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Abstract. In this note we extend a spectrum which was introduced by Furi, Martelli and
the third author in 1978 for continuous nonlinear maps F to a certain new spectrum for a
“semilinear pair” (L, F ), with L being a linear Fredholm operator of index zero, and F being
nonlinear and continuous.
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1. Nonlinear spectral theory

Several spectra for nonlinear operators have been studied in the last 30 years. Among
them we mention the Kachurovskij spectrum for Lipschitz continuous operators [14]
(see also [15]), the Neuberger spectrum for C1 operators [18], the Rhodius spectrum for
continuous operators [20], and the Dörfner spectrum for linearly bounded operators [5].
All those spectra are modelled on the familiar spectrum for bounded linear operators in
Banach spaces and, in fact, reduce to that spectrum in the linear case. As was observed
in [4], however, they do not have “good” properties, in general, and they do not lead to
natural applications.

On the other hand, in 1978 a nonlinear spectrum was introduced by Furi, Martelli,
and Vignoli [12] which is constructed in a completely different way, but has surprisingly
many applications, e.g. to nonlinear boundary value problems. The Furi-Martelli-
Vignoli spectrum (or FMV-spectrum, for short) of a continuous nonlinear operator F
in a Banach space X is based on solvability properties of the operator equation

F (x) = G(x) (1)

in X, where G is a compact operator with a certain asymptotic behaviour. Similarly,
Feng [8] defined another spectrum which also builds on solvability properties of equation
(1), but now for G satisfying certain boundary conditions on spheres. Here the suitable
class is that of stably solvable maps [11] in the case of the FMV-spectrum, and that
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of k-epi maps [21] in the case of the Feng spectrum. Applying spectral methods to
these classes of maps, one gets interesting new existence results which cannot be readily
obtained by means of other methods such as topological degree or fixed point theory.

Choosing, in particular, F (x) = x in (1), these existence results reduce to classical
fixed point theorems. It is well known that classical fixed point methods apply, whenever
one has a problem of the form

Lx = F (x) (2)

involving a nonlinear operator F and a linear operator L with trivial null space. Indeed,
in this case equation (2) is equivalent to the fixed point problem x = L−1F (x). On the
other hand, many boundary value problems for both ordinary and partial differential
equations, say, have form (2) with L being a non-invertible linear operator. For this
reason Mawhin [16] (see also [13]) replaced the classical Leray-Schauder degree by a
certain coincidence degree which was subsequently simplified in [19] and is more adapted
to that kind of boundary value problems.

Now, in the recent paper [9], Feng and Webb introduced a spectrum for a pair
(L,F ), where L is a (not necessarily invertible) linear densely defined Fredholm operator
of index zero, and F is a continuous nonlinear operator satisfying some additional
requirements. Such a situation arises frequently in applications to differential equations,
and the suitable class is that of (L, k)-epi maps. In the special case L = I, this class
reduces to the above mentioned class of k-epi maps, and thus the Feng-Webb spectrum
reduces to the Feng spectrum described in [8].

The aim of this note is to extend the FMV-spectrum for continuous nonlinear maps
F to a certain new spectrum for a “semilinear” pair (L,F ), with L and F as above.
Loosely speaking, our spectrum is modelled on the FMV-spectrum in a similar way as
the Feng-Webb spectrum is modelled on the Feng spectrum. However, our spectrum,
denoted by σ(L,F ), will be defined through the FMV-spectrum of a certain auxiliary
map which is simpler than the auxiliary map considered by Feng and Webb.

2. The FMV-spectrum

Throughout this paper we will suppose that the following hypotheses are met. X and
Y are two Banach spaces over K = R or K = C, and L : X → Y is a linear Fredholm
operator of index zero. In contrast to the paper [9], we assume in addition that L is
bounded; as a matter of fact, this assumption is not really restrictive, since every closed
linear operator becomes bounded after passing to a suitable new norm. We have the
decompositions X = N(L)⊕X0 and Y = Y0⊕R(L), where N(L) and Y0 have the same
(finite) dimension. By P : X → N(L) we denote a (bounded) projection on the kernel
of L, and by J : N(L) → Y0 a fixed isomorphism between the kernel and cokernel of L.
By construction, the linear operator L + JP is then invertible between X and Y . We
mention a typical example which we will consider several times in this paper [17].

