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An Interpolation Problem for
Hilbert-Schmidt

Operator-Valued Stationary Processes

L. Klotz

Abstract. The paper contains a solution of the following interpolation problem for Hilbert-
Schmidt operator-valued stationary processes on the real line: Assume that the values of the
process on the integers are known. Determine the best linear approximation of an unknown
value on the basis of the known values and compute the approximation error. Our results
generalize previous results of Yaglom and Salehi for univariate and q-variate processes, respec-
tively.
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1. Introduction

Let x be a univariate (weakly) stationary process on the real line R. Assume that the
values xk, where k runs through the set Z of all integers, are known. A. M. Yaglom [9]
studied the problem to determine the error of the best linear interpolation of a value
xs (s ∈ R) by the known values. Using Kolmogorov’s isomorphism between time and
spectral domains of a stationary process, he transferred the problem to the spectral
domain of x and solved it with the aid of elementary Hilbert space geometry. In [8
: Theorem 3.2] H. Salehi extended Yaglom’s result to q-variate (q < ∞) stationary
processes and additionally gave the explicit form of the best linear interpolation.

The present paper is devoted to the solution of Yaglom’s interpolation problem for
Hilbert-Schmidt operator-valued stationary processes. Since the class of these processes
can be identified with the class of infinite-variate stationary processes (cf. [6 : pp. 346 -
347]), our assertions can be regarded as generalizations of Yaglom’s and Salehi’s results.

Our considerations are based on some facts on Hilbert-Schmidt and trace class
operators, which are briefly summarized in Section 2. A precise formulation of Yaglom’s
interpolation problem transferred to the spectral domain is given in Section 3. The
concluding Section 4 contains its solution. Starting from the spectral measure of the
process, we construct a certain function Φs (see formula (4.4)) and show that this
function can be taken for the best linear interpolation. One step of our proof is the
computation of the interpolation error (see Theorem 4.8).
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We make use of the following notations. The symbol N stands for the set of positive
integers. For a subset A of R and a real number r, let A + r be the shifted set A + r =
{a+ r : a ∈ A}. The range of a linear operator X is denoted by R(X). If X is closable,
then X∼ is its closure, if X is densely defined, then X∗ is its adjoint. The identity
operator (in a certain Hilbert space) is denoted by I. The symbols

∑
k and

∑′
k mean

that the summation index runs through Z and any finite subset of Z, respectively.

2. Preliminaries from operator theory

For the reader’s convenience we recall some facts on linear operators in Hilbert spaces.
If we say that a certain property exists weakly or strongly, this means throughout this
paper that the property exists with respect to weak or strong topologies, respectively,
of the underlying Hilbert spaces.

Lemma 2.1 (cf. [7: Theorem 13.2]). Let X, Y and XY be densely defined linear
operators in a Hilbert space. Then (XY )∗ is an extension of Y ∗X∗. If, additionally, X
is bounded, then (XY )∗ = Y ∗X∗.

Let K be a separable Hilbert space with inner product (·, ·)K and norm | · |K over the
field of complex numbers C. Let S+ be the set of non-negative selfadjoint operators in
K, B the Banach algebra of bounded linear operators, S2 the Hilbert space of Hilbert-
Schmidt operators, and S1 the norm ideal of trace class operators on K. The norms of
B, S2, and S1 are denoted by | · |, | · |2, and | · |1, respectively. Set B+ = B ∩ S+ and
S+

1 = S1 ∩ S+. For X, Y ∈ B+, we write Y ≥ X if Y − X ∈ B+. The non-negative
selfadjoint square root of an operator X of S+ is denoted by X

1
2 .

If X ∈ B, then the symbol X# stands for the generalized inverse of X, i.e. X#u = 0
if u is orthogonal toR(X) and X#u = v if u ∈ R(X). Here v denotes the unique element
of the orthogonal complement of the kernel of X such that Xv = u (cf. [5: Definition
2.11]).

