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The Generalized Riemann Problem
of Linear Conjugation for

Non-Homogeneous Polyanalytic Equations
of Order n in Wn,p(D)

Ali Seif Mshimba

Abstract. We consider a non-homogeneous polyanalytic partial differential equation of order
n in a simply-connected domain D with smooth boundary ∂D in the complex plane C. Initially
we transform the given equation into an equivalent system of integro-differential equations and
then find the general solution of the former in Wn,p(D). Next we pose and prove the solvability
of a generalized Riemann problem of linear conjugation to the differential equation. This is
effected by first reducing the Riemann problem to a corresponding one for a polyanalytic
function. The latter is solved by first transforming it into n classical Riemann problems of
linear conjugation for n holomorphic functions expressed in terms of the analytic functions
which define the polyanalytic function. The solution of the classical Riemann problem is
available in the literature.

Keywords: Polyanalytic functions, generalized Cauchy-Pompeiu integral operators of higher
order, Riemann problem of linear conjugation

AMS subject classification: 30 G30, 35G 30, 35 J 40, 47 G20

1. Introduction

We consider the following non-homogeneous polyanalytic partial differential equation of
order n in a given simply-connected and bounded domaun D in the complex plane C:

∂nw

∂z̄n
= F

(
z, w,

{ ∂n+kw

∂zm∂z̄k

})
on D (1)

where n ∈ N and k,m ∈ N0 are such that m + k ≤ n and (0, 0) 6= (m, k) 6= (0, n) and{
∂m+kw
∂zm∂z̄k

}
stands for the set of all possible partial derivatives of w, with respect to z or

its complex conjugate z̄, of order not exceeding n and excluding ∂nw
∂z̄n . Equation (1) may

be viewed as a complex normal form of the following system of two partial differential
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equations of real-valued functions u = u(x, y) and v = v(x, y):

n∑

j=0

(
A

(k)
n−j,j(x, y)

∂nu

∂xn−j∂yj
+ B

(k)
n−j,j(x, y)

∂nv

∂xn−j∂yj

)

+
n−1∑

i+j=0

(
C

(k)
i,j (x, y)

∂i+ju

∂xi∂yj
+ D

(k)
i,j (x, y)

∂i+jv

∂xi∂yj

)
= fk(x, y)

(k = 1, 2). The former is obtained from the latter through the introduction of the
complex notations

z = x + iy, w = u + iv, F = f1 + if2

∂

∂z
= 1

2

( ∂

∂x
− i

∂

∂y

)
and

∂

∂z̄
= 1

2

( ∂

∂x
+ i

∂

∂y

)

and if the assumptions of the existence theorem on implicit functions are satisfied.
We shall show that equation (1) has a unique general solution w for every prescribed

in D polyanalytic function of order n, before we embark on solving a generalized version
of the Riemann problem of linear conjugation.

2. The requisite integral operators

When solving elliptic equations of first order (cf. [7, 15, 24, 25, 27]) the Cauchy-Pompeiu
operator TD and the strongly singular Vekua integral operator ΠD:

TDf(z) = − 1
π

∫∫

D

f(ζ)
ζ − z

dξdη

ΠDf(z) = − 1
π

∫∫

D

f(ζ)
(ζ − z)2

dξdη

(
z = x + iy
ζ = ξ + iη

)

and the operators related to them (cf. [8, 12, 26]) play an important role. When handling
elliptic differential equations of higher order, the need arises either to reduce the given
equation to one of first order or, alternatively, to generalize the integral operators so
that they can be applied rationally to the higher order differential equations at hand.
Begehr and Hile generalized the operators as follows (see [2, 5, 6]):

Tm,n,Df(z) =
∫∫

D

Km,n(z − ζ)f(ζ) dξdη (m + n ≥ 0) (2)

where the kernel Km,n of the operator is defined as follows:

Km,n(z) =





(−m)! (−1)m

(n− 1)! π
zm−1z̄n−1 as 0 ≥ m ∈ Z

(−n)! (−1)n

(m− 1)! π
zm−1z̄n−1 as 0 ≥ n ∈ Z

zm−1z̄n−1

(m− 1)! (n− 1)! π

(
log |z|2 −

m−1∑
r=1

1
r
−

n−1∑
s=1

1
s

)
as m,n ∈ N.

