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Regularity Results
for

Laplace Interface Problems in Two Dimensions

M. Petzoldt

Abstract. We investigate the regularity of solutions of interface problems for the Laplacian in
two dimensions. Our objective are regularity results which are independent of global bounds
of the data (the diffusion). Therefore we use a restriction on the data, the quasi-monotonicity

condition, which we show to be sufficient and necessary to provide H1+ 1
4 -regularity. In the proof

we use estimates of eigenvalues of a related Sturm-Liouville eigenvalue problem. Additionally
we state regularity results depending on the data.

Keywords: Elliptic equations, regularity of solutions, interface and transmission problems,
singularities, discontinuous diffusion coefficients, Sturm-Liouville eigenvalue prob-
lems
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1. Introduction

We are interested in Laplace interface problems on a domain Ω ⊂ R2. These are elliptic
problems with piecewise constant data k. The data are constant on subdomains and
can be interpreted as a diffusion term. The strong form of the problem is

∇ · k(x)∇u(x) = f(x) ∀x ∈ Ω

where the coefficient k is bounded by

δ ≤ k(x) ≤ δ−1 ∀x ∈ Ω

for some δ > 0 and where mixed boundary conditions are imposed.
In this article we discuss piecewise Hs-regularity of interface problems for the Lapla-

cian which holds independently of the number and shape of the subdomains on which
the coefficient k is constant. Our main interest are Hs-regularity results for s > 1 which
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hold independently of the bound δ ≤ k ≤ δ−1 of the coefficient k. Known regularity
results, which hold independently of the shape of the subdomains, restrict the partition
of Ω into subdomains to the case that the maximum number of subdomains which meet
in a point is 2 for points on the boundary and 3 for interior points [2, 3, 10, 12, 13, 16,
20]. In our regularity results there are no restrictions on the maximum number of sub-
domains which share a point, but we will use a restriction on k – the quasi-monotonicity
condition – introduced in [4]. Additionally, we give regularity results in Sobolev spaces
Hs where s explicitly depends on the bounds of the coefficient, and we show that these
results are sharp. The results are part of [17].

The interface problem will be posed in Section 2. The relation of piecewise and
global regularity is discussed in Subsection 3.1. A short review of the connection of
regularity, singular functions and a Sturm-Liouville eigenvalue problem is given in Sub-
sections 4.1 and 4.2. Known regularity results are reviewed in Subsection 4.3. The
quasi-monotonicity condition will be defined in Subsection 5.1. For showing regularity
results we need a lower bound of the eigenvalues of a Sturm-Liouville eigenvalue prob-
lem. This bound is derived by investigating the structure of according eigenfunctions
(Subsection 5.2).

The main results states that quasi-monotonicity is necessary and sufficient to yield
H1+ 1

4 -regularity independently of the global bounds of k and without restrictions on
the subdomains (Section 6). We prove further that this result is optimal and show that
known regularity results are special cases of our approach.

In Section 7 we prove piecewise H1+ δ
2π -regularity, where δ ≤ k ≤ δ−1. Further, we

give “worst case” regularity results being sharp with respect to δ. Sharpness is shown by
giving the explicit definition of a special singular function ψ1 defined for a checkerboard-
like pattern of coefficients δ and δ−1. This means that this singular function has the
lowest Hs-regularity among all singular functions independent of the geometry.

We are able to establish a link between the regularity theory for the quasi-monotone
case and between the theory for the “worst case” introducing additional parameters
depending on the coefficient (Subsection 7.3). W 2,p-regularity results for the quasi-
monotone and the general case are given in Subsection 7.4.

The bounds on the eigenvalues for the Laplace interface problem are directly applica-
ble to Maxwell interface problems [2]. Following [2], applications of the two-dimensional
results to Laplace interface problems in three dimensions is straightforward [17]. By im-
posing restrictions on the geometry or on the coefficient k our results can be used to
ensure the validity of shift theorems in appropriate function spaces.

2. The interface problem for the Laplacian

Interface problems for the Laplacian are also known as transmission problems or, in the
literature coming from numerical mathematics, as problems with discontinuous diffusion
coefficients.

Let an open, bounded, polygonal Lipschitz domain Ω ⊂ R2 be given. Its boundary
∂Ω is decomposed into parts ∂Ω = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅ and meas1(ΓD) > 0,
corresponding to Dirichlet and Neumann boundary conditions. Let f ∈ L2(Ω) be given.
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Let us define the space V = {v ∈ H1(Ω) : v|ΓD
= 0}. We pose the interface problem in

variational form: seek u ∈ V satisfying

∫

Ω

k(x)∇u(x)∇v(x) dx =
∫

Ω

f(x)v(x) dx ∀ v ∈ V. (2.1)

We make the following assumptions on the coefficient k: Ω can be partitioned in disjoint,
open, polygonal Lipschitz subdomains Ωi (i = 0, ..., n− 1) on which the coefficient has
constant value ki. Additionally we impose the global bound

δ ≤ k(x) ≤ δ−1 ∀x ∈ Ω (2.2)

for a constant δ > 0. Multiplying k by a constant one can assure that both bounds in
(2.2) are sharp.

As meas1(ΓD) > 0, relation (2.2) implies that ‖k 1
2∇v‖L2(Ω) is a norm in V which

is equivalent up to a factor depending on δ with ‖v‖H1(Ω), and hence existence and
uniqueness of the solution of problem (2.1) follow from Riesz’s Theorem [5].

The maximum piecewise regularity under the condition f ∈ L2(Ω) is u ∈ H2(Ωi).
In general such regularity does not hold for solutions of problem (2.1).

3. Notation

We will use Sobolev spaces of fractional order Hs (s ∈ R) as defined in [1, 7, 14].
Possibly merging subdomains Ωi and Ωm (i 6= m) which closures intersect one can
assume ki 6= km. We define the interface Γ = closure (∪n−1

i=0 ∂Ωi \ ∂Ω). We say that an
inequality is sharp if it is optimal in the set of regarded problems and parameters. For
a point x ∈ Ω we define a neighborhood of x as the set U ∩Ω where x ∈ U and U is an
open set in R2.

To discuss regularity we introduce so-called singular points, which will be subdi-
vided into homogeneous and heterogeneous singular points, depending on whether the
coefficient k is constant in a small neighborhood or not.

Definition 3.1. A point x ∈ ∂Ω \ Γ is a homogeneous singular point if one of the
following conditions holds:

- the interior angle of Ω at x is greater then π

- the boundary conditions change in x and the interior angle of Ω at x is greater then
π
2 .

Definition 3.2. A point on the interface x ∈ Γ is a heterogeneous singular point if

- either x is an interior point x ∈ Ω and in any neighborhood of x the interface is not
a straight line

- or x lies on the boundary x ∈ ∂Ω.

Definition 3.3. If x is a homogeneous or a heterogeneous singular point, we call
x a singular point.
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Interior heterogeneous singular points belonging to at least three subdomains are in
the literature called crosspoints. In Figure 1 several singular points are depicted.

Figure 1
Partition into subdomains, Dirichlet and Neumann bound-
aries are shaded differently, xi are homogeneous and hetero-
geneous singular points

Let xl be a heterogeneous singular point. We introduce polar coordinates (r, ϕ)
with respect to xl. Let us identify the unit sphere with the interval [0, 2π). Similarly,
the interval [ϕ1, ϕ2] denotes the cone containing all rays ϕ in between ϕ1 and ϕ2, where
positive orientation is assumed. For instance, any two intervals [ϕi, ϕj) and [ϕj , ϕi)
cover the sphere [0, 2π) in a natural way.

Number the subdomains sharing the singular point xl with Ωl,i (i = 0, ..., nl − 1)
and choose a radius rl > 0 such that Ωl,i∩Brl

(xl) coincides with a cone Cl,i. The cones
Cl,i are given by the rays ϕi and ϕi+1 (i = 0, ..., nl − 1) where ϕ0 < ϕ1 < ... < ϕnl−1.
This notation is illustrated with the help of Figure 2.