Lemma 2.2. Let X,Y ∈ B+ and Y ≥ X. Then:
(i) R(Y

1
2 ) ⊇ R(X

1
2 ).

(ii) (X
1
2 Y # 1

2 )∼ and Y # 1
2 X

1
2 belong to B.

(iii) |(X 1
2 Y # 1

2 )∼| = |Y # 1
2 X

1
2 | ≤ 1.

Proof. Note first that (X
1
2 Y # 1

2 )∗ = Y # 1
2 X

1
2 by Lemma 2.1. For u ∈ R(Y

1
2 ), we

have
|X 1

2 Y # 1
2 u|2K = ((X

1
2 Y # 1

2 )∗X
1
2 Y # 1

2 u, u)K

= (Y # 1
2 XY # 1

2 u, u)K

≤ (Y # 1
2 Y Y # 1

2 u, u)K
= |u|2K.

Thus statements (ii) and (iii) follow.

The relation Y ≥ X implies that the kernel of Y
1
2 is included in the kernel of X

1
2 .

Hence the closure of R(Y
1
2 ) contains the closure of R(X

1
2 ). Since Y # 1

2 X
1
2 ∈ B, we

obtain also statement (i)
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A detailed study of the symmetric norm ideals S1 and S2 can be found, e.g., in [1:
Chapter III]. Here we summarize some results needed in the sequel.

Let tr denote the trace of a trace class operator. Then

{
|X|1 = tr(XX∗)

1
2 if X ∈ S1

|Y |22 = tr(Y Y ∗) if Y ∈ S2.

It follows that if X ∈ S+
1 , then X

1
2 ∈ S2 and |X|1 = |X 1

2 |22. Furthermore, if X, Y ∈ S2,
then XY ∈ S1 and

|tr(XY )| ≤ |XY |1 ≤ |X|2|Y |2. (2.1)

Lemma 2.3. Let {Xn}n∈N ⊆ S+
1 be an increasing sequence (i.e. Xn+1 ≥ Xn n ∈

N) converging weakly to an operator X of S1. Then {trXn}n∈N is an increasing sequence
converging to trX.

Proof. Let {uk}k∈N be an orthonormal basis of K. Then the sequence {trXn}n∈N =
{∑∞

k=1(Xnuk, uk)K}n∈N increases and

lim
n→∞

trXn = lim
n→∞

∞∑

k=1

(Xnuk, uk)K =
∞∑

k=1

(Xuk, uk)K = trX.

Thus the statement is proved

Lemma 2.4 (cf. [2: Korollar 5 and Section 6] and [4: Lemma 4]). Let X,Z ∈ S+
1

and Y ∈ B. Assume that
(

X
Y ∗

Y
Z

)
is a non-negative selfadjoint operator on K⊕K. Then:

(i) Y Z# 1
2 and X# 1

2 Y Z# 1
2 are densely defined and bounded.

(ii) (Y Z# 1
2 )∼ ∈ S2.

(iii) |(X# 1
2 Y Z# 1

2 )∼| ≤ 1.

(iv) X ≥ (Y Z# 1
2 )∼(Y Z# 1

2 )∗.

Finally, we remark that for S1- or S2-valued functions the notions of weak, strong,
and Bochner measurability coincide (see [3: Lemma 5]). In this case we simply speak
of measurable functions.

3. Yaglom’s interpolation problem for S2(K, H)-valued
stationary processes

Let H be a Hilbert space over C and S2(K,H) the space of Hilbert-Schmidt operators
of K to H. A weakly continuous map X : R 3 t → Xt ∈ S2(K,H) is called an
S2(K,H)-valued stationary process if the function R×R 3 (s, t) → X∗

t Xs depends only
on s− t.

