators {J.} in the weak operator topology we have J. — Jy =
X0, where xq is the weal-* limit point in L°°(€2) of {x.}. Besides Cioranescu and Saint
Jean Paulin [3] have shown that, when € is perforated periodically, xo will be a positive
constant, i.e. Jy is invertible operator.

Finally, since R*P*u = J.u = x.u for every € € (0,e0] and @ € L?(Q), it follows
that we may rewrite the original optimal control problem (8.1) - (8.4) in another form

—Ay = RIP*(u+ f) in D'(Q) (8.5)

y =0 on 09 (8.6)

I(u,y) = / yide +/ Xeu?dr — inf . (8.7)
9) Q

Thus, it is easy to see that all conditions (a) - (1) for problem (8.1) - (8.4) hold true.
However, in order to apply Theorem 7.2 we note that in our case we may omit the
assumption about the existence of the strong G*-limit for operator —A in (8.5), because
we shall not use the result of Lemma 6.1.

We may define the structure of the G*-limit operator A, for our control object (8.5)
- (8.6) by (see Proposition 3.1)

~AT'RIPrg — Ay for every g € H™1(9Q).
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However, for every @ € L?(Q) and f € L?(Q), by virtue of [2: Theorem 1.2] (see also
[5]), the solutions y.(u) of (8.5) - (8.6) satisfy

ye(W) = —AT'RIPX U+ f) — AN+ f) =y(@)  weakly in Hy(Q),

where y(u) is the unique solution of

“Ay+Sy=u+f in D'(Q)
y=20 on 0f) ’

ie. Ay =—-Ay+ Sy
Since, by property (d), for every i € L?(Q) there is an element u € (wpz2)-Lm U,
such that © = x Lu, we obtain

—Ay + (%)y:xglu+f in D'(Q)
y=20 on 0f) .

Finally, it is easy to see that

(wr2)-Im* /qu:p = lim XsﬂQda::/XOQQda:
Q U e=0Jq Q

where u is some prototype of the original control u. Then we have u = x Lu, ie.

(wrz)-lm? /u2daz :/Xalu2dmzl*(u,y).
Q Q

Thus have proved the following result (see Theorem 7.2).

Ue

Theorem 8.1. For the optimal control problem (8.1) — (8.4) there exists a unique
strong S-homogenized problem in the u-topology of L*(2) x H}(Q) which has the form

T _ .
— Ay + <§>yzxolu+f in D'(Q)

y=0 on 0

I*(u,y):/dem—F/Xglqux—dnf.
Q Q

Furthermore, the sequence of optimal pairs {(ul,y°)}een p-converges to the unique
solutions (u®,y°) of the above homogenized problem and I(u2,y?) — L. (u®,y°).

Now we consider the second example that deals with homogenization of an optimal
control problem on perforated domain. Let 2 be a bounded open set in R". Given a
sequence of parameters ¢ € (0, ] which tends to zero, we perforate the domain Q be
"holes paramertrized by £”. Mathematically speaking, we consider a family of closed
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subsets S: C  and set 2. = Q\ S., which we call the perforated domain. We denote
by xe the characteristic function of the domain €..

We define the constituents of the optimal control problem (4.1) - (4.4) as follows:
(H1) C.=0,D.=1,b. =1, f. = xf, f € L*(Q) for all £ € (0, ).
(H2) U. = {ue€ L*(Q)|u= x.u for all & € T/J\}, for every e € (0, 0], where U = {u €
L2(Q)| 91 < u < ahy ace. in Q}, 91 and 99 are given functions in L?((2).
(H3) Y. ={ye H'(2:)|y=0 on 9Q}.
(H4) P. : Y. — H}(Q) is an extension operator such that, for every y € Y,

(Pey)lo. = y and [[VP.yllz2(0) < C|lyllz2(q.)- Since P. is a linear continu-
ous operator, the adjoint operator P : H~1(Q) — Y is defined.

(H5) R!:Y* — H Q) be alinear operator such that P*R.g = gand R.P*f = x.f
for every f € H~1(Q) and g € Y*.

(H6) K. ={y=P.z € H}(Q)|z € Y., A.Vz-n. = 0 on 9S.}, where n. is the unit
outward normal on S..

In addition to these assumptions, following Kesavan and Saint Jean Paulin [9], we
assume that the following conditions hold:

(H7) Every weak-x limit point in L () of {x.} is positive a.e. in Q.
(H8) If x. — xo in L>®(Q) weak-*, then x,* € L>(Q).

