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On the
Three “Essential” Critical Values Theorem

B. Sciunzi

Abstract. Global methods of the calculus of variations and the infinite dimensional critical
point theory of Ljusternik and Schnirelmann are applied to give results on the existence of
so-called critical values and essential critical values. The case of continuous, not necessarily
differentiable functionals is considered and studied introducing a suitable variant of the Palais-
Smale condition.
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1. Introduction

The aim of this paper is to extend the main result of [14]. Let ϕ ∈ C1(Rn,R) and
suppose that ϕ is coercive, i.e., ϕ(x) → ∞ as ‖x‖ → ∞. It is well known (see [9])
that under these assumptions ϕ reaches a minimum at some point x0. Let now x1 be a
critical point of ϕ which is not a global minimum. Krasnoselskij [11] made the following
observation that if x1 is a non-degenerate singular point of the vector field ∇ϕ, i.e.
ind(∇ϕ(x1), 0) 6= 0, then ϕ admits a third critical point. In the sequel this theorem
became known as the ”Three Critical Points Theorem”.

The above result of Krasnoselskij was extended to the context of Banach spaces
(see [1, 5, 10, 18]). Another generalization was obtained by Chang [6, 7] using the
methods of Morse theory (the condition ind(∇ϕ(x1), 0) 6= 0 being replaced by the weaker
assumption of non-triviality of Morse critical groups at x1). Also, Brezis and Nirenberg
[4] gave a very useful variant of the Three Critical Points Theorem for applications using
the principle of local linking (see also [12]).

An interesting result has been proved by Moroz, Vignoli and Zabreiko in [14], in
the case of C1 functionals satisfying the Palais-Smale (or PS-) condition (meaning that
any sequence (xn) with |ϕ(xn)| < c and ‖∇ϕ(xn)‖ → 0 as n → ∞ has a convergent
subsequence), using the Ljusternik-Schnirelmann category. In this case the existence
of a third critical value is established by assuming the existence of an essential critical
value c > m, where m is the minimum of ϕ.

The definition of essential critical value, as we shall see, does not need differentia-
bility of ϕ. So we ask ourselves if the Three Critical Points Theorem is still valid for
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continuous functionals, by replacing the concept of critical values with that of essential
critical values.

Essential critical values have been considered also by Degiovanni [8] in a slightly
different form, where the well known Deformation Lemma has been replaced introducing
the following

Definition 1.1. Let X be a real Banach space and a and b in the extension of R
with a ≤ b. The pair (ϕb, ϕb) is said to be trivial, if for every neighborhood [α′, α′′] of
a and [β′, β′′] of b with α′, α′′, β′, β′′ ∈ R∪ {−∞,+∞} there exist two closed subsets A

and B of X such that ϕα′ ⊆ A ⊆ ϕα′′ and ϕβ′ ⊆ B ⊆ ϕβ′′ and such that A is a strong
deformation retract of B.

In this way we can replace the classic Deformation Lemma with the following result.

Theorem 1.1. Let X be a real Banach space and a, b ∈ R∪{−∞, +∞} with a < b.
Let us assume that ϕ has no essential value in (a, b). Then the pair (ϕb, ϕa) is trivial.

This theorem is not strong enough to prove our result. To this purpose we shall
introduce the notion of quasi-strong deformation retract.

2. A deformation lemma for continuous functionals

Here we introduce the notion of quasi-strong deformation retract and prove a deforma-
tion result which is stronger than Theorem 1.1.

Let X be a real Banach space. We assume that ϕ : X → R is continuous and
coercive, i.e. ϕ(x) →∞ as ‖x‖ → ∞. Let us denote by

m = min
X

ϕ

the minimum of ϕ over X and by

M = {x ∈ X : ϕ(x) = m}
the set of minimum points of ϕ. Moreover, by

ϕc = {x ∈ X|ϕ(x) ≤ c}
we denote the Lebesgue set of the functional ϕ for the value c ∈ R ∪ {∞} where it is
assumed that ϕ∞ = X.