For t ∈ R, denote by et the function et(λ) = eitλ and by Et the function Et(λ) =
et(λ)I (λ ∈ R). Let E0 =: E. There exists a unique S+

1 -valued Borel measure F on R
such that X∗

0Xt =
∫
R et(λ)F (dλ) (t ∈ R) (we remark that the integration variable will

often be omitted in the notation of integrals). The measure F is absolutely continuous
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with respect to the non-negative finite Borel measure τ = trF . Since the Banach space
S1 has the Radon-Nikodym property, there exists the Radon-Nikodym derivative dF

dτ ,
which will be denoted by G. It should be mentioned that the results of our paper remain
true if τ is replaced by any non-negative σ-finite Borel measure on R (cf. [5: Lemma
4.5]). The function G is a measurable function, whose values belong to S+

1 τ -a.e. In
the following we will not emphasize each time that a certain property of a measurable
function is to be understood as a property that holds true a.e. with respect to the
underlying non-negative measure.

Let A be the set of (not necessarily densely defined and not necessarily bounded)
linear operators in K. By L2(F ) we denote the Hilbert space of (equivalence classes
of) A-valued functions Φ on R such that ΦG

1
2 is a measurable S2 -valued function and

|Φ|2F :=
∫
R |ΦG

1
2 |22dτ < ∞ (cf. [5: Definition 4.8 and formula (4.10)] and [3: Lemma

5 and Section 3]). As usual we will not work with equivalence classes but with their
representatives, i.e. with functions.

A B-valued function T on R is called a trigonometric polynomial if it is of the form
T =

∑′
k Ykek, with coefficients Yk from B. Clearly, trigonometric polynomials are 2π-

periodic functions and belong to L2(F ). The linear set of all trigonometric polynomials
is denoted by T and its closure in L2(F ) by T .

Let s ∈ R. Yaglom’s interpolation problem for the S2(K,H)-valued stationary
process X consists in determining the best linear interpolation of Xs as well as the
interpolation error on the basis of the known values Xk (k ∈ Z). Using Kolmogorov’s
isomorphism between the space spanned by the values of the process and the space
L2(F ) (cf. [5: Theorem 7.8]), we can give the problem an equivalent form: Find the
orthogonal projection in L2(F ) of the function Es onto T as well as the distance δs of
Es to T . This is the form we will study in the next section.

4. Best linear interpolation and interpolation error

For k ∈ Z, let Jk be the interval [2kπ, 2(k + 1)π). Let J0 =: J and let B be the Borel
σ-algebra of J . For k ∈ Z and B ∈ B set

Fk(B) = F (B + 2kπ)

τk(B) = trFk(B)

µ(B) =
∑

jτj(B)

M(B) =
∑

jFj(B)





. (4.1)

Note that series (4.1)4 converges in S1 and that M is an S+
1 -valued measure on B.

Denote by Gk the Radon-Nikodym derivative dFk

dµ (k ∈ Z) and by N the Radon-
Nikodym derivative dM

dµ . Then N is an S+
1 -valued measurable function, N =

∑
j Gj ,

and ∫

J

|N |1dµ < ∞. (4.2)

Lemma 4.1. The restrictions of the trigonometric polynomials to J are dense in
L2(M).
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Proof. Assume that a function Ψ of L2(M) satisfies tr
∫

J
ΨN

1
2 (enY N

1
2 )∗dµ = 0

for all Y ∈ B and n ∈ Z. Then
∫

J
ΨNendµ = 0 for all n ∈ Z, hence ΨN = 0 and also

ΨN
1
2 = (ΨNN# 1

2 )∼ = 0 µ-a.e., which yields Ψ = 0 in L2(M)

For an A-valued function Φ on R, set Φ̂k(λ) = Φ(λ+2kπ) (λ ∈ J, k ∈ Z). Note that
Φ̂0 is the restriction of Φ to J and that if Φ is 2π-periodic, the functions Φ̂k (k ∈ Z)
coincide with Φ̂0.