(3)
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If m = 1 or n = 1, the correspoding sum is dropped. The case m = n = 0 is used to
define the identity operator. Thus T0,0,Df = f for all f ∈ Lp(D) (1 < p < ∞).

We note that the kernel Km,n has no singularity in C, except possibly at the origin.
It has at worst a pole of order two, when m = −n. In such a case the operator Tm,n,D is
strongly singular, and hence Tm,n,Df exists solely in the sense of the Cauchy principal
value if f ∈ Cα(D) (0 < α < 1) or f ∈ Lp(D) (1 < p < ∞). As such, Tm,n,D can be
seen as a generalization of the Vekua integral operator ΠD. It satisfies, moreover, the
Zygmund-Calderon inequality (cf. [5, 6, 9, 12, 19, 21, 26]):

‖Tm,n,Df‖p ≤ Ap‖f‖p,D

1 = ‖Tm,n,D‖2 ≤ ‖Tm,n,D‖p ≤ Ap

(
m + n = 0
1 < p < ∞

)
.

If m + n > 0, then the operator Tm,n,p has either no singularity in C, or it has a pole
oforder 1 at ζ = z. It can thus be viewed as a generalization of the Cauchy-Pompeiu
operators TD, TD, T ∗D or the potential operator PD:

TDf(z) = − 1
π

∫∫

D

f(ζ)
ζ̄ − z̄

dξdη

T ∗Df(z) = − 1
π

∫∫

D

f(ζ)
|ζ − z| dξdη

PDf(z) = 2
π

∫∫

D

f(ζ) log |ζ − z| dξdη.

Since Km,n ∈ L1(D) if D has a finite area, we deduce from the convolution theorem
of Young (see [19: p. 7], for instance) that Tm,n,Df ∈ Lp(D) (1 ≤ p ≤ ∞), and an
estimate of the form

‖Tm,n,Df‖p,D ≤ C(m, n,D) ‖f‖p,D (1 ≤ p ≤ ∞; m + n > 0)

holds.
The integral operators Tm,n,D with m+n > 0 and m+n = 0 demonstrate properties

which are similar to those of the operators TD and ΠD, respectively, in the Banach spaces
Ck,α(D) (0 < α < 1) and Wk,p(D) (1 < p < ∞) for k ∈ N0 (see [2, 5, 6]). We write
here two of such properties which will play an important role in our discussion:

1. If f ∈ Lp(D) (2 < p < ∞) and D ⊂ C is a bounded domain, then T−m,n,Df
exists, for m, n ∈ N0 with 0 ≤ m < n, in the Lebesgue sense for all z ∈ C. In particular,
for z with |z| < R the estimates

|T−m,n,Df(z)| ≤ M1(m,n, p,D, R) ‖f‖p,D

‖T−m,n,Df‖p,D ≤ M2(m,n, p,D, R) ‖f‖p,D

}

hold.

2. If f ∈ Lp(D) (2 < p < ∞) and D ⊂ C is a bounded domain, then T−m,n,Df
satisfies, for any z1, z2 ∈ C and m,n ∈ N0 with 0 ≤ m < n, the Hölder condition∣∣T−m,n,Df(z1)− T−m,n,Df(z2)

∣∣ ≤ M3(m,n, p, D) ‖f‖p,D|z1 − z2|β
where

β =
{

1 if n−m ≥ 2
1− 2

p if n−m = 1.
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3. Transforming (1) into an integro-differential system

We consider the given non-homogeneous polyanalytic partial differential equation (1)
in a simply-connected bounded domain D ⊂ C. If Tm,k,D denotes the generalized
cauchy-Pompeiu operator (2), then ∂