Figure 2
Subdomains Ωl,i coincide with cones Cl,i in a neighborhood of an interior (left
figure) and a boundary (right figure) heterogeneous singular point xl

If xl is an interior point, we see that ϕnl
= ϕ0. If not, the rays ϕ0 and ϕnl

coincide
with a part of ∂Ω. By the sequence ϕ0 < ϕ1 < ... < ϕnl

we describe the geometry
around the singular point xl.

We denote by kl,i the value of k on Ωl,i ∩ Bxl
(rl). Now let us define the local

diffusion coefficient kxl
(ϕ) on the interval [ϕ0, ϕnl

) that takes the value kl,i on the
interval [ϕi, ϕi+1) (i = 0, ..., nl − 1). For simplification, we may drop the sub-indices l
when choosing a singular point xl. The notation is valid also for homogeneous singular
points. Then nl = 1.

3.1 Restriction to piecewise regularity. Observe that the normal derivatives of
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u have a jump discontinuity across the interface. To see this, choose two adjacent
subdomains Ωi and Ωj , and let ni and nj be the outward normals to the interface. Due
to (2.1) the solution u fulfils

ki
∂u

∂ni

∣∣∣
∂Ωi∩∂Ωj

= kj
∂u

∂nj

∣∣∣
∂Ωi∩∂Ωj

(3.1)

where the equality holds in the distributional sense. Since ki 6= kj , the normal deriva-
tives are discontinuous. Therefore, u /∈ H

3
2 (Ω) and we restrict ourselves to piecewise

regularity u ∈ Hs(Ωi).
The next simple lemma establishes a connection between piecewise and global reg-

ularity.

Lemma 3.1. Let the polygonal Lipschitz domain Ω be decomposed into disjoint
polygonal Lipschitz subdomains Ω1 and Ω2. Let 0 ≤ λ < 1

2 , v ∈ H1+λ(Ωi) (i = 1, 2)
and v ∈ H1(Ω). Then v ∈ H1+λ(Ω).

The proof is standard and uses Gauss’ theorem. It is given in [17].

4. Analytical background and known regularity results

4.1 The Sturm-Liouville eigenvalue problem. Choose a singular point x. We
regard the self-adjoint and positive definite Sturm-Liouville eigenvalue problem given
by

−s(ϕ)′′ = λ2s(ϕ)
(
ϕ ∈ (ϕi, ϕi+1), i = 0, ..., n− 1

)
(4.1)

with interface conditions on lines ϕ = ϕi that coincide with a part of the interface

s(ϕi − 0) = s(ϕi + 0)

ki−1s(ϕi − 0)′ = kis(ϕi + 0)′
(4.2)

and, in the case x ∈ ∂Ω, with

either s(ϕ0 + 0) = 0 or s(ϕ0 + 0)′ = 0

either s(ϕn − 0) = 0 or s(ϕn − 0)′ = 0
(4.3)

if ϕ0 or ϕn lies on ΓD or ΓN [9]. Here we denote by s(ϕi − 0) and s(ϕi + 0) the left-
and right-hand side limit, respectively, of the function s in the point ϕi. We conclude
that the eigenvalues are real and that the spectrum has no point of density. We denote
by λ the positive square root of λ2.

The above eigenvalue problem can be rewritten in a simplier form. The general
solution of equation (4.1) on an interval [ϕi, ϕi+1] has the form bi cos(λ(ϕ − ci)) for
some bi, ci ∈ R. The interface condition reads for i such that the angle ϕ = ϕi coincides
with a part of the interface

bi cos(λ(ϕi+1 − ci)) = bi+1 cos(λ(ϕi+1 − ci+1)) (4.4)
kibi sin(λ(ϕi+1 − ci)) = ki+1bi+1 sin(λ(ϕi+1 − ci+1)). (4.5)

4.2 A decomposition theorem and regularity. The next theorem establishes a
connection between the above Sturm-Liouville eigenvalue problem and regularity.
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Theorem 4.1. For any singular point xl denote by λ2
l,j (j = 1, ..., ml) all eigenval-

ues from the interval (0, 1] of the respective Sturm-Liouville eigenvalue problem (4.1)−
(4.3) and suppose λ2

l,j 6= 1. Denote by sl,j(ϕ) the according eigenfunctions. Then the
solution u of problem (2.1) admits a decomposition

u = w +
∑
xl

ml∑

j=1

cl,jη(rl)rλl,j sl,j(ϕ) (4.6)

where w ∈ H2(Ωi) (i = 0, ..., n − 1) and the sum is over all singular points xl. Here
cl,j ∈ R and η(rl) is a smooth cut-off function vanishing outside a neighborhood of each
singular point. We call rλl,j sl,j(ϕ) singular function for the point xl.

Proof. The proof of representation (4.6) follows from [9: Theorem 1] and [9: Sec-
tion 3] with s = 0. The representation is also given in [15: Theorem 2.27] and [16]

We see that the regularity of u is restricted by the regularity of the singular functions
rλl,j sl,j(ϕ) /∈ H1+λl,j (Ωi) (i = 0, ..., nl − 1). Furthermore, rλl,j sl,j(ϕ) ∈ H1+λl,j−ε(Ωi)
(i = 0, ..., nl − 1) for any ε > 0. To show this one can use [7: Theorem 1.2.18]. The
probably first decomposition theorem for the case of a smooth coefficient k can be found
in [11].

Corollary 4.2. Let γ ∈ (0, 1) be given and let λ2 > γ2 for all non-zero eigenvalues
λ2 of the Sturm-Liouville eigenvalue problem (4.1)−(4.3) for any singular point x. Then
u ∈ H1+γ(Ωi) (i = 0, ..., n− 1).

Proof. The corollary follows directly from Theorem 4.1 if all eigenvalues λ2
l,j are

different from 1. If there is an eigenvalue λ2
l,j = 1, then one can rely on [15]. Using

the notation of [15: Corollary 2.28] set p0 = 2
2−γ . As p0 < 2, we see that f ∈ L2(Ω) ⊂

Lp0(Ω). As γ = 2 − 2
p0

< λ, the assumptions of [15: Corollary 2.28] are fulfilled. We
conclude that u ∈ W 2,p0(Ωi ∩U), where W 2,p0 is the Sobolev space of functions having
all their derivatives (in distributional sense) up to order 2 integrable with the power
of p0. Use of the continuous embedding W 2,p0(Ωi ∩ U) ⊂ H1+γ(Ωi ∩ U) [6: Theorem
1.4.4.1] finishes the proof

4.3 Known regularity results. In this subsection we want to review briefly known
regularity results and to point out some open questions. We conclude from Corollary
4.2 that regularity is a local property. The following lemma is a simple conclusion of
Corollary 4.2 and Lemma 3.1.

Lemma 4.3. Let u be a solution of problem (2.1). Then there exists a number
ε(k) > 0 depending on k such that u ∈ H1+ε(k)(Ω).

The dependence of ε on k will be given in Section 7. A similar result covering the
case of more general subdomains can be found in [8].

4.3.1 Regularity for homogeneous singular points. For homogeneous singular
points (i.e. points x1 and x2 in Figure 1) the following result is well known:
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Lemma 4.4 (see [7: Corollary 2.4.4]). Let k = 1 and let u be the solution of
problem (2.1). Then for any neighborhood U of x, which does not contain any other
singular point, u has regularity H1+ 1

2 (U ∩Ω), if the boundary conditions do not change
in x, and u ∈ H1+ 1

4 (U), if they do.

The strongest singularity is of type r
1
4 cos λ

4 and occurs in a slit domain with mixed
boundary conditions [7].

4.3.2 Regularity for heterogeneous singular points. We choose a heterogeneous
singular point x. Let us denote by n the number of domains to whose boundary x
belongs and by m the number of types of boundary conditions. This means that m = 0,
if x is an interior point (points x4 − x6 in Figure 1). We set m = 1 if x ∈ ∂Ω and the
boundary conditions do not change in x (points x3, x7 from Figure 1). If they change,
then m = 2 (point x8).

The following results are known:

Lemma 4.5. Let u be the solution of problem (2.1).

(i) Let x be a heterogeneous singular point with a neighborhood U containing no
other singular points. Then, if n + m ≤ 3, u has regularity u ∈ H1+ 1

4 (Ωi ∩ U) (i =
0, ..., n− 1), and if n + m > 3, u ∈ H1(Ωi).