Example 1. For fixed ω > 0, denote by Cω [resp. C1
ω] the space of all continuous

[resp. continuously differentiable] ω-periodic functions x : R → Rn with the natural
norms

||x||Cω = max
0≤t≤ω

|x(t)|, ||x||C1
ω

= max
0≤t≤ω

|x(t)|+ max
0≤t≤ω

|x′(t)|.
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Moreover, we write Ĉω (resp. Ĉ1
ω) for the subspace of all x ∈ Cω (resp. C1

ω) satisfying

Px := 1
ω

∫ ω

0

x(t) dt = 0. (3)

The operator P defined by (3) is a continuous projection which maps Cω onto Rn and
so induces a decomposition Cω = Ĉω ⊕ Rn resp. C1

ω = Ĉ1
ω ⊕ Rn.

Now, let X = C1
ω, Y = Cω, and define L : X → Y by Lx = x′. In the above

notation, we have then N(L) = Y0 = Rn, R(L) = Ĉω, and X0 = Ĉ1
ω. So L is a

Fredholm operator with dim N(L) = codim R(L) = n, i.e. of index zero. The bijection
L + JP : C1

ω → Cω is given by

(L + JP )x(t) = x′(t) + 1
ω

∫ ω

0

x(s) ds, (4)

its inverse by

(L + JP )−1y(t) =
∫ t

0

y(s) ds− t
ω

∫ ω

0

y(s) ds + 1
ω

∫ ω

0

(
1− ω

2 + s
)
y(s) ds.

The nonlinear operator F occurring in equation (2) is very often a Nemytskij operator
of the form

F (x)(t) = f(t, x(t))

generated by some Carathéodory function f : [0, ω]× Rn → Rn. For this operator it is
possible to calculate the characteristics we are going to study below explicitly [3].

Let us now briefly recall the definition of stably solvable maps. A continuous oper-
ator F : X → Y is called stably solvable [11] if, for any compact operator G : X → Y
whose quasinorm

[G]Q = lim sup
||x||→∞

||G(x)||
||x|| (5)

is zero, equation (1) has a solution x ∈ X. Putting, in particular, G(x) ≡ y in this
definition, one easily sees that every stably solvable operator F is onto. The converse
is true, for example, if F is linear [12].

In what follows, we need two numerical characteristics for nonlinear operators which
have also been used in [12]. Apart from the upper quasinorm (5), let

[G]q = lim inf
||x||→∞

||G(x)||
||x|| (6)

denote the lower quasinorm of F . Moreover, we will use the two characteristics

[F ]A = inf
{

k > 0 : α(F (M)) ≤ kα(M) for any bounded M ⊂ X
}

, (7)

and
[F ]a = sup

{
k > 0 : α(F (M)) ≥ kα(M) for any bounded M ⊂ X

}
, (8)
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where α(M) denotes the measure of non-compactness of the set M (see, e.g., [1]).
Obviously, F is a compact operator if and only if [F ]A = 0.

Recall that the FMV-spectrum [12] of F : X → X is defined by

σFMV (F ) = σq(F ) ∪ σa(F ) ∪ σδ(F ), (9)

where λ ∈ σq(F ) if and only if [λI − F ]q = 0, λ ∈ σa(F ) if and only if [λI − F ]a = 0,
and

σδ(F ) =
{

λ ∈ K : λI − F is not stably solvable
}

. (10)

In spite of its apparently very technical definition, spectrum (9) has many interesting
applications [12]. Moreover, the subspectra in (9) have a simple and natural interpre-
tation in the case of a linear operator L: in fact, σq(L) ∪ σa(L) is just the approximate
point spectrum of L, while σδ(L) is nothing else but the approximate defect spectrum of
L.

3. Definition of the semilinear FMV-spectrum

Now we are ready to introduce a spectrum for the pair (L,F ). To this end, for fixed
λ ∈ K we associate with (L,F ) the operator Φλ(L,F ) : X → X defined by

Φλ(L,F )(x) = λ(I − P )x− (L + JP )−1F (x). (11)

The operator equation
Φλ(L,F )(x) = y (12)

is then equivalent to the operator equation

λLx− F (x) = z, (13)

where the equivalence is established by the transform z = (L + JP )y. For further
reference, we mention the trivial, though useful, equality

Φλ(L,F )− Φµ(L,F ) = (λ− µ)(I − P ) (λ, µ ∈ K). (14)

The advantage of the operator Φλ(L, F ) consists in the fact that it acts in one and the
same space X, while the operator λL − F acts between X and Y . Observe, however,
that we cannot consider scalar multiples of the identity I in (11), as in classical spectral
theory, but of the “perturbed” identity I−P . Loosely speaking, one could say that, the
“closer” the operator L is to being injective, the “smaller” is its kernel N(L), and hence
the “more similar” are the left-hand sides of (12) and (13) to the usual form λI − N
with N being some nonlinear operator.