∂z Tm,k,Df(z) = Tm−1,k,Df(z), ∂
∂z̄ Tm,k,Df(z) =

Tm,k−1,Df(z) and, in general,

∂i+j

∂zi∂z̄j
Tm,k,Df(z) = Tm−i,k−j,Df(z) (4)

for m, k ∈ Z and i, j ∈ N0 with m + k ≥ i + j ≥ 0 in the Sobolev sense (see [5]).
Suppose w is a given solution of equation (1). We define a function Φ as follows:

Φ(z) = w(z)− T0,n,DF
(
ζ, w(ζ),

{ ∂m+kw

∂ζm∂ζ̄k

})
(z).

Then, by virtue of (4), we find out immediately that

∂nΦ
∂z̄n

=
∂nw

∂z̄n
− T0,0,DF

(
ζ, w(ζ),

{ ∂m+kw

∂ζm∂ζ̄k

})
(z)

= F
(
z, w,

{ ∂m+kw

∂zm∂z̄k

})
− F

(
z, w,

{ ∂m+kw

∂zm∂z̄k

})

= 0

(z ∈ D)

in the Sobolev sense, and as such Φ is a polyanalytic function of order n in D (in
some literature the term ”n-analytic function” is used synonymously). We conclude,
therefore, that any solution of equation (1) may be expressed in the form

w(z) = Φ(z) + T0,n,DF
(
ζ, w(ζ),

{ ∂m+kw

∂ζm∂ζ̄k

})
(z) (5)

where Φ is a polyanalytic function of order n in the domain D.
On differentiating (5) we obtain

hm,k(z) :=
∂m+kw

∂zm∂z̄k
=

∂m+kΦ
∂zm∂z̄k

+ T−m,n−k,DF
(
ζ, w(ζ),

{ ∂r+sw

∂ζr∂ζ̄s

})
(z).

where n ∈ N and m, k ∈ N0 are such that m + k ≤ n and (0, 0) 6= (m, k) 6= (0, k). We
are therefore in a position to formulate the following

Theorem 1. A function w is a solution of the non-homogeneous polyanalytic partial
differential equation (1) of order n if and only if, for a polyanalytic function Φ of order
n in the domain D ⊂ C, {w, hm,k} is a solution of the integro-differential system

w(z) = Φ(z) + T0,n,DF
(
ζ, w(ζ), {hm,k(ζ)})(z)

hm,k(z) =
∂m+kΦ
∂zm∂z̄k

+ T−m,n−k,DF
(
ζ, w(ζ), {hm,k(ζ)})(z)



 (6)

where n ∈ N and m, k ∈ N0 are such that m + k ≤ n and (0, 0) 6= (m, k) 6= (0, k).
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4. The general solution

We make the following assumptions on the right-hand side of the non-homogeneous
polyanalytic partial differential equation (1):

(A1) F (z, w, {hm,k}) is a continuous function of its variables z ∈ D, w and the partial
derivatives of w of order not exceeding n and excluding ∂nw

∂z̄n .
(A2) There exists a tuple (w∗, {h∗m,k}), w∗, h∗m,k ∈ Lp(D) (2 < p < ∞), such that

F (z, w∗, {h∗m,k}) ∈ Lp(D).

(A3) F (z, w, {hm,k}) satisfies a Lipschitz condition of the form

∣∣F (
z, w(z), {hm,k(z)})− F

(
z, ŵ(z), {ĥm,k(z)})∣∣

≤ L1 max
{
|w(z)− ŵ(z)|, max

m+k<n
|hm,k(z)− ĥm,k(z)|

}

+ L2 max
m+k=n

|hm,k(z)− ĥm,k(z)|

a.e. on D, if w, ŵ, hm,k, ĥm,k ∈ Lp(D). Whereas 0 < L2 < 1, the constant L1

may take any positive value.