Let A ⊆ B ⊆ X. A continuous map D : [0, 1] × A → B such that D(0, x) = x for
all x ∈ A is said to be a deformation of A in B. The set A is contractible in B if there
exists a deformation D of A in B such that D(1, A) = {p}, where p is a point of B.

In the case A = B we say that A is contractible in itself. The set A is a deformation
retract of B if there exists a deformation D of the set B in itself such that D(1, B) ⊆ A
and D(1, x) = x for all x ∈ A. The functional D(1, X) : B → A is called a retraction.
The set A is called a strong deformation retract of B, if D(t, x) = x for all x ∈ A and
t ∈ [0, 1].

It is well known that, if A is a deformation retract of B, then A and B have the
same homotopy type (the converse not holding in general). If we assume that X is
reflexive and ϕ coercive and convex, then under these assumptions ϕ has a minimum
on X, as a consequence of the following
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Theorem 2.1. Let X be a reflexive Banach space and ϕ : X → R a convex contin-
uous coercive functional. Then ϕ has a minimum on X; i.e. there exists x0 ∈ X such
that ϕ(x0) = m = minX ϕ.

A proof of this result can be found in [3, 9]. Note that, under our assumptions, ϕ
needs not be differentiable, and so we cannot refer to critical values of ϕ. Nevertheless,
for continuous functionals the following considerations are in order.

Definition 2.1. A value c ∈ R of the functional ϕ is called an essential critical
value, if for every δ > 0 there exists ε ∈ (0, δ] such that the Lebesgue set ϕc−ε is not a
strong deformation retract of the Lebesgue set ϕc+ε.

Note that if ϕ is a C1 functional satisfying the PS-condition and c is not a critical
value of ϕ, then by the PS-condition it follows that c is not limit of critical values. By
the classical Deformation Lemma, for every δ > 0 there exists ε ∈ (0, δ] such that ϕc−ε

is a strong deformation retract of ϕc+ε. In particular, for C1 functionals satisfying the
PS-condition, an essential critical value is also a critical value.The converse does not
hold in general as shown in the example ϕ(x) = x3 where c = 0 is a critical value of ϕ
which is not an essential critical value.

We now introduce the above mentioned notion of quasi-strong deformation retract.

Definition 2.2. The Lebesgue set ϕa is called a quasi-strong deformation retract
of ϕb if there exists δ > 0 such that, for every ε1, ε2 ∈ (0, δ] and for arbitrary small
ε′1 > 0,

a) ϕa−ε1 is a strong deformation retract of ϕb+ε2

b) ϕa+ε′1 is a strong deformation retract of ϕb+ε2 .

Let us point out that if ϕa is a quasi-strong deformation retract of ϕb, then the pair
(ϕb, ϕa) is trivial (the converse not holding in general).

Lemma 2.1. Let X be a real Banach space and ϕ : X → R a real continuous
functional. If we assume that the interval [a, b] ⊆ R ∪ {∞} does not contain essential
critical values of ϕ, then ϕa is a quasi-strong deformation retract of ϕb. In the case
b = ∞ we shall set ε2 = 0 in Definition 2.2.

Proof. We consider two cases. First, b < ∞, and then b = ∞.
1) Let b < ∞ and δ > 0 be such that ϕa−ε is a strong deformation retract of ϕa+ε,

for every ε ∈ (0, δ]. If c ∈ (a, b) is fixed, we choose ε in such a way that [c−ε, c+ε] ⊆ [a, b]
and ϕc−ε is a strong deformation retract of ϕc+ε. Let εb be such that ϕb−εb is a strong
deformation retract of ϕb+εb and εa < δ. We may assume that

[a, b] ⊂
⋃

ci∈(a,b)

(ci − εi, ci + εi) ∪ (a− εa, a + εa) ∪ (b− εb, b + εb) (2.1)

and ϕci−εi is a strong deformation retract of ϕci+εi , for every ci ∈ (a, b). Now in (2.1)
we exhibit an open covering of the compact set [a, b] so that we may extract a finite
subcovering. It is not difficult to verify that if [ci − εi, ci + εi] ∩ [cj − εj , cj + εj ] 6= ∅,
then ϕci−εi is a strong deformation retract of ϕcj+εj . Arguing by induction on a finite
number of intervals it is easy to see that ϕa is a strong deformation retract of ϕb.
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2) Let b = ∞ and ϕ∞ = X. For n ∈ N let εn be such that ϕa+n−εn is a strong
deformation retract of ϕa+n+1−εn+1 . Note that the existence of εn has been proved in
the first step. Consider