Taking, for example, X = C1
ω, Y = Cω, and Lx = x′ as in Example 1, we end up

with the operator Φλ(L,F ) : Cω → Cω given by

Φλ(L,F )(x)(t) = λx(t)− λ
ω

∫ ω

0

x(s) ds−
∫ t

0

F (x)(s) ds

+ t
ω

∫ ω

0

F (x)(s) ds− 1
ω

∫ ω

0

(
1− ω

2 + s
)
F (x)(s) ds.
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Now we are ready to define a semilinear spectrum for the pair (L,F ). To this end,
we put

σδ(L,F ) :=
{

λ ∈ K : Φλ(L,F ) is not stably solvable
}

(15)

and define the semilinear spectrum of L and F by

σ(L,F ) = σq(L,F ) ∪ σa(L,F ) ∪ σδ(L, F ), (16)

where λ ∈ σq(L,F ) if and only if [Φλ(L, F )]q = 0, and λ ∈ σa(L,F ) if and only if
[Φλ(L,F )]a = 0. Of course, for L = I we simply get L+JP = I and Φλ(I, F ) = λI−F ,
hence

σ(I, F ) = σFMV (F ). (17)

Thus all results proved below for the semilinear spectrum (16) reduce to a corresponding
result for the FMV-spectrum by means of the trivial choice L = I. On the other hand,
choosing F = I we get the linear operator

Φλ(L, I) = λ(I − P )− (L + JP )−1 = (L + JP )−1(λL− I),

and so
σ(L, I) =

{
1
λ : λ ∈ σ(L) \ {0}}

consists precisely of the characteristic values of L.

4. Properties of the semilinear FMV-spectrum

Before proving some properties of spectrum (16), we give a simple lemma which provides
several useful connections between the two operators Φλ(L,F ) and λL− F .

Lemma 1. Let Φλ(L,F ) be defined as in (11). Then the following equivalences are
true:

(a) λL−F : X → Y is surjective/injective/bijective if and only if Φλ(L,F ) : X →
X is surjective/injective/bijective, respectively.

(b) [Φλ(L,F )]a > 0 is equivalent to [λL− F ]a > 0.
(c) [Φλ(L,F )]q > 0 is equivalent to [λL− F ]q > 0.
(d) Φλ(L, F ) is stably solvable if and only if λL− F is stably solvable.

Proof. Relations (a), (b) and (c) are immediate consequences of the equivalence of
the operator equations (12) and (13). In particular, (b) follows from

||(L + JP )−1||−1 ≤ [L + JP ]a ≤ [L + JP ]A ≤ ||L + JP ||,

and (c) follows from

||(L + JP )−1||−1 = [L + JP ]q ≤ [L + JP ]Q = ||L + JP ||.

To prove relation (d) assume first that Φλ(L,F ) is stably solvable, and let G : X → Y
be compact with [G]Q = 0. Then the operator (L + JP )−1G : X → X is compact
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and satisfies [(L + JP )−1G]Q = 0. So by assumption the equation Φλ(L, F )(x) =
(L + JP )−1G(x) has a solution x̂ ∈ X. But then λLx̂ − F (x̂) = G(x̂), and so the
operator λL− F is stably solvable as claimed.

Conversely, suppose now that λL−F is stably solvable. Let G : X → X be compact
with [G]Q = 0. Then the operator (L + JP )G : X → Y is compact and satisfies
[(L + JP )G]Q = 0. So again by assumption the equation λLx− F (x) = (L + JP )G(x)
has a solution x̂ ∈ X. But then Φλ(L, F )(x̂) = G(x̂), and so the operator Φλ(L,F ) is
stably solvable as claimed

Lemma 1 shows that the definition of spectrum (16) is independent of the operators
P and J . The following theorem gives a natural topological property of spectrum (16).
In the case L = I this theorem reduces to [12: Theorem 8.1.2].