Remark. Assumptions (A1) - (A3) guarantee that F (z, w, {hm,k}) ∈ Lp(D) when-
ever hm,k ∈ Lp(D) (2 < p < ∞). Indded, we have

‖F (z, w, {hm,k})‖p,D

≤ ‖F (z, w∗, {h∗m,k})‖p,D

+ L1 max
{
‖w − w∗‖p,D + max

m+k<n
‖hm,k − h∗m,k‖p,D

}

+ L2 max
m+k=n

‖hm,k − h∗m,k‖p,D.

We next introduce the Banach space Lp(D) (2 < p < ∞):

Lp(D) =

{
(w, {hm,k})

∣∣∣∣∣
w, hm,k ∈ Lp(D), n ∈ N, m, k ∈ N0 with m, k ≤ n, (0, 0) 6= (m, k) 6= (0, n)

‖(w, {hm,k})‖p,D = max
γ>0

{
γ‖w‖p,D, γ max

m+k<n
‖hm,k‖p,D, max

m+k=n
‖hm,k‖p,D

}
}

.

We define a mapping P in Lp(D) through the right-hand-side of (5). Namely, for any
tuple (w, {hm,k}) ∈ Lp(D) we set

P (w, {hm,k}) = (W, {Hm,k})

with
W (z) = Φ(z) + T0,n,DF

(
ζ, w(ζ), {hm,k(ζ)})(z)

Hm,k(z) =
∂m+kΦ
∂zm∂z̄k

+ T−m,n−k,DF
(
ζ, w(ζ), {hm,k(ζ)})(z)



 (7)
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where Φ ∈ Wn,p(D) is a polyanalytic function of order n in D, n ∈ N and m, k ∈ N0

are such that m + k ≤ n and (0, 0) 6= (m, k) 6= (0, n). Surely, P maps the Banach space
Lp(D) into itself.

Let (W, {Hm,k}) and (Ŵ , {Ĥm,k}) be the images of (w, {hm,k}) and (ŵ, {ĥm,k})
under the mapping P , respectively. Then

γ‖W − Ŵ‖p,D ≤ γ‖T0,n,D‖p

∥∥F (z, w, {hm,k})− F (z, ŵ, {ĥm,k})
∥∥

p,D

≤ γ‖T0,n,D‖pL1 max
{
‖w − ŵ‖p,D, max

m+k<n
‖hm,k − ĥm,k‖p,D

}

+ γ‖T0,n,D‖L2 max
m+k=n

‖hm,k − ĥm,k‖p,D

≤ ‖T0,n,D‖p(L1 + γL2)
∥∥(w, {hm,k})− (ŵ, {ĥm,k})

∥∥
p,D

.

Similarly we obtain

γ‖Hm,k − Ĥm,k‖p,D ≤ ‖T−m,n−k,D‖p(L1 + γL2)
∥∥(w, {hm,k})− (ŵ, {ĥm,k})

∥∥
p,D

‖Hα,β − Ĥα,β‖p,D ≤ ‖T−α,n−β,D‖p

(
1
γ L1 + L2

)∥∥(w, {hm,k})− (ŵ, {ĥm,k})
∥∥

p,D





for 0 < m + k < n, α + β = n and (α, β) 6= (0, n). However, we know from properties
of the integral operators Tm,n,D that

‖T−m,n−k,D‖p =
{

C(m, k, n, D) for 0 < m + k < n
‖ΠD‖p for m + k = n

(8)

where ΠD is the strongly singular Vekua integral operator. We thus conclude that
∥∥(W, {Hm,k})− (Ŵ , {Ĥm,k})

∥∥
p,D

≤ max
{

γ‖T0,n,D‖p, γ max
m+k<n

‖T−m,n−k,D‖p, ‖ΠD‖p

}

× (
1
γ L1 + L2

)∥∥(w, {hm,k})− (ŵ, {ĥm,k})
∥∥

p,D

and P turns out to be contractive in Lp(D) (2 < p < ∞) if

max
{

γ‖T0,n,D‖p, γ max
m+k<n

‖T−m,n−k,D‖p, ‖ΠD‖p

}(
1
γ L1 + L2

)
< 1. (9)

If estimate (9) is realizable, then by the Banach fixed point theorem P has a unique
fixed point (w, {hm,k}) ∈ Lp(D) (2 < p < ∞) satisfying (6). By Theorem 1, the
corresponding w is the general solution of equation (1) corresponding to the prescribed
in the domain D polyanalytic function Φ ∈ Wn,p(D) of order n.