D1(x, t) : ϕa+1−ε1 × [0, 1] → ϕa+1−ε1

a strong deformation of ϕa+1−ε1 in ϕa−ε0 with ε0 < δ. Let

D2 : ϕa+2−ε2 × [0, 1] → ϕa+2−ε2

be a strong deformation of ϕa+2−ε2 in ϕa+1−ε1 . Denote by D̃1 : X × [0, 1] → X a
continuous extension of D1 such that D1(x, 0) = x for every x ∈ X. The map D̃1 exists
by Dugundji’s Extension Theorem. Set

D̄2(x, t) =
{

D̃1(D2(x, 2t), 2t) for 0 ≤ t ≤ 1
2

D1(D2(x, 1), 2t− 1) for 1
2 ≤ t ≤ 1.

The definition of D̄2 is well posed, and what we obtain is a continuous map which is a
deformation of ϕa+2−ε2 onto ϕa−ε0 .

The map D̄2 may assume values in all of X and not only in ϕa−ε0 . However, we
may argue as follows. Note that D̄2(x, t) ≡ D1(x, t) on ϕa+1−ε1 × [0, 1]. So we may
define

D∞ : X × [0, 1] → X

as follows: for x ∈ ϕa+n−εn \ ϕa+n−1−εn−1 we set

D∞ = D̄n(x, t) for every t ∈ [0, 1].

Now, the definition of D∞ is well posed and D∞ is a deformation of ϕ∞ on ϕa−ε0 in
ϕ∞. Since ε0 was arbitrary, the lemma is proved

Lemma 2.1 allows us to consider the case b = ∞, i.e. ϕb = X. Hence, if ϕ has
not essential critical values greater or equal to c, we can retract the whole space X on
Lebesgue sets arbitrarily close to ϕc.

In what follows we show some direct consequences of Lemma 2.1.

Proposition 2.1. Let [a, b] ⊂ R ∪ {∞}. If ϕa is not a quasi-strong deformation
retract of ϕb, then ϕ has an essential critical value c ∈ [a, b].

Therefore, if there exist a, b ∈ R∪{∞} such that ϕa is not a quasi-strong deformation
retract of ϕb, then there exists at least one essential critical value in the interval [a, b].

The following definition will be crucial in the proof of the main result of this paper.

Definition 2.3. A value c ∈ R is called a strong essential critical value of ϕ, if
there exists δ > 0 such that ϕc−ε is not a strong deformation retract of ϕc+ε, for every
ε ∈ (0, δ].

Remark 1. If m is the minimum of ϕ, then m is a strong essential critical value of
ϕ. In the sequel we shall show that if x0 is a strict local minimum of ϕ, then ϕ(x0) is a
strong essential critical value of ϕ. This is related to the fact that, for C1 functionals,
a strict local minimum is a critical point. It is also clear that a strong essential critical
value is also an essential critical value.

The following result states that an essential critical value is nearly always a strong
essential critical value.
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Proposition 2.2. Let ϕ be a C1 real functional satisfying the PS-condition. If c is
an essential critical value which is not limit of critical values, then c is a strong essential
critical value.

Proof. Let c be an essential critical value of ϕ. Let δ > 0 be such that ϕc−δ is
not a strong deformation retract of ϕc+δ and the interval [c− δ, c + δ] does not contain
critical values. Assume that ε ∈ (0, δ) is such that ϕc−ε is a strong deformation retract
of ϕc+ε. Then, by the classic Deformation Lemma, ϕc+ε is a strong deformation retract
of ϕc+δ, and then ϕc−ε is a strong deformation retract of ϕc+δ. Moreover, ϕc−δ is a
strong deformation retract of ϕc−ε and so it is also a strong deformation retract of ϕc+δ.
This is a contradiction

3. The three essential critical values theorem

In this section, with the aid of Lemma 2.1, we prove some preliminary results and use
them to prove the Three Essential Critical Values Theorem.