Theorem 1. The spectrum σ(L,F ) is closed.

Proof. Fix λ ∈ K \ σ(L,F ), and let

0 < δ < ||I − P ||−1 min
{
[Φλ(L,F )]a, [Φλ(L,F )]q

}
.

We claim that µ ∈ K \ σ(L,F ) for any µ satisfying |µ − λ| < δ. First of all, from (14)
we get

[Φµ(L,F )]a ≥ [Φλ(L, F )]a − |λ− µ| ||I − P || > 0

and
[Φµ(L, F )]q ≥ [Φλ(L,F )]q − |λ− µ| ||I − P || > 0,

by our choice of δ. It remains to show that Φµ(L, F ) is stably solvable for |µ− λ| < δ.
But this follows from [6: Proposition 5], since

max
{

[Φµ(L,F )− Φλ(L,F )]A, [Φµ(L,F )− Φλ(L,F )]Q
}

≤ |µ− λ| ||I − P ||
< min

{
[Φλ(L,F )]a, [Φλ(L,F )]q

}
.

We conclude that λ is an interior point of K \ σ(L, F ), and so K \ σ(L,F ) is open

In [12: Proposition 8.1.2/(d)] it was shown that the FMV-spectrum (9) is bounded
by max {[F ]A, [F ]Q}, hence compact, provided that the two numbers [F ]A and [F ]Q
are finite, of course. Since [F ]A ≤ ||F || = [F ]Q for F linear, this gives the usual
upper estimate of the spectral radius through the norm in the linear case. However,
an analogous result is not true for the semilinear spectrum (16). To see this, it suffices
to take F = I and L a linear operator with an unbounded sequence of characteristic
values, and to observe that these values belong to the spectrum σ(L, I) (see the remark
at the end of Section 3).
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5. Some properties of subspectra

Let us now take a closer look at the structure of the subspectra σq(L,F ), σa(L,F ), and
σδ(L,F ) defined above. The following result gives some information on the “localiza-
tion” of these subspectra; in the case L = I it reduces to [12: Proposition 8.1.4].

Theorem 2. The following is true:
(a) σa(L,F ) is closed.
(b) σq(L,F ) is closed.
(c) ∂σ(L,F ) ⊆ σa(L,F ) ∪ σq(L, F ).

Proof. (a) Suppose that λn ∈ σa(L,F ), λn → λ, and λ 6∈ σa(L,F ). Choose N ∈ N
such that |λn − λ| < [Φλ(L,F )]a for n ≥ N . Since

Φλn(L,F )− Φλ(L,F ) = (λn − λ)(I − P ), (19)

we get

[Φλn(L,F )]a = [Φλ(L,F ) + (λn − λ)(I − P )]a ≥ [Φλ(L,F )]a − |λn − λ| > 0,

contradicting our hypothesis λn ∈ σa(L,F ).
(b) Suppose again that λn ∈ σq(L,F ), λn → λ, and λ 6∈ σq(L,F ). Choose N ∈ N

such that |λn − λ| <
[Φλ(L,F )]q
||I−P || for n ≥ N . Again by (19) we get then the same

contradiction as above.
(c) We show that σ(L,F ) \ [σa(L,F ) ∪ σq(L,F )] is open. So fix λ ∈ σ(L,F ) such

that both λ 6∈ σa(L,F ) and λ 6∈ σq(L, F ). Suppose that there exists a sequence (λn)n

with λn → λ such that Φλn(L,F ) is stably solvable. Since λ ∈ σδ(L,F ), there exists a
compact operator G of quasinorm zero such that Φλ(L, F )(x) 6= G(x) for all x ∈ X. On
the other hand, by the stable solvability of each Φλn(L,F ) we find a sequence (xn)n in
X with Φλn(L,F )(xn) = G(xn). We claim that this sequence (xn)n is bounded. To see
this, suppose that ||xn|| → ∞. Then

||Φλ(L,F )(xn)||
||xn|| ≤ ||Φλ(L, F )(xn)− Φλn(L,F )(xn)||

||xn|| +
||G(xn)||
||xn||

≤ |λ− λn| ||I − P ||+ ||G(xn)||
||xn||

→ 0 (n →∞).