Thus we have the following optimal control problem:

—div(A.Vy) = ux.f in Q (8.8)
y=0 on 00 (8.9)

uelU. ye K, (8.10)

I (u,y) :/Q(Vy,NEVy)Rnda:/Quzdx — inf (8.11)

where the matrices A. and N, satisfy condition (h). Our aim is to study the limiting
behaviour of this problem as ¢ — 0. Note that U. and K. are convex closed subsets of
L?(Q) and H}(Q), respectively. Besides, it is obvious that assumptions (b) - (d) from
Section 4 hold true. Indeed, since Cioranescu and Saint Jean Paulin [3] have shown that,
when 2 is perforated periodically, the hypotheses (H4), (H5), (H7) and (H8) above are
satisfied and, in particular, xo will be a positive constant, we have

Jo=x0 and (wpz2)-LmU, = {u € Lz(Q)‘ Xo1 < u < xote a.e. in Q}

Further, by virtue of conditions (H2) and (H5) we obtain

qu]?: Js”Xsf: Xs(v]?) = RsP;(B\sUf)
for every v € U. Hence B. = 1, ie. B. is the canonical isomorphism of L?() into
H=1(Q).

As for the existence of the topological limit for the sets {K.}.c(0,e,] We have the
following result.
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Proposition 8.1. (wg1)-Lm K. = Hg(Q).

Proof. Since condition (ii) of Lemma 4.1 is obvious, we need to verify (i). Let y
be any element of H}(2) and g be the element of H~!(£2) such that

Ay =g (8.13)

where A, is the G*-limit of the sequence {A.} with respect to the above defined op-
erators R. : Y — H Y(Q) and P* : H }(Q) — Y*. We consider the sequence of
elements {z. € Y. }.c(0,c,] €ach of which is defined by z. = AZ1P*g. Here the operators
A. @ Y. — Y are constructed as

—div(A.Vz) =Pfg in )
Acz=Pg <+ {z:() on 0f) (8.14)
ANz -n.=0 on 0S..

As follows from Briane, Damlamian and Donato [1], there exists a unique solution of
this problem for every g € H=1(Q), i.e. z. = AZ1P*g.

Now we put y. = P.z. for every ¢ € (0,e0]. Then the sequence {¥c}.c(0,c,] 18
coordinated with the collection {K.}.c (0,0 i-€. ye € K. for every e € (0,&¢]. Since

Ye = P.z. = P.AC'PYg = P.AZY(P*R.)Prg = (P.AC'P*)R.Plg,

we denote by T. the operator P.AZ1 P*. As the operators A. € L(Y.; Y*) are uniformly
coercive and bounded, we deduce that there is a constant a > 0 such that

1Al <@l (FTf) > o YT fI (8.15)

for every f € H=1(Q). Consequently, the operators 7. are invertible, i.e. we may set
A. = T, Moreover, we conclude that the operators A. are uniformly bounded and
coercive. Therefore the elements {y. € K.} may be defined as the solutions of the

equations /Tgyg = R.PXg. However, by condition (H5), we obtain
PrA.P.z. = P} A.y. = PR.Plg = Ply,
i.e. for the operators A, we have the representation
A= Pg‘ﬁsPE for every e € (0, &q].

Thus in view of (8.14) the operators A, € L(HL(Q); H~1(Q)) can be defined as

~

(Acy, @) 1 (o) =/Q(V907A8Vy)wdw Vy,p € Hy(Q),

ie. .»Zl\g = A, for every ¢ € (0,¢p], where the operators A. correspond to the control
object (8.8) - (8.10). It follows that the sequence {y. € K. }.c(o,,] has the representation
ye = AZLR.P*g for all € € (0, &)
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It has been proved by Briane, Damlamian and Donato [1] that the solution of
problem (8.14) satisfies P.z. — 2o weakly in H}(Q), where

—div(AoVzp) =g in Q (8.16)
20 =0 on 0N (8.17)

and the matrix Ag is the Hy-limit of the sequence {A.}. Since y. = P.2. = AZ'R.Prg,
it follows that (see Proposition 3.1) y. = AZ'R.P*g — A;1g = 2. Thus, by (8.16) -
(8.17), the G*-limit operator A, is defined as

Aoy, Py = /Q (Vo, AgVy)andz Yo € HY(Q), (8.18)

and by virtue of (8.13) we have zg = y. Thus for any element y € H} () it is possible
to construct the sequence {y. € K.}.c(0,c,] such that y. — y weakly in H}(Q), ie. in
view of Lemma 4.1 equality (8.12) holds

Corollary 8.1. For the operator sequence {A. € L(H}(Q); H™1())} associated
with (8.8) — (8.11) there exists the G*-limit A, such that A, is a bounded coercive
operator for which representation (8.18) holds, whith Ay being the Hy-limit of the matriz
sequence {A.}.