Restriction (9) can be satisfied if the constants L1, L2 and γ are chosen suitably and
the domain D is sufficiently small. It is well-known that

i) ‖ΠD‖p ≥ ‖ΠD‖2 = 1 (1 < p < ∞)
ii) ‖ΠD‖p is a logarithmic convex function of p ∈ (1,∞)
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(cf. [5, 6, 9, 12, 13, 19, 20, 26]).
Suppose that L2 satisfies the inequality L2‖ΠD‖p < 1 (i.e. 0 < L2 < 1). We then

fix the constant γ large enough so that, for given L1, the relation
(

1
γ L1 +L2

)‖ΠD‖p < 1
is also valid. Finally, since ‖T0,n,D‖p and ‖T−m,n−k,D‖p for m + k < n increase with
the area of the domain D, a proper reduction of the size of D ensures the fulfilment
of estimate (9), and hence the existenxe of a unique fixed point of the operator P in
Lp(D) (2 < p < ∞).

Theorem 2. Assuming the validity of assumptions (A1) - (A3) and estimate (9),
the non-homogeneous polyanalytic partial differential equation (1) of order n admits a
unique solution w ∈ Wn,p(D) (2 < p < ∞) given by equation (5), for every prescribed
in the bounded domain D polyanalytic function Φ ∈ Wn,p(D) (2 < p < ∞) of order n.

It can also be shown that the operator R:

R
(
Φ,

{ ∂m+kΦ
∂zm∂z̄k

})
= (w, {hm,k})

is a topological mapping of the set H of all in the domain D polyanlytic functions
Φ ∈ Wn,p(D) of order n onto the set W of all solutions (w, {hm,k} ∈ Lp(D) of the
integro-differential system (6). In the light of Theorem 1 we can thus formulate the
following

Theorem 3. The operator R is a topological mapping of the set H of all in the
domain D polyanalytic functions Φ ∈ Wn,p(D) of order n onto the set W of all solutions
w ∈ Wn,p(D) of the complex partial differential equation (1).

5. The generalized Riemann problem of linear conjugation
for non-homogeneous polyanalytic equations

We now pose the following generalized Riemann problem of linear conjugation for the
function w:

∂nw

∂z̄n
= F

(
z, w,

{ ∂n+kw

∂zm∂z̄k

})
on D (1)

[
z̄qj

∂2j−1w

∂zj−1∂z̄j

]+

(t)−Gj(t)
[
z̄qj

∂2j−1w

∂zj−1∂z̄j

]−
(t) = gj(t) on ∂D (G)

[
∂2s−2w

∂zs−1∂z̄s−1

]+

(t)−Hs(t)
[

∂2s−2w

∂zs−1∂z̄s−1

]−
(t) = fs(t) on ∂D (H)

where qj ∈ Z,
gj , Gj ∈ Wn−2j+1− 1

p ,p(∂D)

fs,Hs ∈ Wn−2s+2− 1
p ,p(∂D)

}
(2 < p < ∞)

and

j, s ∈ N, n ∈ N0 with 2j < n + 1 and 2s < n + 2
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k, m, n ∈ N0 with m + k ≤ n and (0, 0) 6= (m, k) 6= (0, n).