Lemma 4.2. If Φ is an A-valued function on R such that ΦG
1
2 is measurable and

S2-valued τ -a.e., then
∫

R
|ΦG

1
2 |22dτ =

∑

k

∫

J

|Φ̂kG
1
2
k |22dµ.

Proof. A straightforward computation yields
∫

R
|ΦG

1
2 |22dτ =

∑

k

∫

Jk

|ΦG
1
2 |22dτ

=
∑

k

∫

J

|Φ(λ + 2kπ)G(λ + 2kπ)
1
2 |22τ(dλ + 2kπ)

=
∑

k

∫

J

|Φ̂k

(dFk

dτk

) 1
2 |22dτk

=
∑

k

∫

J

|Φ̂k

(dFk

dτk

) 1
2 |22

dτk

dµ
dµ

=
∑

k

∫

J

|Φ̂kG
1
2
k |22dµ

and the statement is proved

Lemma 4.3. Let Φ ∈ L2(F ). Then:

(i)
∫

J

∑
k |Φ̂kG

1
2
k |22dµ = |Φ|2F .

(ii)
∑

k |Φ̂kG
1
2
k |22 < ∞ µ-a.e.

(iii)
∑

k |Φ̂kGk|1 < ∞ µ-a.e.

(iv)
∑

k Φ̂kGk converges in S1 µ-a.e.

Proof. Assertions (i) and (ii) are immediate consequences of B. Levi’s theorem and
Lemma 4.2. Using (2.1), Cauchy’s inequality and (ii), we obtain statement (iii) and,
hence, statement (iv)

For s ∈ R, set
Ws(λ) =

∑

k

e2kπ(s)Gk(λ) (λ ∈ J). (4.3)

Note that Lemma 4.3 implies the µ-a.e. convergence of the series (4.3) in S1. Thus,
Ws is an S1-valued measurable function.
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Lemma 4.4. Let s ∈ R, λ ∈ J , and let Vs(λ) be of the form
∑′

k e2kπ(s)Gk(λ) or
equal to Ws(λ). Then:

(i) Vs(λ)N#(λ)
1
2 and N#(λ)

1
2 Vs(λ)N#(λ)

1
2 are densely defined and bounded.

(ii) (Vs(λ)N#(λ)
1
2 )∼ ∈ S2.

(iii)
∣∣(N#(λ)

1
2 Vs(λ)N#(λ)

1
2
)∼∣∣ ≤ 1.

(iv) N(λ) ≥ (
Vs(λ)N#(λ)

1
2
)∼(

Vs(λ)N#(λ)
1
2
)∗.

Proof. Since
(

N(λ)
Vs(λ)∗

Vs(λ)∗

N(λ)

)
is a non-negative selfadjoint operator on K ⊕ K, the

results immediately follow from Lemma 2.4

For s ∈ R, define the 2π-periodic function Φs by

Φs(λ) = es(λ− 2kπ)
[
Ws(λ− 2kπ)N#(λ− 2kπ)

1
2
]∼

N#(λ− 2kπ)
1
2 (4.4)

for λ ∈ Jk and k ∈ Z. Now our goal is to prove that Φs is the orthogonal projection in
L2(F ) of the function Es onto T . To do this, we first show that Φs belongs to T . Then
we compute the interpolation error δs and the distance |Es − Φs|F , which turn out to
be equal.

Lemma 4.5. For τ -a.a. λ ∈ R, the operator Φs(λ)G(λ)
1
2 can be defined and belongs

to S2. The function ΦsG
1
2 is measurable.

Proof. For k ∈ Z, set Ak =
{
λ ∈ Jk : dτk

dµ (λ− 2kπ) = 0
}
. Then

τ(Ak) =
∫

Ak

dτk

dµ
(λ− 2kπ)µ(dλ− 2kπ) = 0,

and if λ ∈ Jk \Ak, we have

Gk(λ− 2kπ) =
dFk

dµ
(λ− 2kπ)

=
dFk

dτk
(λ− 2kπ)

dτk

dµ
(λ− 2kπ)

= G(λ)
dτk

dµ
(λ− 2kπ).