As follows from the proof of Proposition 8.1, for any ¢ € (0, (] and any admissible
control u* = J.v* € U, there is an element z7 € Y. such that 2z} is the unique solution
of problem (8.14) for g = v*f, i.e. 25 = AZ'P*(v*f). Therefore if we set y. = P.2},
then

ye€ K. and  y.=AT'R.P(v'f) = A7 (ux<f),

that is, y. is the unique solution of original problem (8.8) - (8.11) corresponding to the
control u*. Thus we obtain the following conclusion.

Corollary 8.2. The original optimal control problem (8.8) — (8.11) is uniformly
regular, i.e. assumption (j) of Section 4 is satisfied.

Corollary 8.3. If (u},yr) is any admissible pair for the original optimal control
problem (8.8) — (8.11), then there are elements v} € L?(Q) and z* € Y. such that

* * * *
yr = P.z] and U, = XeVy

and, consequently, the pair (v, z}) is admissible for the optimal control problem

—div(A:Vz) = PX(vf) in Q. (8.19)
z=0 on 00 (8.20)

ANVz-n. =0 on 0S. (8.21)
veU (8.22)

I (u,y) = /Q (VP.z, N.VP.2)gndx /Q v?dx — inf . (8.23)

€
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Remark 8.1. It is obvious that we can consider the optimal control problem (8.19)
- (8.23) as a prototype of Kesavan and Saint Jean Paulin’s problem on a perforated
domain [9]. At the same time this problem can be reduced to their original problem if
VP.z. =0 a.e. in int (S.) and (P*g)|q, = g for all g € H1(Q).

Remark 8.2. As for the strong G*-convergence of {A.} to the operator A, we
note that this can also be proved by the results in [1] after some minor modifications.
Namely, for every g € H~1(f2), the solution z. € Y. of problem (8.14) satisfies

P.z. — 2 weakly in H&(Q)
ANV [P.z.] — AoVzo weakly in [L%(Q)]"
(instead of (A:Vz.)~ — AyVzo weakly in [L?(Q)]™ in [1])
where z( is the solution of problem (8.16) - (8.17) and a matrix Ay is Ho-limit of the
sequence {A.}.

Since y. = P.z. = AZ'R.P*g, it follows that (see Proposition 3.1 and Definition
6.1) the sequence {A.} strongly G*-converges to the operator A, with representation
(8.18).

In particular, as for every v € U there is an element u € (wp2)-Lm U, such that
v = Xglu, we infer
ye = AZTRP(0f) — A (vf) = Au(xg 'uf)  weakly in H{ (9).

Finally, taking into account the above mentioned results we see that all assumptions
of Theorems 7.1. - 7.3 hold true with respect to the optimal control problem (8.8) -
(8.11). Moreover, by Lemma 6.1 and the properties of S-limits, we can show

p-lm® (I |z, ) (u, y) :/(Vy,NﬁVy)Rndx—k/ Xo uldz.
Q Q

Thus, we are now in the positon to state the main result about the S-homogenization
of the optimal control problem (8.8) - (8.11) as follows.

Theorem 8.2. For the optimal control problem (8.8) — (8.11) there exists a unique
strongly S-homogenized problem in the u-topology of L?(Q) x H} () with

—div(4¢Vz) = Xgluf in Q
y=0 on 0N
u € (wr2)-LmU, = {u e L2(Q)] xot1 < u < xot2 a.e. in Q}

I(u,y) z/Q(Vy,NﬁVy)Rnd:H/nglﬁdx — inf

where Aqg is Ho-limit of {A:} in the sense of Briane, Damlamian and Donato [1].
Furthermore, the sequence of the optimal pairs {(ul,y°)}ecn u-converges to the unique
solutions (u®,4°) of the above homogenized problem and I.(u?,y°?) — I(u®, y°).
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