(ii) If x is an interior singular point and n = 2, then u ∈ H1+ 1
2 (Ωi ∩U) (i = 0, 1).

These regularity bounds are optimal in the respective class of problems.

Proof. For the case of n = 2,m = 0 see [9, 10] or [19]. The cases of n = 3, m = 0
and n = 2, m = 1 has been studied in [12].

Let us discuss the case n = 4 − m. For any ε > 0 and the case of n = 4,m = 0
Kellogg gives an explicit solution ψ1 with regularity ψ1 /∈ H1+ε(Ω) (see [2, 10]). The
singular function ψ1 is discussed in more detail in the following subsection. For the
cases n = 3, m = 1 and n = 2,m = 2 a problem can be constructed by restricting the
domain of definition of ψ1 to a sector with opening angle π or π

2 . For the case n+m > 4
one can define a function which will be a slight modification of the function uε

All of the assertions have been shown recently also in [2]. Related results are given
in [3, 13, 20] and for the case of two Lipschitz subdomains where a different technique
has been used in [18].

4.3.3 Examples of singular functions. We show an example where the best H1+s-
regularity result which holds independently of δ is u ∈ H1(Ω). The interface consists in
the vicinity of an interior heterogeneous singular point of two intersecting lines. Denote
as before by (r, ϕ) the polar coordinates with respect to the singular point located at
the origin. Set Ω = (−1, 1)× (−1, 1) and define

Ω1 =
{
(x, y) ∈ Ω : 0 < ϕ < θ or π < ϕ < θ + π

}

Ω2 = Int (Ω/Ω1).
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Define ψ(r, ϕ) = rλs(ϕ) where

s(ϕ) =





cos(λ(π − θ − c)) cos(λ(ϕ− θ + b)) for 0 ≤ ϕ ≤ θ
cos(λb) cos(λ(ϕ− π + c)) for θ ≤ ϕ ≤ π
cos(λc) cos(λ(ϕ− π − b)) for π ≤ ϕ ≤ π + θ
cos(λ(θ − b)) cos(λ(ϕ− θ − π − c)) for π + θ ≤ ϕ ≤ 2π

(4.7)

[10]. With given parameters 0 < λ ≤ 1 and b, c the coefficients k1, ..., k4 are defined (up
to a multiplicative constant) by the interface conditions (4.2).

Example 1. Take Ω = (−1, 1) × (−1, 1) and ψ1 = rλs(ϕ), where s is defined in
(4.7). Set θ = π

2 , b = 0.5θ, c = π
2 (1 + 1

λ ) − b and vary λ as a parameter within (0, 1].
Then k1 = k3 = − tan(λc) = 1

tan(λb) and k2 = k4 = tan(λb).

Figure 3: a) - b)
Coefficient k and singular functions a) ψ1, λ ≈ 0.1, b) ψ2 with
δ = 0.1, λ ≈ 0.99; regularity depends on the geometry

The singular function ψ1(r, ϕ) is illustrated in Figure 3/a) for λ = 0.1. Here the
ratio of the maximum and the minimum value of k is kmax

kmin
≈ 100. This function has been

defined in [2], too. In the setting of Example 1 we see limλ→0
k2
λ π

4
= 1 and k2 = k−1

1 .

Now we want to demonstrate that in general a large ratio kmax
kmin

not necessarily
implies low regularity. We construct a singular function with smoothness H2−ε where
the ratio kmax

kmin
increases to infinity as ε → 0:

Example 2. Let ε > 0 be given. Take Ω = (−1, 1) × (−1, 1) and ψ2 = rλs(ϕ),
where s(ϕ) is defined in (4.7). Chose ε > 0. Set λ = 1 − ε, θ = π

2 , b = ε and
c = π

2 (1 + 1
λ )− b.

The coefficients in Example 2 fulfil k2 < k1 = k3 < k4. The function ψ2 is depicted
in Figure 3 b) for λ = 0.99. In this case kmax

kmin
≈ 100, too.

Remark 4.1. Examples 1 and 2 show that the regularity parameter λ where u ∈
H1+s(Ωi), u /∈ H1+λ(Ωi) for any s fulfilling 0 < s < λ ≤ 1 may tend to a value λ0 = 0
or to a value λ0 = 1 if kmax

kmin
→∞.

4.4 Open questions. An open question is whether there are conditions on k such that
regularity Hs for some s > 1 is guaranteed and s does not depend on the bounds of k
or the geometry. Such conditions will be introduced in the next Subsection 5.1.

A further question is about the dependence of ε from Lemma 4.3 on k. We will give
an answer to this question in Section 7.
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5. The quasi-monotone case

5.1 The quasi-monotonicity condition. We define the quasi-monotonicity condition
for the coefficient k. This condition has been introduced in [4] in the context of Finite
Elements. Remember that we assumed kl,i 6= kl,i+1.

Roughly speaking the quasi-monotonicity condition means that the local diffusion
coefficient kx(ϕ) has only one local maximum. If x ∈ Γ̄D, we demand alternatively that
each local maximum touches the Dirichlet boundary ΓD. This is illustrated in Figure
4.

Figure 4: a) - c)
Values of ki around singular points. Distribution of diffusion coefficients is quasi-
monotone for an interior singular point in Figure a) but not in Figure b). For a
boundary singular point a quasi-monotone distribution is given in Figure c) but not
in Figure d)

Definition 5.1. Let a heterogeneous singular point x be given. The distribution
of the coefficients ki (i = 0, ..., n− 1) will be called quasi-monotone with respect to the
singular point x, if the following conditions are fulfilled:

Denote by Ni the indices of cones Cj that are neighbors of the cone Ci, that is
Ni = {j : meas1(Cj ∩Ci) > 0 (j 6= i, j = 0, ..., n− 1)}. The following condition holds:

- If x ∈ Ω/ΓD, there is only one index i such that ki > maxj∈Ni{kj}
- If x ∈ ΓD, for each index i such that ki > maxj∈Ni{kj} the measure meas1(Ci ∩

ΓD ∩Bx(r)) is positive.

Definition 5.2. The coefficient k is quasi-monotone if for all singular points x the
distribution of coefficients ki (i = 0, ..., n− 1) is quasi-monotone.

Remark 5.1. In the following sense quasi-monotonicity of k is necessary for
Hs(Ωi)-regularity of solutions of problem (2.1) where s > 1 is independent of k. Let us
first restrict to the case of an interior heterogeneous singular point x.

If the quasi-monotonicity condition is violated, kx(ϕ) has m > 1 local maxima. For
any s > 1, there is a geometry and local diffusion coefficient having m local maxima
and defining a problem with solution us /∈ Hs(Ωi). For m = 2 see Example 1. For
m > 2 slightly perturb the coefficient given in Example 1 by enlarging it in parts of
the domain, where it takes the lower value. This will change the singular function from
Example 1 and its low regularity a little only.

Though the above counter-example is defined for a special geometry, it can be
defined for any geometry for which the quasi-monotonicity is violated. In the case of
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a heterogeneous singular point on the boundary a singular function can be constructed
by restricting the domain of definition of the singular function defined in Example 1.

We give conditions for the quasi-monotonicity conditions to hold without restrictions
on k but with restrictions on the maximum number of subdomains that share singular
points.

Remark 5.2. Choose a heterogeneous singular point x and denote as in Subsection
4.3.2 by n the number of subdomains Ωi to whose boundary x belongs and by m the
number of types of boundary conditions. If

n + m ≤ 3, (5.1)

then for any values of ki (i = 0, ..., n − 1) the distribution of the coefficients ki (i =
0, .., n− 1) is quasi-monotone with respect to x. Condition (5.1) is sharp.

Observe that for exactly these restrictions on the maximum number of subdomains
regularity results with piecewise regularity Hs (s > 1), where s is independent of δ,
are known (Lemma 4.5).

Thus the distribution of the coefficients kl,i (i = 0, ..., nl − 1) is always quasi-
monotone for points x1, x2, x3, x4, x5 from Figure 1. For points x6, x7, x8 from Figure
1 quasi-monotonicity depends on k. For instance, coefficients k6,0 = k6,2 = 1 and
k6,1 = k6,3 = 100 are not distributed quasi-monotonically with respect to the singular
point x6.