We shall run over the approach shown in [14] for the C1 case, using the statements
we have proved for the C0 case. We recall (see [9]) that a metric space C is called an
absolute neighbourhood retract (an ANR for short) if, for any closed subset A ⊆ B
of a metric space B, we have that any continuous map f : A → C has a continuous
extension over some neighbourhood UA of A in B. Any Lebesgue set corresponding to
a regular value of a C1 functional ϕ is an ANR (see [15]).

In what follows we prove an analogue of this result for continuous functionals.

Theorem 3.1. Let ϕ be a real continuous functional on X and let c be a regular
value of ϕ. Then there exists δ > 0 such that ϕc−ε is an ANR, for every ε ∈ (0, δ].

Proof. Let B be a metric space and A ⊆ B be a closed subset of B. Choose
δ > 0 such that ϕc−ε is a deformation retract of ϕc+ε, for every ε ∈ (0, δ], and consider
f : A → ϕc−ε continuous. Since X is an absolute retract, there exists a continuous
extension f̃ : B → X of f . Setting ŨA = f̃−1({x ∈ X : ϕ(x) < c + ε}), by the
continuity of f̃ we have that ŨA is an open set containing A. Now, if r is the retraction
of ϕc+ε onto ϕc−ε, then r ◦ f̃ |ŨA

satisfies

a) r ◦ f̃ |ŨA
is product of continuous functionals and so it is continuous

b) the range of r ◦ f̃ |ŨA
lays in ϕc−ε

c) (r ◦ f̃ |ŨA
)|A = id ◦ f̃ |A = f

and the theorem is proved

We recall now the following important result (see [17]).

Theorem 3.2. Let B be an ANR and A ⊆ B be a closed subset of B such that A is
also an ANR. Then A is a strong deformation retract of B if and only if the inclusion
i : A ↪→ B is a homotopy equivalence.

With the aid of Theorem 3.2 we shall study the topology of Lebesgue sets. In what
follows there will be crucial the fact that ϕ∞ = X is contractible in itself.
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Theorem 3.3. Let X be a real Banach space, ϕ a continuous functional on it, and
c ∈ R a strong essential critical value of ϕ. Then there exists δ > 0 such that for every
ε ∈ (0, δ] such that ϕc−ε and ϕc+ε are ANR’s, at least one of the two Lebesgue sets ϕc−ε

and ϕc+ε is not contractible in itself.

Proof. Let δ > 0 be such that the Lebesgue set ϕc−ε is not a strong deformation
retract of the Lebesgue set ϕc+ε, for every ε ∈ (0, δ]. If ϕc−ε and ϕc+ε are ANR’s, then
they are closed ANR’s and, by Theorem 3.2, the inclusion i : ϕc−ε ↪→ ϕc+ε is not a
homotopy equivalence.

Assume that both ϕc−ε and ϕc+ε are contractible in itself. In this case any con-
tinuous map f : ϕc−ε → ϕc+ε and, in particular, the inclusion map is a homotopy
equivalence. This is a contradiction

We recall now a classic result from Ljusternik-Schnirelmann theory (see [9: p. 354]).
In what follows CatB(A) stands for the category of the set A ⊆ B in B. In this case it
is important to note that if a set is contractible in itself, then it has category equal to
one.

Proposition 3.1. Let B be an ANR and A ⊆ B. Then there exists a neighbourhood
UA of A in B such that CatB(UA) = CatB(A).

Remark 2. Let us assume, under the assumptions of Proposition 3.1, that the set
A is contractible in itself. Then as above mentioned, CatB(A) = 1 and, since subsets
of B of category one are contractible in B, there exists a neighbourhood UA of A which
has category equal to one and is contractible in B.

In order to prove the main result we need a condition which replaces the PS-
condition in the case of continuous functionals. To this purpose we shall introduce
the PST-condition and the PSV-condition. We shall use the PST-condition in the case
of continuous convex functionals. Even if this case is too restrictive, it tells us how to
treat the more general case of continuous, not necessarily convex functionals.