Since N ≥ Gk, the first part of the lemma follows from Lemma 2.2 and Lemma 4.4.
The measurability of ΦsG

1
2 is a consequence of [3: Corollary 2]

Lemma 4.6. If T ∈ T , then
∫

R
|(Φs − T )G

1
2 |22dτ =

∫

J

|(Φs − T )N
1
2 |22dµ.

Proof. Using the relation N ≥ Gk and Lemma 2.2, we can write

|(Φs − T )G
1
2
k |22 = tr

(
(Φs − T )G

1
2
k [(Φs − T )G

1
2
k ]∗

)

= tr
(
(Φs − T )N

1
2 N# 1

2 G
1
2
k [(Φs − T )G

1
2
k ]∗

)

= tr
(
(Φs − T )N

1
2
[
(Φs − T )G

1
2
k (N# 1

2 G
1
2
k )∗

]∗)
(k ∈ Z). (4.5)
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From Lemma 2.1 it follows that

(Φs − T )G
1
2
k (N# 1

2 G
1
2
k )∗ is an extension of (Φs − T )GkN# 1

2 ,

therefore
(
(Φs − T )GkN# 1

2
)∗ is an extension of

(
(Φs − T )G

1
2
k (N# 1

2 G
1
2
k )∗

)∗
.

Since (
(Φs − T )G

1
2
k (N# 1

2 G
1
2
k )∗

)∗ ∈ B,

we have, in fact,
(
(Φs − T )GkN# 1

2
)∗ =

(
(Φs − T )G

1
2
k (N# 1

2 G
1
2
k )∗

)∗ (k ∈ Z). (4.6)

A simple computation gives

(Φs − T )N
1
2
(
(Φs − T )GkN# 1

2
)∗

=
(
es(WsN

# 1
2 )∼ − TN

1
2
)

× (
(N# 1

2 GkN# 1
2 )∼(esWsN

# 1
2 )∗ − (GkN# 1

2 )∗T ∗
)

(k ∈ Z). (4.7)

Using Lemma 2.1, the relation N ≥ Gk and Lemma 2.2, we get

(GkN# 1
2 )∗T ∗ = N# 1

2 GkT ∗

= N# 1
2 GkN# 1

2 N
1
2 T ∗

= N# 1
2 GkN# 1

2 (TN
1
2 )∗

(k ∈ Z). (4.8)

Now, combining (4.5) - (4.8), we obtain

|(Φs − T )G
1
2
k |22

= tr
([

es(WsN
# 1

2 )∼ − TN
1
2
]
(N# 1

2 GkN# 1
2 )∼

[
es(WsN

# 1
2 )∼ − TN

1
2
]∗) (4.10)

for all k ∈ Z. If u, v ∈ R(N
1
2 ), then

∑

k

(
N# 1

2 GkN# 1
2 u, v

)
K = (u, v)K.

Taking into account Lemma 4.4/(iii), we can easily derive that
∑

k(N# 1
2 GkN# 1

2 )∼ =
I with respect to the weak topology. Then from (4.10), Lemma 2.3, the monotone
convergence theorem, and (4.4) it follows

∑

k

∫

J

|(Φs − T )G
1
2
k |22dµ

=
∫

J

tr
([

es(WsN
# 1

2 )∼ − TN
1
2
][

es(WsN
# 1

2 )∼ − TN
1
2
]∗)

dµ

=
∫

J

|(Φs − T )N
1
2 |22dµ.

(4.11)

Since Lemma 4.2 yields∫

R
|(Φ− T )G

1
2 |22dτ =

∑

k

∫

J

|(Φs − T )G
1
2
k |22dµ,

the desired result can be concluded from (4.11)
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Proposition 4.7. For s ∈ R, the function Φs is an element of T and its restriction
to J belongs to L2(M).