5.2 Quasi-monotonicity bounds eigenvalues from below. In this subsection we
show that if the coefficient k is quasi-monotone, the eigenvalues of the Sturm-Liouville
eigenvalue problem are bounded from below. We precede the proof of this fact by two
technical lemmas.

Lemma 5.1. Let functions ti(ϕ) = bi cos(ϕ− ci) (i = 1, 2) be given that fulfil the
conditions

t1(ϕ1) = t2(ϕ1)

k1t
′
1(ϕ1) = k2t

′
2(ϕ1)

(5.2)

for some ϕ1 and ki, bi > 0 (i = 1, 2). If one of the conditions

a) t′1(ϕ1) < t′2(ϕ1)

b) k1 < k2 and t′1(ϕ1) < 0 or t′2(ϕ1) < 0

is fulfilled, then t1(ϕ) ≤ t2(ϕ) (ϕ1 ≤ ϕ ≤ ϕ1+π) and t2(ϕ) ≤ t1(ϕ) (ϕ1−π ≤ ϕ ≤ ϕ1).

Proof. Observe that t2 − t1 = b3 cos(ϕ− c3) for some b3 and c3. It is not hard to
see that c3 ∈ {ϕ1 − π

2 , ϕ1 + π
2 } and we choose c3 = ϕ1 − π

2 . Then b3 = (t2 − t1)′(ϕ1)
and it remains to show that 0 < b3 = (t2 − t1)′(ϕ1).

a) If t′1(ϕ1) < t′2(ϕ1), this is obviously true.

b) In this case we conclude from equation (5.2) t′1(ϕ1)
t′2(ϕ1)

= k2
k1

> 1 and that t′1(ϕ1) < 0
and t′2(ϕ1) < 0. This shows t′1(ϕ1) < t′2(ϕ1)
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Lemma 5.2. Let numbers 0 = ϕ0 < ϕ1 < ... < ϕn < π
2 and ki (i = 0, ..., n − 1)

with 0 < k0 ≤ k1 ≤ ... ≤ kn−1 be given. Denote by χ[ϕi,ϕi+1) the characteristic function
of the interval [ϕi, ϕi+1). Further, let numbers ci and bi be given such that the function

s(ϕ) =
n−1∑

i=0

bi cos(ϕ− ci)χ[ϕi,ϕi+1) (5.3)

is continuous and its derivatives weighted with ki are also continuous:

bi cos(ϕi+1 − ci) = bi+1 cos(ϕi+1 − ci+1) (5.4)
kibi sin(ϕi+1 − ci) = ki+1bi+1 sin(ϕi+1 − ci+1) (5.5)

for i = 0, ..., n− 2. Assume c0 = 0 and b0 > 0. Then s(ϕ) > 0 for all ϕ ∈ [0, ϕn].

Figure 5
The function s from equation (5.3) is the upper envelope and depicted
with a continuous line in case of decreasing ki, the functions ti are
indicated by a dashed line

Proof. Define auxiliary functions ti(ϕ) = bi cos(ϕ− ci). These functions are illus-
trated in Figure 5. The idea is that if kj+1 > kj , the function tj+1 will dominate the
function tj on an interval of length π starting from the point where tj+1 and tj intersect.
Multiplying the function s(ϕ) by a constant we can assure b0 = 1. We want to prove

0 < cos(ϕ) = t0(ϕ) ≤ ... ≤ tj(ϕ) (ϕj ≤ ϕ ≤ ϕn < π
2 ), t′j(ϕj) ≤ 0 (5.6)

with the help of Lemma 5.1 by induction over j = 0, ..., n − 1. For j = 0 inequality
(5.6) is clearly fulfilled. Suppose i > 0 and let inequality (5.6) be fulfilled for j = i− 1.
Observe that t′i−1(ϕi−1) ≤ 0 and ti−1(ϕ) > 0 for ϕi−1 ≤ ϕ ≤ ϕi implies t′i−1(ϕi) < 0.
Condition (5.5) then gives t′i(ϕi) < 0. Setting in terms of Lemma 5.1 t1 = ti−1, t2 = ti
and ϕ1 = ϕi we see that assumption b) from Lemma 5.1 is fulfilled and obtain ti−1 ≤ ti
for ϕ ∈ [ϕi, ϕi + π]. From assumption 0 ≤ ϕi < π

2 we see [ϕi, ϕn] ⊂ [ϕi, ϕi + π]. This
together with t′i(ϕi) < 0 finishes the proof of the induction step (5.6) for j = i
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Remark 5.3. Lemma 5.2 can be sharpened to hold also for ϕn ≤ π
2 if n > 1. To

show this use k0 < k1 and show that 0 < c1.

As already pointed out, to discuss regularity in the neighborhood of a singular point
it suffices to study the eigenvalues of the Sturm-Liouville eigenvalue problem (4.1) - (4.3).
The eigenvalues are real and non-negative and we look for a lower bound of eigenvalues
from (0, 1). If x ∈ Ω/ΓD, then λ = 0 will be an eigenvalue with constant eigenfunction
s(ϕ). But the associated constant function ψ(r, ϕ) does not influence regularity.

Theorem 5.3. Let an interior heterogeneous singular point x ∈ Ω be given and let
the distribution of the coefficients ki (i = 0, ..., n − 1) be quasi-monotone with respect
to x. Then the smallest non-vanishing eigenvalue λ2 of the associated Sturm-Liouville
eigenvalue problem (4.1)− (4.3) is greater than ( 1

4 )2. This bound is sharp.

Proof. We choose an eigenfunction of the associated Sturm-Liouville eigenvalue
problem with eigenvalue λ2 6= 0. The eigenfunction has the representation

s(ϕ) =
n−1∑

i=0

bi cos(λ(ϕ− ci))χ[ϕi,ϕi+1) (5.7)

where bi and ci are real numbers. The eigenfunction s(ϕ) fulfils the interface conditions
(4.4) - (4.5) for i = 0, ..., n− 1.

Figure 6
Eigenfunction sλ(ϕ) (black line) and function bj cos(λϕ), cj = 0 (black dashed
line) coincide at the maximum ϕex of sλ(ϕ) and sλ(ϕzero) = 0, bj cos(λϕ′) = 0;
since k increases on [ϕex, ϕzero], it holds 0 < ϕ′ = π

2λ
≤ ϕzero < 2π

The idea of the proof is to show that there is an index j ∈ {0, ..., n − 1} such that
s(ϕ) ≥ bj cos(λ(ϕj+1 − cj)) > 0 on the interval [cj , cj + π

2λ ). Here we need the quasi-
monotonicity condition. Since s(ϕ) vanishes in some points, the length of the interval
[cj , cj + π

2λ ) is bounded by 2π (Figure 6). This yields the bound λ > 1
4 .

Let us have a closer look onto s(ϕ). This periodic function is continuous and there-
fore achieves a minimum at a point ϕmin and a maximum at ϕmax. Choose j such that
ϕmax ∈ [ϕj , ϕj+1). Possibly substituting cj with cj± π

λ we can assume bj ≥ 0. The case
bj = 0 can be excluded since then the interface condition imply s ≡ 0 and hence λ = 0.
If ϕmax lies on (ϕj , ϕj+1), we conclude from bj > 0 that ϕmax = 2lπ

λ + cj for a number
l ∈ N. Possibly redefining cj we may set ϕmax = cj and we see s(ϕmax) > 0.
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If ϕmax = ϕj , proceed as follows. Since ϕmax is a maximum, it is clear that s(ϕj −
0)′ ≥ 0 and s(ϕj + 0)′ ≤ 0. The interface condition (4.5) for i = j implies on the other
hand that s(ϕj − 0)′ and s(ϕj + 0)′ cannot have different signs. Hence s(ϕj − 0)′ =
s(ϕj+0)′ = 0 and in this case there holds cj = ϕmax, too. From this s(ϕmax) > 0 follows.
Similarly, s(ϕmin) < 0 and we conclude that there are at least two points ϕzero,1 and
ϕzero,2 with s(ϕzero,1) = s(ϕzero,2) = 0. Without loss of generality we assume

ϕzero,1 < ϕmax < ϕzero,2 < ϕmin.