Condition PST. We say that ϕ satisfies the PSTϕ(x0)- condition in ϕ(x0) if any
sequence (xn) such that ϕ(xn) → ϕ(x0) and (xn) ⇀ x ∈ ϕ−1(ϕ(x0)) has a subsequence
converging to x.

Lemma 3.1. Let ϕ be continuous, coercive and convex. Let m, the minimum of
ϕ, be an isolated essential critical value of ϕ and let M , the set of minimum points of
ϕ, be contractible in itself. Then for every δ̄ > 0 there exists ε ∈ (0, δ̄) such that the
Lebesgue set ϕm+ε is contractible in itself.

Proof. Choose ε > 0 so that the interval [m,m + ε] does not contain essential
critical values of ϕ different from m. We may also suppose that m + ε is not a limit of
essential critical values. Hence, by Theorem 3.1, there exists ε′ > 0 such that ϕm+ε+ε′ is
an ANR, and since M ⊆ ϕm+ε+ε′ is contractible in itself, there exists a neighbourhood
UM of M in ϕm+ε+ε′ which is contractible in ϕm+ε+ε′ . Moreover, we choose ε′ > 0
such that the interval [m,m + ε + ε′ + δ′] does not contain essential critical values.

Let us show now that there exists δ ∈ (0, ε) such that

M ⊆ ϕm+δ ⊆ UM ⊆ ϕm+ε+ε′ .
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In fact, if this is not the case, there exists a minimizing sequence (xn) ⊆ ϕm+δ\UM .
Now, since ϕm+δ is weakly compact (see [3]), there exists a subsequence (xnk

) ⊂ (xn)
such that (xnk

) ⇀ x0 and x0 is in M from [3: Corollary III.8]. Since we have supposed
that ϕ satisfies the PST-condition, (xnk

) → x0 ∈ M , and x0 /∈ UM . This contradicts
the fact that M ⊆ UM .

Finally, by Lemma 2.1 we may suppose that ϕm+δ ⊆ UM is a strong deformation
retract of ϕm+ε+ε′ and UM is contractible in ϕm+ε+ε′ . Hence ϕm+ε+ε′ is contractible
in itself

Remark 3. By Lemma 2.1 there exists s > 0 such that ϕm+ε−η is a strong defor-
mation retract of ϕm+ε+ε′ , for every η ∈ (0, s). Since ϕm+ε+ε′ is contractible in itself,
then ϕm+ε−η is contractible in itself for every η ∈ (0, s).

4. Proof of the main result

As above mentioned, ϕ∞ is the whole space X and then it is contractible in itself. This
causes that any Lebesgue set which is a strong deformation retract of ϕ∞ is contractible
in itself. So, if we suppose that M is not contractible in itself and that there exists an
essential critical value c > m, we shall prove the existence of a third essential critical
value greater than m.

Theorem 4.1 (Three Critical Values Theorem). Let ϕ be a continuous, coercive
and convex functional satisfying the PSTm-condition. If ϕ has a strong essential critical
value c > m, then either ϕ admits three distinct essential critical values or the set M
of minimum points is not contractible in itself.

Proof. We may assume that m and c are isolated critical values of ϕ, otherwise the
theorem is trivial. Suppose that M is contractible in itself. Since c is a strong essential
critical value of ϕ, there exists δ > 0 such that ϕc−ε is not a strong deformation retract
of ϕc+ε, for every ε ∈ (0, δ).