We know that the general solution of equation (1) takes the form (5), where Φ is
an arbitrary polyanalytic function of order n in the given domain D. We thus first
substitute the jump conditions (G) in the general solution (5) and thus arrive at the
following corresponding problem for the polyanalytic function Φ:

[
z̄qj

∂2j−1Φ
∂zj−1∂z̄j

]+

(t)−Gj(t)
[
z̄qj

∂2j−1Φ
∂zj−1∂z̄j

]−
(t)

= gj(t) + Gj(t) t̄qj

[
∂2j−1

∂zj−1∂z̄j
T0,n,DF

]−
(t)− t̄qj

[
∂2j−1

∂zj−1∂z̄j
T0,n,DF

]+

(t)

= gj(t) + (Gj(t)− 1) t̄qj T1−j,n−j,DF (·, w, {hm,k})(t)

(G)′

on ∂D, since Tm,k,DF is a continuous function on the whole complex plane whenever
F ∈ Lp(D), 2 < p < ∞ and m + k > 0. Similarly, we obtain from the jump conditions
(H) [

∂2s−2Φ
∂zs−1∂z̄s−1

]+

(t)−Hs(t)
[

∂2s−2Φ
∂zs−1∂z̄s−1

]−
(t)

= fs(t) + (Hs(T )− 1)T1−s,n−s+1,DF (·, w, {hm,k})(t)
(H)′

on ∂D. We deduce from the properties of the integral operators Tm,k,D in Lp(D) (1 <
p < ∞) that T1−j,n−j,DF ∈ Wn−2j+1,p(D) and T1−s,n−s+2,DF ∈ Wn−2s+2,p(D), and
hence, by the trace theorem (see [1, 11, 22, 23]),

T1−j,n−j,DF ∈ Wn−2j+1− 1
p ,p(∂D) and T1−s,n−s+2,DF ∈ Wn−2s+2− 1

p ,p(∂D).

We next split the polyanalytic function Φ into two such functions, Φ = Φ1 +Φ(w,h),
so that the jump conditions (G)′ and (H)′ are written as generalized Riemann problems
of linear conjugation for Φ1 and Φ(w,h):

[
z̄qj

∂2j−1Φ1

∂zj−1∂z̄j

]+

(t)−Gj(t)
[
z̄qj

∂2j−1Φ1

∂zj−1∂z̄j

]−
(t) = gj(t)

[
∂2s−2Φ1

∂zs−1∂z̄s−1

]+

(t)−Hs(t)
[

∂2s−2Φ1

∂zs−1∂z̄s−1

]−
(t) = fs(t)





(10)

and [
z̄qj

∂2j−1Φ(w,h)

∂zj−1∂z̄j

]+

(t)−Gj(t)
[
z̄qj

∂2j−1Φ(w,h)

∂zj−1∂z̄j

]−
(t)

= (Gj(t)− 1) t̄qj T1−j,n−j,DF (·, w, {hm,k})(t)[
∂2s−2Φ(w,h)

∂zs−1∂z̄s−1

]+

(t)−Hs(t)
[
∂2s−2Φ(w,h)

∂zs−1∂z̄s−1

]−
(t)

= (Hs(T )− 1)T1−s,n−s+1,DF (·, w, {hm,k})(t)





(11)

on ∂D. Such generalized Riemann problems of linear conjugation (10) - (11) were posed
and solved by the author in [17], assuming that (w, {hm,k}) is given. It was shown there
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that such a problem admits a uniquely defined in the given domain D polyanalytic
function Φ of order n, provided that sufficient point conditions on it are imposed. The
solution is an element in the Sobolev space Wn,p(D) (2 < p < ∞), and it satisfies
estimates of the form

‖Φ‖p,D ≤ C0(p,D, Qj)max ‖fj‖p,∂D

and, for 1 ≤ k ≤ n,
‖Φ‖k,p,D ≤ Ck(p,D,Qj) max ‖fj‖s,p,∂D

where

s =





n + 2− k − 2j − 1
p

or
n + 1− k − 2j − 1

p ,

Qj and fj are the coefficients and the free terms, respectively, in the respective Riemann
problem.