But this means that [Φλ]q = 0, contradicting our choice λ 6∈ σq(L,F ). Now, the
boundedness of (xn)n implies that

||Φλ(L,F )(xn)−G(xn)|| ≤ |λn − λ| ||I − P || ||xn|| → 0 (n →∞).

From this and the fact that [Φλ(L,F ) − G]a = [Φλ(L,F )]a > 0 it follows that there
exists a subsequence (xnk

)k of (xn)n with xnk
→ x̂. By continuity, x̂ is a solution of

the equation Φλ(L,F )(x̂) = G(x̂). This contradiction shows that our assumption was
false, and so the above assertion is true.

Now, let λ ∈ ∂σ(L,F ), and assume that λ 6∈ σa(L,F ) ∪ σq(L,F ). Then λ ∈
σ(L,F ) \ [σa(L, F ) ∪ σq(L,F )] which is open in σ(L,F ), contradicting λ ∈ ∂σ(L,F )
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In [12] the authors asked whether or not the subspectrum σδ(F ) defined in (10) is
also closed, as the other subspectra are. This question is related to the long-standing
conjecture that the class of stably solvable maps is stable under small perturbations.
Interestingly, this conjecture was disproved quite recently by Furi [10] by means of a
sophisticated counterexample involving a retraction of the closed unit ball in the space
X = C[0, 1] onto its boundary with finite characteristic (7).

If we impose additional conditions on the nonlinear operator F , we get more precise
information, as we shall see in the next theorem. Given a closed subset Σ of the complex
plane, by c0[Σ] we denote the connected component of C \ Σ containing zero, and by
c∞[Σ] the unbounded connected component of C \ Σ.

Theorem 3. Suppose that X and Y are infinite dimensional and F : X → Y is
compact. Then the following is true:

(a) σa(L,F ) = {0}, hence σa(L, F ) ∪ σq(L,F ) = {0} ∪ σq(L,F ).

(b) F is not onto; in particular, 0 ∈ σδ(L,F ).

(c) Either 0 ∈ σq(L,F ), or c0[σq(L,F )] ⊆ σδ(L,F ).

(d) If σ(L,F ) 6= K, then σq(L, F ) 6= ∅.
(e) If 0 6∈ σq(L, F ) and σ(L,F ) is bounded, then c0[σq(L,F )] is bounded; conse-

quently, σq(L,F ) contains a positive and a negative value.

(f) If K = C and σ(L,F ) is bounded, then c∞[σa(L, F ) ∪ σq(L,F )] ∩ σ(L,F ) = ∅.

Proof. (a) The assertion follows from the fact that, for F compact, the only non-
compact part in representation (11) of Φλ(L, F ) is λI, and so [Φλ(L,F )]a = |λ|, i.e.
σa(L,F ) = {0}.

(b) Being a compact operator between two Banach spaces, F cannot be onto, by
Baire’s category theorem. Consequently, Φ0(L,F ) = −(L + JP )−1F is not onto either,
and thus 0 ∈ σδ(L,F ).

(c) Suppose that 0 6∈ σq(L,F ). This means that [Φ0(L,F )]q > 0. From (a) it
follows that 0 is then an isolated point of σa(L,F ) ∪ σq(L,F ). Therefore it suffices to
show that Φλ(L, F ) is not surjective for λ small enough. In fact, assume that the set
c0[σq(L,F )] \ σδ(L,F ) is non-empty. Since this set has no boundary in c0[σq(L, F )], by
Theorem 2/(c), it is both open and closed in c0[σq(L,F )]. But c0[σq(L,F )] is connected,
by definition, and so σδ(L,F ) = ∅.

Now, to show that Φλ(L,F ) is not surjective for λ small enough, assume that
this is false. Then there exists a sequence (λn)n, λn → 0, such that Φλn(L,F ) =
λn(I −P )− (L + JP )−1F is onto for all n. Given a > 0 with 2a < [Φ0(L,F )]q, we may
find R > 0 such that ||Φ0(L,F )(x)|| ≥ 2a||x|| for ||x|| ≥ R. Taking b := 2aR we have
then ||Φ0(L, F )(x)|| ≥ 2a||x|| − b for all x ∈ X.