Let c − ε̄ be a regular value of ϕ in the interval (c − ε, c). By Theorem 3.3 there
exists δ′ > 0 such that ϕc−ε̄+ε′ is a closed ANR for every ε′ in the interval (0, δ′). By
Lemma 3.1 we may also suppose that ϕc−ε̄+ε′ is contractible in itself. Arguing the same
way for the regular value c + ε̄ and, if necessary, reducing δ′ and changing ε̄, we can
suppose that ϕc+ε̄−ε′ is a closed ANR, for every ε′ in the interval (0, δ′) (we use the
same notations even if the intervals are changed). Now, by Theorem 3.3, ϕc+ε̄−ε′ is not
contractible in itself for every ε′ ∈ (0, δ′). Since, by Lemma 2.1, ϕc+ε̄−ε0 is a strong
deformation retract of ϕ∞ = X for some ε0 ∈ (0, δ′), ϕc+ε̄−ε0 is contractible in itself.
This is a contradiction. So either ϕ admits a third essential critical value or M is not
contractible in itself. In particular, if M is not contractible in itself, it is not a one point
set
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5. The main theorem for continuous functionals

In this section we prove the three essential critical values theorem for continuous, not
necessarily convex functionals, replacing the PS-condition with the PSVm-condition
defined below. As you shall see our result extends the three critical points theorem [14]
to the case of continuous functionals and, in the case of differentiable functionals, it is
a stronger result.

We introduce now the above mentioned PSVm-condition.

Condition PSV. A continuous functional ϕ satisfies the PSVc-condition, if any
sequence (xn) such that ϕ(xn) → c has a subsequence converging to x0 ∈ M .

Remark 4. In particular, we shall consider c = m, m being the minimum of ϕ
on X. In this case, as we shall prove below, the PSVm-condition is weaker than the
PS-condition. Moreover, we shall exhibit a large class of functionals satisfying the
PSVm-condition.

Remark 5. If X = Rn, then any continuous coercive functional ϕ : X → R
satisfies the PSVc-condition at any level c ∈ R. In fact, in this case Br(0) is compact,
and so any bounded sequence (xn) has a subsequence (xnk

) converging to x0. Now,
since ϕ is coercive and ϕ(xn) → c, the sequence (xn) is bounded.

If X is an infinite dimensional space, we cannot apply the arguments of Remark 4
and say that any continuous functional satisfies the PSVm-condition. However, there
is a large class of functionals satisfying the PSVm-condition as it is shown in the next
result. Let use recall that, if Ω ⊂ X is a closed and bounded set, then a functional F
defined on it is said to be proper if F−1(K) is compact whenever K is compact.

Proposition 5.1. Let X be a real Banach space and let ϕ : X → R be a continuous
functional which is proper on closed and bounded sets of X. Then ϕ satisfies the PSVc-
condition at any level c ∈ R.

Proof. For any c ∈ R consider the interval [c−ε, c+ε]. We set D = ϕ−1[c−ε, c+ε].
Since ϕ is coercive and continuous, then D is bounded and closed. Now, since by
assumption ϕ is proper on closed and bounded sets, then D is compact. Let now (xn)
be such that ϕ(xn) → c. It is easy to verify that (xn) ⊂ D for n large enough. So (xn)
has a subsequence (xnk

) ⊂ (xn) converging to x0

Let us recall now an important result from [4].

Proposition 5.2. If ϕ is a C1 functional bounded from below and satisfying the
PS-condition, then ϕ satisfies the PSVm-condition.

The converse of this result does not hold in general as shown by f : R → R,
f(x) = − 1

1+x2 . Indeed, it is not difficult to verify that f satisfies the PSVm-condition,
even though f does not satisfy the PS-condition. So the class of functionals satisfying
the PSVm-condition is in fact larger than the class of functionals satisfying the PS-
condition.
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Lemma 5.1. Let m be an isolated essential critical value of ϕ and let M be con-
tractible in itself. Then for every δ̄ > 0 there exists ε ∈ (0, δ̄) such that the Lebesgue set
ϕm+ε is contractible in itself.

Proof. We choose ε > 0 such that the interval [m,m+ε] does not contain essential
critical values of ϕ different from m. We may assume that m+ ε is not limit of essential
critical values. Hence, by Theorem 3.1, there exists ε′ > 0 such that ϕm+ε+ε′ is an
ANR. Since M ⊆ ϕm+ε+ε′ is contractible in itself, there exists a neighbourhood UM of
M in ϕm+ε+ε′ which is contractible in ϕm+ε+ε′ . Moreover, we choose ε′ > 0 such that
the interval [m, m + ε + ε′ + δ′] does not contain essential critical values.