Now we exploit the quasi-monotonicity condition. We want to show that the fol-
lowing property (P) holds:

(P) There is an extremum ϕex ∈ {ϕmin, ϕmax} and a point ϕzero ∈ {ϕzero,1, ϕzero,2}
such that kx(ϕ) increases monotonically when going from ϕex to ϕzero. This
means that kx(ϕ) is increasing on [ϕex, ϕzero] or decreasing on [ϕzero, ϕex].

Figure 7
Local diffusion coefficient kx(ϕ) is piecewise monotone on two inter-
vals covering the sphere [0, 2π); possible location of points ϕzero,1,
ϕmax, ϕzero,2, ϕmin; kx(ϕ) decreases on [ϕzero,1, ϕmax]

To show this denote by [ϕimin , ϕimin+1) and [ϕimax , ϕimax+1) the intervals where kx(ϕ)
reaches the minimum and maximum. The sphere [0, 2π) is then decomposed into two
intervals Idecr = [ϕimax , ϕimin) and Iincr = [ϕimin , ϕimax) on which kx(ϕ) is monotone as
depicted in Figure 7. There are two possibilities:

a) either there are three points from {ϕzero,1, ϕmax, ϕzero,2, ϕmin} contained in Idecr

or Iincr

or
b) each interval Idecr, Iincr contains two points from {ϕzero,1, ϕmax, ϕzero,2, ϕmin}.

In Figure 7 a possible distribution of the points ϕzero,1, ϕmax, ϕzero,2, ϕmin in the in-
tervals Idecr and Iincr in the case a) is shown. One notices that in the depicted dis-
tribution the local diffusion coefficient is decreasing on [ϕzero,1, ϕmax] and property
(P) is fulfilled. For the other (essentially three) possible distributions of the points
ϕzero,1, ϕmax, ϕzero,2, ϕmin it is easy to check that property (P) holds, too.

In the case b) the points from ϕzero,1, ϕmax, ϕzero,2, ϕmin could be distributed like
ϕzero,1, ϕmax ∈ Idecr and ϕzero,2, ϕmin ∈ Iincr. In this special case the function kx(ϕ)
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is decreasing on [ϕzero,1, ϕmax] and property (P) is fulfilled. Other distributions of the
points in the case b) can be checked in the same way to satisfy property (P).

Multiplying by −1 in (5.7), rotating the polar coordinate system and possibly re-
flecting it on the x-axis we can assure

0 = ϕex = ϕmax < ϕzero < 2π. (5.8)

Remember that kx(ϕ) increases on [ϕex, ϕzero]. If the function sλ(ϕ) vanishes on
[ϕmax, ϕzero) in some point(s), choose ϕ′zero to be the minimum of these points and rede-
fine ϕzero := ϕ′zero. Choose j such that ϕex ∈ [ϕj , ϕj+1). The function bj cos(λ(ϕ− ci))
is depicted in Figure 6 with a dashed line. We show as before cj = ϕex = 0. Renum-
bering the points ϕi we may assume j = 0.

Now we are nearly done with the proof. In the last step we restrict the function sλ

to the interval [ϕex, ϕzero] and apply a homogeneous scaling to transform the functions
bi cos(λ(ϕ − ci)) to functions bi cos(ϕ − λci) which satisfy similar interface conditions
and apply Lemma 5.2 to the transformed functions. Choose the largest m such that
ϕm−1 < ϕzero. We introduce an homogeneous transformation

F : [0 = ϕex, ϕzero] → [0, λϕzero], F (ϕ) = λϕ (5.9)

and define sF (F (ϕ)) = s(ϕ) for ϕ ∈ [ϕex, ϕzero]. Under this transformation we define a
sequence

ϕ̂0 < ϕ̂1 < ... < ϕ̂m

where

ϕ̂0 = F (ϕex) = 0, ϕ̂i = F (ϕi) (0 < i < m− 1), ϕ̂m = F (ϕzero).

It follows that sF fulfils

sF (ϕ) =
n−1∑

i=0

bi cos(ϕ− λci)χ[ϕ̂i,ϕ̂i+1)

and
bi cos(ϕ̂i+1 − λci) = bi+1 cos(ϕ̂i+1 − λci+1)

kibi sin(ϕ̂i+1 − λci) = ki+1bi+1 sin(ϕ̂i+1 − λci+1)

for i = 0, ..,m− 1. Recall sF (ϕ̂m) = 0. As ki ≤ ki+1 (i = 0, .., , m− 1) and c0 = 0, the
function sF (ϕ) fulfils the assumptions of Lemma 5.2 and we conclude that sF does not
vanish on [0, π

2 ). Hence ϕ̂m ≥ π
2 . Observe that (5.8) implies ϕ̂m = λϕzero < λ2π. This

yields the bound
π
2 ≤ ϕ̂m = λϕzero < λ2π, i.e. 1

4 < λ.

From the above proof it is not hard to see how to construct an eigenfunction s3(ϕ)
with eigenvalue λ2 arbitrarily close to ( 1

4 )2. We see in the following example that λ → 1
4

when the interior angle of a subdomain tends to 2π.
Choose ε > 0 and n = 3. The idea is to construct an eigenfunction s3(ϕ) for

the following problem. The interval (ϕ0, ϕ1) will have length of order 2π − O(ε) and
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k0 = 1. The other two intervals will have length O(ε) and k1 = O(ε−1), k2 = O(ε). The
constructed eigenfunction will have the eigenvalue λ2 where λ = 1

2
π

2π−4ε → 1
4 as ε → 0.

For the interested reader we will give the details below: Define ϕ0 = −ε, ϕ1 =
2π − 3ε. The remaining parameter ϕ2 will be defined below. The aim is to define
a function that achieves a maximum at ϕ = 0 and vanishes at ϕ = 2π − 4ε and at
ϕ = 2π − 2ε. Furthermore, a minimum is attained in ϕ ∈ (ϕ1, ϕ2).

To do so set c0 = 0 and b0 = 1. Define c2 and b2 in such a way that cos(λ(ϕ− c2))
vanishes in ϕ = 2π − 2ε and that b2 cos(λ(ϕ − c2)) = cos(λϕ) for ϕ = ϕ0. Further,
choose ϕ2 > ϕ1 such that cos(λ(ϕ2 − c2)) = cos(λ(ϕ1 − c0)). Set c1 = 0.5(ϕ1 + ϕ2) and
b1 = − cos(λ(ϕ1−c0))

cos(λ(ϕ1−c1))
. The definition of the eigenfunction s3 is finished by setting k0 = 1

and choosing k1 and k2 in such a way that interface conditions for the derivatives are
fulfilled

Theorem 5.4. Let a heterogeneous singular point x ∈ ∂Ω on the boundary be given
and let the distribution of the coefficients ki (i = 0, ..., n − 1) be quasi-monotone with
respect to x. Then the smallest non-vanishing eigenvalue λ2 of the associated Sturm-
Liouville eigenvalue problem (4.1)− (4.3) fulfils ( 1

4 )2 < λ2. This bound is sharp.

Proof. The proof runs similar to that of Theorem 5.3. The eigenfunction of the
associated Sturm-Liouville eigenvalue problem with eigenvalue λ2 6= 0 has the represen-
tation

s(ϕ) =
n−1∑

i=0

bi cos(λ(ϕ− ci))χ[ϕi,ϕi+1)

where χ[ϕi,ϕi+1) denotes the characteristic function of the interval [ϕi, ϕi+1) and bi, ci

are real numbers. The eigenfunction s(ϕ) fulfils the interface conditions (4.4), (4.5) for
i = 0, ..., n− 2 and some boundary conditions that will be specified later.

Since we deal with two different boundary conditions, there are three possibilities
how to combine them. We will treat each case separately. In any case s(ϕ) is not
a constant function. Denote by F1 and F2 parts of the boundary on both sides of
x ∈ ∂Ω ∩Bx(r).