Fix y ∈ X with ||y|| ≤ 1. By assumption, we find a sequence (xn)n in X such that
Φλn(L,F )(xn) = y. Without loss of generality we may assume that |λn| ≤ a

||I−P || for
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all n, where a is as above. Consequently,

1 ≥ ||y|| = ||Φλn
(L,F )(xn)||

= ||λn(I − P )xn + Φ0(L,F )(xn)||
≥ 2a||xn|| − b− |λn| ||I − P || ||xn||
≥ a||xn|| − b,

hence ||xn|| ≤ 1+b
a , i.e. the sequence (xn)n is bounded. We conclude that λnxn → 0,

and thus F (xn) → −(L+JP )y as n →∞. Since y with ||y|| ≤ 1 was arbitrary, we have
actually shown that the closure of the set F ({x : ||x|| ≤ 1+b

a }) contains a ball (of radius
||(L + JP )−1||−1), and so has non-empty interior. But this is impossible, because F is
a compact operator.

(d) We distinguish the cases 0 ∈ σq(L,F ) and 0 6∈ σq(L, F ). In the first case the
assertion is trivially true. In the second case it follows from (c) that 0 is an interior
point of σ(L,F ). On the other hand, assertion (a) and Theorem 2/(c) imply that

∂σ(L,F ) ⊆ σa(L,F ) ∪ σq(L, F ) = {0} ∪ σq(L,F ),

and σ(L,F ) has non-empty boundary, since 0 ∈ σ(L,F ) and σ(L,F ) 6= K. So we have
0 ∈ ∂σ(L,F ), which is a contradiction.

(e) If 0 6∈ σq(L,F ), from (c) we conclude that

c0[σq(L, F )] ⊆ σδ(L,F ) ⊆ σ(L,F ),

and the assertion follows from the assumed boundedness of σ(L,F ).
(f) Put C∞ := c∞[σa(L,F )∪σq(L,F )] and C := C∞\σ(L,F ); we have to show that

C = C∞. Since the relative boundary of C with respect to C∞ is empty, by Theorem
2/(c), the set C is both open and closed in C∞. From the connectedness of C∞ it
follows that either C = C∞ or C = ∅. But the latter is impossible if σ(L,F ) = C∞ \C
is bounded

Observe that (f) implies the following alternative on the “size” of the subspectrum
σq(L,F ): If K = C, then either σq(L,F ) = ∅ or 0 ∈ σq(L, F ) or σq(L,F ) is infinite.
This is false in the case K = R. For example, for the operator F (x1, x2, x3, . . .) :=
(||x||, x1, x2, . . .) in the real sequence space X = l2 we have σq(I, F ) = {±√2}.

We illustrate Theorem 3 by a simple example. This example shows, in particular,
how both cases in Theorem 3 (c) may occur, and how this gives information on the
subspectrum σδ(L,F ) which is most difficult to calculate.

Example 2. Let X be an infinite dimensional complex Banach space, e ∈ X with
||e|| = 1, L = I, and

Fα(x) := ||x||αe (α > 0).

It is clear that σa(I, Fα) = {0} and 0 ∈ σδ(I, Fα) for any α > 0. Concerning σq(I, Fα)
and σδ(I, Fα), we distinguish three cases.
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1st case: α < 1. Then [Fα]Q = 0, and so σ(I, Fα) can only contain 0, by the Furi-
Martelli-Vignoli estimate for the spectral radius. Indeed, σq(I, Fα) = {0} since [Fα]Q =
0, and σδ(I, Fα) = {0} since Fα is not onto.

2nd case: α = 1. This is the most interesting case. Here σ(I, F1) must be contained
in the closure of the complex unit disc D = {z ∈ C : |z| < 1}, again by the Furi-Martelli-
Vignoli estimate for the spectral radius. It is easy to see that σq(I, F1) = ∂D, hence
c0[σq(I, F1)] = D and so D ⊆ σδ(I, F1) ⊆ D, by Theorem 3/(c). We claim that the
operator λI − F1 is not onto for |λ| = 1, and so σδ(I, F1) = D. In fact, the element
e does not belong to the range of λI − F1 for |λ| = 1. To see this, observe that the
equality λx = ||x||e + e for some x ∈ X would imply ||x|| = ||λx|| = ||x||+ 1.

We point out that c∞[σa(I, F1) ∪ σq(I, F1)] = c∞[{0} ∪ ∂D] = C \D, in accordance
with Theorem 3/(f).

3rd case: α > 1. Here the Furi-Martelli-Vignoli estimate does not provide any in-
formation on the size of the spectrum, since [Fα]Q = ∞ for α > 1. However, it is easy
to see directly that σq(I, Fα) = ∅, and so c0[σq(I, Fα)] = C. From Theorem 3/(c) we
conclude that σδ(I, Fα) = C.