Let us show now that there exists δ ∈ (0, ε) such that

M ⊆ ϕm+δ ⊆ UM ⊆ ϕm+ε+ε′ .

In fact, if this is not the case, there exists a minimizing sequence (xn) ⊆ ϕm+δ\UM

with ‖xn‖ ≤ c. By the PSVm-condition there exists a subsequence (xnk
) → x0, and

x0 /∈ UM . This contradicts the fact that M ⊆ UM .
Finally, by Lemma 2.1 we may suppose that ϕm+δ ⊆ UM is a strong deformation

retract of ϕm+ε+ε′ . Since UM is contractible in ϕm+ε+ε′ , then ϕm+ε+ε′ is contractible
in itself

Remark 6. By Lemma 2.1 there exists s > 0 such that ϕm+ε−η is a strong defor-
mation retract of ϕm+ε+ε′ , for every η ∈ (0, s). Since ϕm+ε+ε′ is contractible in itself,
then ϕm+ε−η is contractible in itself for every η ∈ (0, s).

Replacing Lemma 3.1 with Lemma 5.1 we may run over again the proof of Theorem
4.1 and prove our main result.

Theorem 5.1 (Three Critical Values Theorem). Let ϕ be a continuous and coercive
functional satisfying the PSVm-condition. If ϕ has a strong essential critical value
c > m, then either ϕ admits three distinct essential critical values or the set of minimum
points M is not contractible in itself.

We suppose now that ϕ satisfies the PSV-condition at any level c = ϕ(x0), where
x0 is a strict local minimum. Under these assumptions, the following proposition holds.

Proposition 5.3. Let x0 be a strict local minimum of ϕ. If ϕ satisfies the PSVc-
condition with c = ϕ(x0), then c is a strong essential critical value of ϕ.

Proof. Let B%(S%) be the ball (sphere) with center in x0 and radius % > 0. We
can choose % such that

inf
S%

ϕ(x) = c% > c and inf
B%

ϕ(x) = c.

In fact, if (xn) ⊂ S% is a minimizing sequence since ‖xn‖ ≤ %, then by assumption there
exists a subsequence (xnk

) such that (xnk
) → x̄ ∈ S%. Now, since ϕ is continuous, then

ϕ(x̄) = c. This contradicts the fact that x0 is a strict local minimum.
Obviously, c% → c as % → 0. We fix ε = ε% ∈ (0, c%− c). Then the component of the

Lebesgue set ϕc+ε, which contains the point x0, does not meet the Lebesgue set ϕc−ε.
Hence ϕc−ε is not a strong deformation retract of ϕc+ε. Since ε is arbitrarily small, the
value c = ϕ(x0) is a strong essential critical value of ϕ
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6. The case of C1 functionals

In this section we consider again the case of C1 coercive functionals satisfying the PS-
condition. In this case we have an interesting result due to Moroz, Vignoli and Zabreiko
(see [14]). Let us recall it.

Theorem 6.1. If ϕ has an essential critical value c > m, then either ϕ admits at
least three distinct critical values or the set of minimum points M is not contractible in
itself. In particular, ϕ admits al least three critical points.

We are going to show that our Theorem 5.1 allows us to give a stronger version of
Theorem 6.1. In fact, the following is in order.

Theorem 6.2. Let ϕ be a coercive C1 functional which satisfies the PSVm-condi-
tion. If ϕ has an essential critical value c > m, then either ϕ admits a third essential
critical value or the set M of its minimum points is not contractible in itself. In partic-
ular, ϕ has at least three critical points.

Proof. We start by assuming that M is contractible in itself and that ϕ has a finite
number of critical values. From this it follows that c is not limit of critical values of ϕ.
Then by Proposition 2.2, c is a strong essential critical value of ϕ. Applying Theorem
5.1 we get the result

Now, for C1 functionals satisfying the PS-condition, an essential critical value is
also a critical value. Remarking that the PS-condition is stronger than the PSVm-
condition (Proposition 5.2), we get as a consequence of our result the Three Critical
Points Theorem of Moroz, Vignoli and Zabreiko.
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