Case I: F1 ⊂ ΓD and F2 ⊂ ΓD. We deduce that there exists a local extremum ϕex of
the function s(ϕ), and multiplying s(ϕ) by −1 we may assume that ϕex is a maximum.
We choose j such that ϕex ∈ [ϕj , ϕj+1) and show as in the proof of Theorem 5.3 that
cj = ϕex. The quasi-monotonicity condition implies now that kx(ϕ) is monotonically
increasing on [ϕex, ϕn] or decreasing on [ϕ0, ϕex]. We may suppose without loss of
generality that kx(ϕ) is increasing on [ϕex, ϕn], and since s(ϕn) = 0 we may define
ϕzero = ϕn. By rotation of the coordinate system we can assume

0 = ϕex < ϕzero ≤ θ < 2π (5.10)

where θ is the interior angle of Ω at x. Possibly redefining ϕzero we can assure s(ϕ) > 0
for ϕ ∈ [ϕex, ϕzero]. Choose m such that ϕj+m−1 < ϕzero. We transform the sequence

ϕex < ϕj+1 < ... < ϕj+m−1 < ϕzero < θ

with the affine transformation defined in (5.9) and obtain a new sequence

ϕ̂0 < ϕ̂1 < ... < ϕ̂m
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where

ϕ̂0 = 0, ϕ̂i = F (ϕi+j) = λϕi+j (1 < i < m− 1), ϕ̂m = F (ϕzero) = λϕzero.

Defining sF (F (ϕ)) = s(ϕ) we obtain a scaled function which fulfils the modified interface
conditions

bi cos(ϕ̂i+1 − λci) = bi+1 cos(ϕ̂i+1 − λci+1)

kibi sin(ϕ̂i+1 − λci) = ki+1bi+1 sin(ϕ̂i+1 − λci+1)

for i = 0, ...,m−1. Recall sF (ϕ̂m) = 0. Further, ĉ0 = 0 and k̂i ≤ k̂i+1 (i = 0, ..., m−1).
Hence sF fulfils the assumptions of Lemma 5.2 and it follows that sF does not vanish
on [0, π

2 ). This shows that ϕ̂m ≥ π
2 . Equation (5.10) implies ϕ̂m = λϕzero ≤ λ2π. This

gives
π

2
≤ ϕ̂m = λϕzero ≤ λ2π, i.e. λ > 1

4 .

Case II: F1 ⊂ ΓN and F2 ⊂ ΓD. Suppose that the Dirichlet conditions are set on the
angle ϕn. Define ϕex = ϕ0 and ϕzero = ϕn. The quasi-monotonicity condition implies
that the local diffusion coefficient kx(ϕ) has not more than one local maximum [ϕi, ϕi+1],
and this local maximum is achieved for i = n − 1. Hence kx(ϕ) is monotonically
increasing on [ϕex, ϕzero]. It follows from k ∂u

∂n = 0 at ϕ = ϕex that cj = ϕex. Using
Remark 5.3 we show as in the Case I that 1

4 < λ.

Case III: F1 ⊂ ΓN and F2 ⊂ ΓN . Set ϕex,1 = ϕ0 and ϕex,2 = ϕn. As in the
Case II we conclude c0 = 0 and cn−1 = ϕn. Denote by ϕzero a point where s(ϕ)
vanishes. The quasi-monotonicity condition implies that the local diffusion coefficient
kx(ϕ) has not more than one local maximum [ϕj , ϕj+1]. Using the quasi-monotonicity
property we show that there is a number ϕex ∈ {ϕex,1, ϕex,2} such that kx(ϕ) increases
monotonically when going from ϕex to ϕzero. If ϕzero < ϕj , then kx(ϕ) is monotonically
increasing on [ϕ0, ϕzero] and ϕex := ϕ0. Otherwise kx(ϕ) is monotonically decreasing
on [ϕzero, ϕn] and ϕex := ϕn. We may suppose that the first case holds. The remainder
of the proof is similar to the Case II and we show λ > 1

4 .

To prove sharpness we use the example from the proof of Theorem 5.3. Denote by
I the closure of the support max{0, s3(ϕ)}. We define the eigenfunction s4(ϕ) = s3(ϕ)
on I. This eigenfunction has the eigenvalue λ = 1

2
π

2π−4ε

Remark 5.4. Denote by θ the interior angle of Ω at x ∈ ∂Ω. Under the assumptions
of Theorem 5.4 and using the bound θ < 2π in inequality (5.10) it is not hard to show
the improved bound (2π

4θ )2 < λ2. The same estimate holds if in equation (5.8) 2π is
substituted by θ, where θ is the length of the largest interval on which kx(ϕ) is monotone.
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6. Regularity results in the quasi-monotone case

Here we present our main results.

Theorem 6.1. Let the distribution of coefficients ki (i = 0, ..., n − 1) be quasi-
monotone with respect to all singular points x. The solution of problem (2.1) fulfils

u ∈ H1+ 1
4 (Ω)

independent of δ. This is the maximum regularity independent of δ and the geometry.

Proof. The assertion follows with Corollary 4.2 from Theorems 5.3 and 5.4 and
Lemmas 4.4 and 3.1

Necessity of the quasi-monotonicity for H1+ 1
4 -regularity independent of δ is dis-

cussed in Remark 5.1. Note that we get the same regularity as for k = 1 were H1+ 1
4 -

regularity is the maximal regularity at a reentrant corner with changing boundary con-
ditions. As special case of the quasi-monotonicity condition we slightly extend results
from [2, 12].

Theorem 6.2. Let a singular point x ∈ Ω be given. Denote by n the number of
subdomains that meet in x and let U be a neighborhood containing no other singular
points. Denote by θ the maximum interior angle of subdomains Ωi (i = 0, ..., n − 1)
at x. If x is an interior singular point, let n ≤ 3. If x ∈ ∂Ω, then let n ≤ 2 and
additionally the boundary conditions do not change in x.

Then the solution u of problem (2.1) fulfils

u ∈ H1+ 1
4 (Ω ∩ U)

u ∈ H1+max(1, π
2θ )(Ωi ∩ U) (i = 0, ..., n− 1).

The results are optimal with respect to θ and n.

Proof. One checks that under the above restrictions on n the coefficient k is quasi-
monotone. The first part follows from Theorem 6.1. For the second part one has to
show an eigenvalue bound using techniques exploited above. A proof can be found in
[17]. To see that the restrictions on n and θ are sharp we refer to the proof of Lemma
4.5 and Theorem 5.3, respectively

For heterogeneous singular points on the boundary with quasi-monotonically dis-
tributed coefficients ki the results can be sharpened.

Corollary 6.3. Let x be a boundary heterogeneous singular point and U a neigh-
borhood containing no other singular points. Denote by θ the interior angle at x ∈ ∂Ω.
Assume that the distribution of coefficients ki (i = 0, ..., n− 1) is quasi-monotone with
respect to x. Then the solution u of problem (2.1) has regularity

u ∈ H1+max(1, π
2θ )(Ωi ∩ U).

Proof. For a proof use Remark 5.4



448 M. Petzoldt

The special case, where the interface consists locally of two intersecting lines, has
been already studied in [10]. We state a regularity result for the quasi-monotone case.

Theorem 6.4. Let an interior heterogeneous singular point x ∈ Ω be given and let
U be a neighborhood of x containing no other singular points. The interface consists
in a neighborhood of x of two intersecting lines. Let the distribution of coefficients
ki (i = 0, ..., 3) be quasi-monotone with respect to x. Then the solution of problem (2.1)
fulfils

u ∈ H1+ 1
2 (Ωi ∩ U) (i = 0, ..., 3).

This bound is sharp.

Proof. The proof uses techniques described above. It can be found in [17]

One checks that regularity results from [3, 10, 12, 16, 20] are special cases of Theo-
rems 6.2 or 6.4.

Remark 6.1. One notices that Lemma 5.2 is the key ingredient for deriving lower
bounds for the eigenfunctions of the Sturm-Liouville problem. It uses explicitly that the
eigenfunctions of the Sturm-Liouville problem are piecewise scaled and shifted cosines.
One could prove a similar result by using only concavity of the positive part of the
cosine function. In such a way applications to other problems may be possible.

7. The general case

7.1 Eigenvalue bounds in the general case. We conclude from Lemma 5.1 that
in the case of a non-quasi-monotone coefficient regularity may go down to H1. This
may happen if δ−1 becomes large. In this subsection we derive explicit bounds of
the regularity depending on δ. We show that u ∈ H1+ δ

2π . Moreover, we can derive
slightly better results which are sharp. To our knowledge a result which gives explicit
Hs-regularity where s depends on k is new.