We may summarize our results as follows. The spectrum σ(I, Fα) consists only of
zero if Fα has sublinear growth (α < 1), coincides with the closed unit disc if Fα has
linear growth (α = 1), and fills the whole complex plane if Fα has superlinear growth
(α > 1). This is of course what one could expect for a reasonable “nonlinear” spectrum.

6. Operators with discrete spectrum

Splitting the spectrum of a bounded linear operator into a “discrete” and an “essential”
part is important in applications. This decomposition becomes particularly simple for
compact linear operators: the non-zero spectrum of such an operator is purely discrete,
i.e. consists only of eigenvalues.

In this section we give a parallel result for the semilinear spectrum (16) in the case of
a compact nonlinear operator F . To this end, we first have to find an appropriate notion
of “eigenvalue” which corresponds to this spectrum. It is easy to see (and, in fact, was
already observed for the classical FMV-spectrum (9)), that the “naive” definition of an
eigenvalue as a scalar λ for which the equation λLx = F (x) has a non-trivial solution
x, is not suitable. For example, for the scalar function F (x) =

√
|x| in X = R we have

σ(I, F ) = σFMV (F ) = {0}, but each λ ∈ R \ {0} is an eigenvalue of F , and so the point
spectrum may even be disjoint from the FMV-spectrum.

The following notion seems to be more appropriate. Let us call λ ∈ K an asymptotic
eigenvalue of L and F if there exists an unbounded sequence (xn)n such that

lim
n→∞

||λLxn − F (xn)||
||xn|| = 0. (20)

It is easy to see that the set of all asymptotic eigenvalues of L and F is then nothing
else but the subspectrum σq(L,F ), and so belongs to the spectrum (16), by definition.
With this notion of point spectrum, the following “discreteness result” is then parallel
to the discreteness result for the spectrum of compact linear operators mentioned above.
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Theorem 4. Let L be as before, and let F be odd and compact. Then the inclusion

σ(L, F ) \ {0} ⊆ σq(L,F ) (21)

is true, i.e. every non-zero spectral point is an asymptotic eigenvalue of L and F .

Proof. Suppose that λ 6= 0 does not belong to σq(L,F ), i.e. [Φλ(L,F )]q > 0. From
Theorem 3/(a) we know then that λ does not belong to σa(L,F ) either, so we have to
show only that λ 6∈ σδ(L, F ). By definition (15) and Lemma 1 (d), this is equivalent to
proving that λL− F is stably solvable.

Let G : X → Y be compact with with [G]Q = 0. By assumption, λ 6= 0 and
[Φλ(L,F )]q > 0, and hence there exists R1 > 0 and δ > 0 such that

||λ−1(L + JP )−1(λL− F )(x)|| ≥ δ||x||
whenever ||x|| ≥ R1. On the other hand, we can find R2 > 0 such that

||λ−1(L + JP )−1G(x)|| ≤ δ
2 ||x||

whenever ||x|| ≥ R2. Thus, for ||x|| ≥ R := max {R1, R2} and 0 ≤ µ ≤ 1 we have

||λ−1(L + JP )−1(λL− F − µG)(x)|| ≥ δ
2 ||x||. (22)

Now,

λ−1(L + JP )−1(λL− F − µG) = (I − P )− λ−1(L + JP )−1(F + µG)

is a compact perturbation of the identity. Therefore, from (22) and the homotopy
invariance of the Leray-Schauder degree, we obtain for ΩR being the open ball in X
with radius R

deg
[
λ−1(L + JP )−1(λL− F −G), ΩR, 0

]

= deg
[
λ−1(L + JP )−1(λL− F ),ΩR, 0

]

≡ 1 (mod2),

and so the equation λLx = F (x) + G(x) has a solution in ΩR

We remark that Theorem 4 may be generalized in the following way. If F is odd
and [F ]A < ∞, then every λ ∈ σ(L,F ) with |λ| > [F ]A belongs to σq(L, F ), i.e. is
an asymptotic eigenvalue of L and F . This extends a corresponding result for linear
operators due to Ambrosetti [2] which states that every spectral value λ of a bounded
linear operator L with |λ| > [L]A is actually an eigenvalue of L.