Proof. By (4.4), Lemma 4.4, and (4.2),

∫

J

|ΦsN
1
2 |22dµ =

∫

J

|es(WsN
# 1

2 )∼|22dµ ≤
∫

J

|N |1dµ < ∞.

Therefore, the restriction of Φs to J belongs to L2(M). An appeal to Lemmas 4.6 and
4.1 completes the proof

Theorem 4.8. For s ∈ R, the square δ2
s of the distance of Es to T is equal to

tr
∫

J
[N − ΦsN

1
2 (ΦsN

1
2 )∗] dµ = |E|2F − |Φs|2F .

Proof. First note that for T ∈ T ,

∑

k

∣∣(E − e−se2kπ(−s)T
)
G

1
2
k

∣∣2
2

=
∑

k

tr
(
Gk − Te−se2kπ(−s)Gk − ese2kπ(s)GkT ∗ + TGkT ∗

)

= tr
(
N − T (esWs)∗ − esWsT

∗ + TNT ∗
)
.

(4.12)

Relation (2.1) and Cauchy’s inequality yield

∣∣∣∣
∑

k

′tr
(
ese2kπ(s)GkT ∗

)∣∣∣∣ ≤
( ∑

k

|G
1
2
k |22 ·

∑

k

|TG
1
2
k |22

) 1
2

. (4.13)

By Lemma 4.3, the function on the right-hand side of (4.13) is µ-integrable. Therefore,
(4.12) and the dominated convergence theorem imply

∑

k

∫

J

∣∣[E − e−se2kπ(−s)T
]
G

1
2
k

∣∣2
2
dµ

= tr
∫

J

[
N − T (esWs)∗ − esWsT

∗ + TNT ∗
]
dµ.

(4.14)

According to Lemma 4.2, we have

|Es − T |2F =
∑

k

∫

J

∣∣(E − e−se2kπ(−s)T
)
G

1
2
k

∣∣2
2
dµ.

Hence (4.14) gives

|Es − T |2F = tr
∫

J

[
N − T (esWs)∗ − esWsT

∗ + TNT ∗
]
dµ. (4.15)
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Now from (4.15), (4.4), Proposition 4.7, and Lemma 4.1 it follows

δ2
s = inf

T∈T
|Es − T |2F

= inf
T∈T

tr
∫

J

[
N − T (esWs)∗ − esWsT

∗ + TNT ∗
]
dµ

= inf
T∈T

tr
∫

J

(
N − ΦsN

1
2 (ΦsN

1
2 )∗ + (T − Φs)N

1
2 [(T − Φs)N

1
2 ]∗

)
dµ

=
∫

J

(
N − ΦsN

1
2 (ΦsN

1
2 )∗

)
dµ

= |E|2F − |Φs|2F
and the statement is proved

Proposition 4.9. Let s ∈ R. Then δ2
s = |Es − Φs|2.

Proof. We have
∣∣(E − e−se2kπ(−s)Φs

)
G

1
2
k

∣∣2
2

= tr
(
Gk − (WsN

# 1
2 )∼

[
Gke2kπ(s)N# 1

2
]∗

−N
1
2
[
e2kπ(−s)(WsN

# 1
2 )∼N# 1

2 GkN# 1
2
]∗

+ (WsN
# 1

2 )∼
[
(WsN

# 1
2 )∼N# 1

2 GkN# 1
2
]∗)

(k ∈ Z). (4.16)

As in the proof of Lemma 4.6 it can be shown that

∑

k

tr
∫

J

(
(WsN

# 1
2 )∼

[
(WsN

# 1
2 )∼N# 1

2 GkN# 1
2
]∗)

dµ

= tr
∫

J

ΦsN
1
2 (ΦsN

1
2 )∗dµ.