The following technical lemma is the equivalent of Lemma 5.2. Before formulating
the lemma we will stretch its content. We have given a piecewise constant function
k(ϕ) defined on [0, 2π) fulfilling k(0) = 1 and k(ϕ) ≥ δ2, where 0 < δ2 < 1 is a given
constant. The function k defines a continuous function s(ϕ) which has piecewise the
form bi cos(ϕ−ci) and whose derivatives satisfy interface conditions of the type [ks′] = 0.
We demand s′(0) = 0 and s(0) = 1.

Let ϕn be the infimum of all roots ϕzero of these functions s(ϕ). The question is
about the dependence of ϕn on δ2. To answer the question we look for the function k
which defines the function s(ϕ) that has ϕn as a root. This function k is defined by
k = 1 on [0, 1

2ϕn) and k = δ2 on [ 12ϕn, ϕn) where ϕn = 2 arctan δ (see Figure 9).

Lemma 7.1. Let a number 0 < δ2 < 1 and numbers 0 = ϕ0 < ϕ1 < ... <
ϕn = 2arctan δ be given. Further, there are coefficients ki given where k0 > 0 and
ki

k0
≥ δ2 (i = 0, ..., n − 1). Denote by χ[ϕi,ϕi+1) the characteristic function of the

interval [ϕi, ϕi+1). Let numbers ci, bi ≥ 0 (i = 0, ..., n − 1) be given which define a
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function

s(ϕ) =
n−1∑

i=0

bi cos(ϕ− ci)χ[ϕi,ϕi+1) (7.1)

that is continuous and whose derivatives weighted with ki are also continuous:

bi cos(ϕi+1 − ci) = bi+1 cos(ϕi+1 − ci+1) (7.2)
kibi sin(ϕi+1 − ci) = ki+1bi+1 sin(ϕi+1 − ci+1) (7.3)

for i = 0, ..., n− 2. Assume c0 = 0 and b0 = 1. Then s(ϕ) > 0 on [0, ϕn).

Proof. We define ti(ϕ) = bi cos(ϕ− ci). Dividing ki by k0 we may set k0 = 1. But
in order to make the dependence on k clear we will use in the proof the notation k0

remembering k0 = 1. We first assume k0 > k1. Otherwise regard the discussion at the
end of the proof. The proof is done in three steps. Its idea is to bound function ti from
below by functions tji . Here we write ji to denote the dependence of j on i. Then we
show that the function tji is greater than a function uji . In the last step we discuss the
functions uji .

First Step: In the first step our goal is to show that for i = 1, ..., n − 1 there is an
index 0 ≤ j ≤ n− 1 and a number ϕ−j fulfilling

tj(ϕ−j ) = t0(ϕ−j ) (0 < ϕ−j ≤ ϕi) and tj(ϕ) ≤
{

t0(ϕ) if ϕ−j ≤ ϕ ≤ ϕn

ti(ϕ) if ϕi ≤ ϕ ≤ ϕn
(7.4)

The proof is somewhat technical. We show equation (7.4) by induction with respect to
i = 1, ..., n− 1.

Figure 8
Step i = 3 is illustrated, here J = 1, note ϕJ ≤ ϕ ≤ ϕi ≤ ϕ+
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Initial step i = 1: Simply define ϕ−j1 := ϕ1 and j1 = 1. As k0 > k1, Lemma 5.1
implies tj1(ϕ) ≤ t0(ϕ) for ϕ−j1 ≤ ϕ ≤ ϕn. We showed equation (7.4) for i = 1.

Induction for i > 1: Set J := ji−1. There are two cases. In the first case tJ(ϕ) ≤
ti(ϕ) for ϕi ≤ ϕ ≤ ϕn. We define ji := J and thus proved (7.4). In the second case
we define ji := i. This case is illustrated in Figure 8. There is a ϕ+ ∈ (ϕi, ϕn] with
tJ(ϕ+) = ti(ϕ+). Further, due to equations (7.2) and (7.4), tJ(ϕi) ≤ ti−1(ϕi) = ti(ϕi).
The last equations imply 0 ≤ (tJ − ti)′(ϕ+). We may use Lemma 5.1 to show tJ (ϕ) ≤
ti(ϕ) for 0 ≤ ϕ ≤ ϕ+. From equation (7.4) and from ϕ−J < ϕi < ϕ+ there follows

t0(ϕ−J ) = tJ(ϕ−J ) ≤ ti(ϕ−J ).

We conclude that there is a number ϕ−i fulfilling ϕ−J ≤ ϕ−i ≤ ϕi with t0(ϕ−i ) = ti(ϕ−i ).
It is not hard to see that ti(ϕ) ≤ t0(ϕ) for ϕ−i ≤ ϕi ≤ ϕ ≤ ϕn and hence we proved
(7.4).

Second Step: For i = 1, ..., n− 1 set j = ji and define uj by

uj = aj cos(ϕ− dj) (7.5)

where aj and dj are chosen in such a way that the interface conditions

t0(ϕ−j ) = uj(ϕ−j )

k0t
′
0(ϕ

−
j ) = δ2k0uj(ϕ−j )

(7.6)

are fulfilled for ϕ−j ∈ [0, ϕn]. Remember k0 = 0. Since uj(ϕ−j ) = t0(ϕ−j ) = tj(ϕ−j ) and
δ2 < 1 we conclude with the help of Lemma 5.1 that uj(ϕ) ≤ tj(ϕ) for ϕ−j ≤ ϕj ≤ ϕ ≤
ϕn ≤ π

2 . This yields together with equation (7.4)

uj(ϕ) ≤ tj(ϕ) ≤ ti(ϕ) (ϕi ≤ ϕ ≤ ϕn). (7.7)

Third Step: We want to show 0 < uj(ϕ) for ϕ ∈ [0, ϕn) and i = 0, ..., n − 1 by
showing that dj ∈ [ϕn − π

2 , 0). Therefore, we choose ϕ = ϕ−j and d := dj and rewrite
(7.6) as

cos(ϕ) = aj cos(ϕ− d)

k0 sin(ϕ) = δ2k0aj sin(ϕ− d).
(7.8)

Now we look for the minimum value of d depending on ϕ. Dividing the two equations
(7.8) by each other we obtain

d(ϕ) = ϕ− arctan(δ−2 tan ϕ). (7.9)

Differentiating with respect to ϕ reveals that minimum is attained for tanϕmin = δ.
Inserting the minimum into (7.9) we see that the minimum value of dj ∈ [−π

2 , 0) is

d(ϕmin) = arctan δ − arctan δ−1 = 2(arctan δ)− π
2 = ϕn − π

2 .
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Here we used the trigonometric relation arctan x + arctan x−1 = π
2 . Thus we finished

the proof of the third step.

Figure 9
The black functions a′ cos(ϕ− d(ϕ′)), a? cos(ϕ− d(ϕmin)) fulfil inter-
face conditions with the same jump of coefficients at points ϕ′, ϕmin =
arctan δ; they vanish at d(ϕ′)+ π

2
, d(ϕmin)+ π

2
; we show minϕ′(d(ϕ′)+

π
2
) = d(ϕmin) + π

2
= ϕn = 2ϕmin

Now we collect the results from the previous three steps to obtain from inequality
(7.7)

0 < uj(ϕ) ≤ tj(ϕ) ≤ ti(ϕ) (ϕi ≤ ϕ ≤ ϕi+1; i = 1, ..., n− 1).

This shows the assertion for the case l = 0.
If there is an index l > 0 such that k0 < k1 < ... < kl, we use Lemma 5.2 to prove

that the functions ti (i = 0, ..., l) do not vanish on [ϕ0, ϕn]. It remains to prove the
assertion for functions ti (i > l). From the relation k0 < k1 < ... < kl there follows
0 = c0 < c1 < ... < cl. We shift the functions ti (i > l) to the left by cl > 0 and prove
the assertion for the shifted functions as in the case l = 0

7.2 A “worst case” regularity result. We use Lemma 7.1 to derive bounds for
the eigenvalues of the associated Sturm-Liouville eigenvalue problem. Comparing these
bounds with the function defined in Example 1 we can show that our bounds are sharp.
The main result in this section is Theorem 7.3.