We next revisit the mapping P defined in Section 4, whereby the arbitrary but fixed
polyanalytic function Φ ∈ Wn,p(D) is now replaced by the one constructed above. Thus,
for any tuple (w, {hm,k}) ∈ Lp(D) we set

P (w, {hm,k}) = (W, {Hm,k})

with

W (z) = Φ1(z) + Φ(w,h)(z) + T0,n,DF
(
ζ, w(ζ), {hm,k(ζ)})(z)

Hm,k(z) =
∂m+k

∂zm∂z̄k
(Φ1 + Φ(w,h))(z) + T−m,n−k,DF

(
ζ, w(ζ), {hm,k(ζ)})(z)





where Φ1, Φ(m,k) ∈ Wn,p(D) are polyanalytic functions of order n in D, n ∈ N and
m, k ∈ N0 are such that m + k ≤ n and (0, 0) 6= (m, k) 6= (0, n).

Let
(w, {hm,k}), (ŵ, {ĥm,k}) ∈ Lp(D) (2 < p < ∞)

and let (W, {Hm,k}), (Ŵ , {Ĥm,k}) be their respective images under the mapping P . We
then obtain

γ‖W − Ŵ‖p,D

≤ γ‖T0,n,D‖p

∥∥F (z, w, {hm,k})− F (z, ŵ, {ĥm,k})
∥∥

p,D
+ γ‖Φ(w,h) − Φ(ŵ,ĥ)‖p,D

≤ γ
(
C1(p,D)‖T0,n,D‖1,p + ‖T0,n,D‖p

)

× L1 max
{
‖w − ŵ‖p,D, max

m+k<n
‖hm,k − ĥm,k‖p,D

}

+ γ
(
C1(p,D)‖T0,n,D‖1,p + ‖T0,n,D‖p

)
L2 max

m+k=n
‖hm,k − ĥm,k‖p,D

≤ γ
(
C1(p,D)‖T0,n,D‖1,p + ‖T0,n,D‖p

)
(L1 + γL2)

∥∥(w, {hm,k})− (ŵ, {ĥm,k})
∥∥

p,D
.
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Similarly we arrieve at

γ‖Hm,k − Ĥm,k‖p,D ≤ (
Cm,k(p,D)‖T0,n,D‖n−m−k+1,p + ‖T−m,n−k,D‖p

)

× (L1 + γL2)
∥∥(w, {hm,k})− (ŵ, {ĥm,k})

∥∥
p,D

and
‖Hα,β − Ĥα,β‖p,D ≤ (

Cn(p, D)‖T0,n,D‖1,p + ‖T−α,n−β,D‖p

)

× (
1
γ L1 + L2

)∥∥(w, {hm,k})− (ŵ, {ĥm,k})
∥∥

p,D

for 0 < m + k < n, α + β = n and (α, β) 6= (0, n). Consequently,

∥∥(W, {Hm,k})− (Ŵ , {Ĥm,k})
∥∥ ≤ κ

∥∥(w, {hm,k})− (ŵ, {ĥm,k})
∥∥

where

κ =
(

1
γ L1 + L2

)
max





γC1(p,D)‖T0,n,D‖1,p + ‖T0,n,D‖p

γ max
m+k<n

{
Cm,k(p,D)‖T0,n,D‖n−m−k+1,p + ‖T−m,n−k,D‖p

}

Cn(p,D)‖T0,n,D‖1,p + ‖ΠD‖p

The mapping P is thus contractive in Lp(D) if κ < 1, and in this case it has a unique
fixed point (w, {hm,k}) ∈ Lp(D) (2 < p < ∞), thanks to the Banach fixed point
theorem. By Theorem 1 and the construction of the polyanalytic functions Φ1 and
Φ(w,h), w of the fixed point (w, {hm,k}) solves the generalized Riemann problem of
linear conjugation (1), (G), (H).

The contractiveness of P can be arrived at in essentially the same manner as the one
discussed earlier in the case of a general solution. It is noteworthy in this exercise that
all constants C1(p,D), Cm,k(p,D) and Cn(p,D) increase with the size of the domain D.

Theorem 4. If assumptions (A1) - (A3) are satisfied and a requisite number of
point conditions are given, then the generalized Riemann problem of linear conjugation
(1), (G), (H) admits a unique solution w ∈ Wn,p(D) (2 < p < ∞).
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