(4.17)

For u ∈ R(N
1
2 ), ∑

k

e2kπ(s)GkN# 1
2 u = WsN

# 1
2 u

strongly. Since ∣∣∣∣
( ∑

k

′e2kπ(s)GkN# 1
2

)∼∣∣∣∣ ≤ |N | 12

by Lemma 4.4, it is not hard to see that
∑

k

[
e2kπ(s)GkN# 1

2
]∼ = (WsN

# 1
2 )∼

with respect to the strong topology. Hence
∑

k

(WsN
# 1

2 )∼
(
e2kπ(s)GkN# 1

2
)∗ = (WsN

# 1
2 )∼(WsN

# 1
2 )∗ (4.18)
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weakly. On the other hand, Lemma 4.3 implies that
∑

k

(WsN
# 1

2 )∼
(
e2kπ(s)GkN# 1

2
)∗ =

∑

k

(WsN
# 1

2 )∼e2kπ(−s)N# 1
2 Gk

converges in S1. Therefore, from (4.18) we can conclude
∑

k

tr
(
(WsN

# 1
2 )∼

[
e2kπ(s)GkN# 1

2
]∗) = tr

[
(WsN

# 1
2 )∼(WsN

# 1
2 )∗

]
. (4.19)

Analogously to the proof of (4.13) we obtain
∣∣∣∣∣
∑

k

′tr
(
(WsN

# 1
2 )∼

[
e2kπ(s)GkN# 1

2
]∗)

∣∣∣∣∣

≤
(∑

k

∣∣(WsN
# 1

2 )∼N# 1
2 G

1
2
k

∣∣2
2

∑

k

|G
1
2
k |22

) 1
2

.

(4.20)

According to Lemma 4.3 and Proposition 4.7, the function on the right-hand side of
(4.20) is µ-integrable. Thus, (4.19), the dominated convergence theorem, and (4.4) give

∑

k

tr
∫

J

(WsN
# 1

2 )∼
[
e2kπ(s)GkN# 1

2
]∗

dµ

= tr
∫

J

(WsN
# 1

2 )∼(WsN
# 1

2 )∗dµ

= tr
∫

J

ΦsN
1
2 (ΦsN

1
2 )∗dµ.

(4.21)

Since

N
1
2

(
e2kπ(−s)(WsN

# 1
2 )∼N# 1

2 GkN# 1
2

)∗
= e2kπ(s)N# 1

2 Gk(WsN
# 1

2 )∗

for k ∈ Z, in a similar way we obtain
∑

k

tr
∫

J

N
1
2

(
e2kπ(−s)(WsN

# 1
2 )∼N# 1

2 GkN# 1
2

)∗
dµ

= tr
∫

J

ΦsN
1
2 (ΦsN

1
2 )∗dµ.

(4.22)

Since, by Lemma 4.2,

|Es − Φs|2F =
∑

k

∫

J

∣∣[E − e−se2kπ(−s)Φs

]
G

1
2
k

∣∣2
2
dµ,

from (4.16), (4.17), (4.21) and (4.22)

|Es − Φs|2F = tr
∫

J

[
N − ΦsN

1
2 (ΦsN

1
2 )∗

]
dµ

follows, and this coincides with δ2
s by Theorem 4.8
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Combining Propositions 4.7 and 4.9, and Theorem 4.8, we immediately obtain the
following main result of the present paper:

Theorem 4.10. For s ∈ R, the orthogonal projection of Es onto T is equal to the
function Φs defined in (4.4).

Let us conclude with a remark on straightforward generalizations of our results.

Remark 4.11. The above results can be extended to S2(K,H)-valued homoge-
neous random fields on Rn, n ∈ N, in an obvious way. Moreover, using a transformation
similar to that indicated in [9: p. 176] or [8: Proof of Theorem 3.3], we can solve an
analogue of Yagloms interpolation problem for S2(K,H)-valued homogeneous fields on
Zn. We omit the details.
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