Remark 7.1. The singular function defined in Example 1 fulfils the conditions

δ = tan λπ
4 ≤ k ≤ tan(λπ

4 )−1 for any number 0 < λ < 1. (7.10)

Recall that λ2 is an eigenvalue of the associated Sturm-Liouville eigenvalue problem.
Rewriting (7.10) we get λ = 4

π arctan δ.

Theorem 7.2. Let a heterogeneous singular point x ∈ Ω be given and let δ ≤ ki ≤
δ−1 (i = 0, ..., n − 1). Define θ as the interior angle of Ω at x (if x ∈ Ω, set θ = 2π)
and

m =





1
2 if x ∈ Ω
1 if x ∈ ∂Ω and the boundary conditions do not change in x
2 if x ∈ ∂Ω and the boundary conditions change in x.
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For the smallest non-vanishing eigenvalue of the associated Sturm-Liouville eigenvalue
problem λ2 it holds (

2δ
mθ

)
<

(
4

mθ arctan δ
)2 ≤ λ2. (7.11)

The bound to the right is sharp with respect to δ,m and θ.

Proof. Dividing k by a δ−1 we may assume δ2 ≤ ki ≤ 1. If x is an interior singular
point, we conclude as in the proof of Theorem 5.3 that there are two points ϕmin and
ϕmax where s(ϕ) achieves an extremum and two zero points ϕzero,1 and ϕzero,2. It is
easy to see that we can order these points like ϕmin < ϕzero,1 < ϕmax < ϕzero,2. If x is
an interior heterogeneous singular point, we are free in the choice of ϕex ∈ {ϕmin, ϕmax}
and ϕzero ∈ {ϕzero,1, ϕzero,2}, and we may additionally assume |ϕex − ϕzero| ≤ π

2 .
If x is a boundary heterogeneous singular point, we may assume there is an ex-

tremum and a zero point of s(ϕ) such that |ϕex−ϕzero| ≤ θ
2 if the boundary conditions

do not change in x, and |ϕex−ϕzero| ≤ θ if they do. For the sake of brevity we continue
the proof in the case of an interior singular point.

We choose j such that ϕex ∈ [ϕj , ϕj+1) and show as in the proof of Theorem 5.3
that cj = ϕex. Further, we choose the maximum n such that ϕj+1 < ... < ϕn ≤ ϕzero.
Changing the coordinate system we may set ϕex = 0 < ϕzero < π

2 .
We introduce the homogeneous scaling F : [0, ϕzero] → [0, ϕ̂zero] with F (ϕ) = ϕ̂ =

λϕ. Define sF (F (ϕ)) = s(ϕ) for ϕ ∈ [ϕex, ϕzero]. Then ϕ̂zero ≤ λπ
2 holds. Observe that

sF (ϕ̂) fulfils the assumption of Lemma 7.1 as ki

k0
≥ ki ≥ δ2 for all i = 0, ..., n− 1. Since

sF vanishes in ϕ̂zero we conclude from Lemma 7.1 that

2 arctan δ ≤ ϕ̂zero ≤ λ
π

2
. (7.12)

The inequality c < 2 arctan c for any 0 < c < 1 is checked easily. This shows assertion
(7.11). Sharpness follows from Remark 7.1.

The case x ∈ ∂Ω is proved similarly. Here one has to modify the singular function
defined in Example 1 by restricting the domain of definition and applying a suitable
affine transformation

According to Theorem 7.2 we are now able to give a regularity result which will
depend on the bounds of k.

Theorem 7.3. Let δ < k(x) < δ−1 for all x ∈ Ω and some number 0 < δ < 1.
Then the solution of problem (2.1) has regularity

u ∈ H1+ δ
2π (Ω).

Let a heterogeneous singular point x ∈ Ω be given and let c ν ≤ ki ≤ c ν−1 (i =
0, ..., n−1) for some constants c > 0 and ν > 0. Denote by U a neighborhood containing
no other singular point. With the notation of Theorem 7.2

u ∈ H1+ 4 arctan ν
mθ −ε(U ∩ Ωi) ⊂ H1+max(1, 2ν

mθ )(U ∩ Ωi) (i = 0, ..., n− 1)

holds where ε > 0 is arbitrary. This is the maximum regularity with respect to δ, ν and
θ independent of the number and interior angles of the subdomains.

Proof. The assertion follows with Corollary 4.2 from Theorem 7.2
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An easy consequence of the above theorem is

Corollary 7.4. Let δ > 0 be given. The singular function ψ1 defined in Example 1
with λ = 4π−1 arctan δ is the function with lowest regularity among all singular functions
for interior heterogeneous singular points under the restriction δ ≤ k ≤ δ−1 and with
no other restrictions on the geometry (that means there are no restrictions imposed on
the number and interior angles of the subdomains).

7.3 Regularity between the quasi-monotone and the “worst case”. The ques-
tion arises about regularity for coefficients that are not quasi-monotonically distributed
but which have no checkerboard-like pattern as in the “worst case”. In this context it
seems naturally to expect that a slight perturbation of quasi-monotonically distributed
coefficients will not result in large changes of the regularity. These questions will be
answered in the next theorem.

Theorem 7.5. Let a heterogeneous singular point x ∈ Ω be given. We assume that
kx(ϕ) has more then one local maximum. Denote by kmax,1 and kmax,2 the two largest
local maxima and let kmax,1 ≥ kmax,2. Further, let kmin,1 and kmin,2 be the two smallest
local minima where kmin,1 ≤ kmin,2. Denote by U a neighborhood containing no other
singular points and define δ′ =

√
kmin,2/kmax,2. Then the solution of problem (2.1) has

regularity

u ∈ H1+ arctan δ′
π (U ∩ Ωi) ⊂ H1+ δ′

2π (U ∩ Ωi) (i = 0, ..., n− 1).

If quasi-monotonicity is violated only “a little”, that means in the case that kmax,2
kmin,2

is

close to 1, regularity will not differ much from H1+ 1
4 -regularity in the quasi-monotone

case. In the “worst case” Example 1 it holds kmax,1 = kmax,2 and kmin,1 = kmin,2.
Accordingly, δ = δ′ and we note that regularity implied by Theorem 7.3 differs only
by the constant 4 from the “worst case” result from Theorem 7.3. Hence, we can
interpret Theorem 7.5 as a link between the theory of robust regularity results for
quasi-monotonically distributed coefficients and results for the “worst case”. Moreover,
the theorem provides regularity results independent of δ. In the case of pure Dirichlet
conditions Theorem 7.5 is valid with δ′ =

√
kmin,2/kmax,1, and in the case of pure

Neumann conditions with δ′ =
√

kmin,1/kmax,2.

Proof of Theorem 7.5. The proof combines ideas from the proof of Theorems
7.3. and 5.3. It can be found in [17]

7.4 W 2,p-regularity. Using the bounds of the eigenvalues in Theorems 5.3, 5.4 and 7.2
it is straightforward to formulate regularity results in Sobolev spaces W 2,p for p ∈ (1, 2).
Calculation shows that the singular function rλsλ(ϕ) belongs piecewise to W 2,p for
p < 2

2−λ .

Corollary 7.6. Denote by u the solution of problem (2.1). Let a singular point x ∈
Ω with neighborhood U containing no other singular point be given. If the distribution
of coefficients ki (i = 0, ..., n − 1) is quasi-monotone with respect to x, then u has
regularity

u ∈ W 2,1+ 1
7 (Ωi ∩ U) (i = 0, ..., n− 1).



454 M. Petzoldt

If for a δ > 0 there holds δ ≤ ki ≤ δ−1 (i = 0, ..., n− 1), then u has regularity

u ∈ W 2,1+ δ
4π (Ωi ∩ U) (i = 0, ..., n− 1).

Proof. The result for the quasi-monotone case follows from Theorems 5.3 and 5.4
and [15: Corollary 2.28]. We check 2

2− 1
4

= 1+ 1
7 . Regularity for the general case follows

from Theorem 7.2 and [15: Corollary 2.28]. Here we use the inequality 2
2− δ

2π

> 1 + δ
4π

together with the embedding W 2,p ⊂ W 2,q for 1 ≤ q < p
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