At first glance, it seems more natural to call λ an asymptotic eigenvalue of L and
F if (20) is replaced by the stronger condition

lim
n→∞

||λLxn − F (xn)|| = 0 (23)

for some unbounded sequence (xn)n in X. In fact, in the linear case (23) gives precisely
the familiar definition of eigenvalue, while (20) does not. (To see this, consider X = l2,
L = I, F (x1, x2, x3, . . .) = (x1,

1
2x2,

1
3x3, . . .) and λ = 0.) However, definition (23) has

also a flaw: Theorem 4 is no longer true with this definition of asymptotic eigenvalue.
This is shown by the following example.
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Example 3. Let X be an infinite dimensional real Banach space, e ∈ X with
||e|| = 1, and ` ∈ X∗ a bounded linear functional on X satisfying `(e) = 1. Let L = I,
and define F : X → X by

F (x) =
||x||

1 + ||x||`(x)e.

Obviously, F is odd and compact, and [F ]Q ≤ ||`||, and so σ(I, F ) ⊆ [−‖`‖, ‖`‖].
Consider now the eigenvalue equation F (x) = λx. Obviously, every non-trivial

solution of this equation has the form x = µe, where λ = |µ|
1+|µ| , and so 0 < λ < 1. But

for fixed λ ∈ (0, 1) we can have only the two solutions µ = ± λ
1−λ for µ, and so (22) does

not hold for any λ. On the other hand, choosing xn = ne we see that

||xn − F (xn)||
||xn|| =

||ne− n
1+nne||
n

=
1

1 + n
→ 0 (n →∞),

and thus 1 ∈ σq(I, F ) ⊆ σ(I, F ).

We remark that Theorem 4 may be applied to existence theorems for boundary
value problems involving nonlinear odd differential operators. Such applications will be
given in a subsequent paper.
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2000, pp. 149 – 163.



A Semilinear Furi-Martelli-Vignoli Spectrum 577

[10] Furi, M.: The class of stably solvable operators is not stable under small perturbations
(submitted).

[11] Furi, M., Martelli, M. and A. Vignoli: Stably solvable operators in Banach spaces. Atti
Accad. Naz. Lincei Rend., Cl. Sci. Fis. Mat. Nat. 60 (1976), 21 – 26.

[12] Furi, M., Martelli, M. and A. Vignoli: Contributions to the spectral theory for nonlinear
operators in Banach spaces. Annali Mat. Pura Appl. 118 (1978), 229 – 294.

[13] Gaines, R. E. and J. L. Mawhin: Coincidence Degree and Nonlinear Differential Equations.
Lect. Notes Math. 568 (1977).

[14] Kachurovskij, R. I.: Regular points, spectrum and eigenfunctions of nonlinear operators
(in Russian). Dokl. Akad. Nauk SSSR 188 (1969), 274 – 277; Engl. transl.: Soviet Math.
Dokl. 10 (1969), 1101 – 1105.

[15] Maddox, I. J. and A. W. Wickstead: The spectrum of uniformly Lipschitz mappings. Proc.
Royal Irish Acad. 89-A (1989), 101 – 114.

[16] Mawhin, J. L.: Existence theorems for nonlinear operator equations and coincidence degree
for some mappings in locally convex topological vector spaces. J. Diff. Equ. 12 (1972),
610 – 636.

[17] Mawhin, J. L.: Topological Degree and Boundary Value Problems for Nonlinear Differ-
ential Equations. Louvain-la-Neuve (Belgium): Inst. Math. Pure Appl. Univ. Cath.
Louvain 1991.

[18] Neuberger, J. W.: Existence of a spectrum for nonlinear transformations. Pacific J. Math.
31 (1969), 157 – 159.

[19] Pejsachowicz, P. and A. Vignoli: On the topological coincidence degree for perturbations
of Fredholm operators. Boll. Unione Mat. Ital. 17-B (1980), 1457 – 1466.

[20] Rhodius, A.: Der numerische Wertebereich und die Lösbarkeit linearer und nichtlinearer
Operatorgleichungen. Math. Nachr. 79 (1977), 343 – 360.

[21] Tarafdar, E. U. and H. B. Thompson: On the solvability of nonlinear noncompact operator
equations. J. Austral. Math. Soc. 43 (1987), 103 – 114.

Received 11.12.2000; in revised form 05.06.2001


