
Zeitschrift für Analysis und ihre Anwendungen
Journal for Analysis and its Applications

Volume 20 (2001), No. 3, 589–598

A Note on Degenerate Variational Problems
with Linear Growth

M. Bildhauer

Abstract. Given a class of strictly convex and smooth integrands f with linear growth, we
consider the minimization problem

R
Ω

f(∇u) dx → min and the dual problem with maximizer
σ. Although degenerate problems are studied, the validity of the classical duality relation is
proved in the following sense: there exists a generalized minimizer u∗ ∈ BV (Ω;RN ) of the
original problem such that σ(x) = ∇f(∇au∗) holds almost everywhere, where ∇au∗ denotes
the absolutely continuous part of ∇u∗ with respect to the Lebesgue measure. In particular,
this relation is also true in regions of degeneracy, i.e. at points x such that D2f(∇au∗(x)) = 0.
As an application, we can improve the known regularity results for the dual solution.

Keywords: Degenerate problems, linear growth, duality, regularity

AMS subject classification: 49N15, 49N60

1. Introduction

The minimization problem

(P) J(u) =
∫
Ω

f(∇u) dx → min in u0 + W̊ 1
1 (Ω;RN )

with integrand f of linear growth is in general not solvable, even if f is strictly convex
and smooth. One way to overcome this difficulty is to pass to the dual problem which
admits a unique (see [2]) solution σ. This solution may be interpreted for example as
the normal to a minimal surface (see [5]) in the case f(P ) =

√
1 + |P |2, or the stress

tensor in the theory of plasticity as studied in a series of papers by Seregin (see [6] for
an exhaustive list of references and a precise definition of the energy density for this
particular case). The dual problem reads as

(P∗) R(τ) := infu∈u0+W̊ 1
1 (Ω;RN ) l(u, τ) → max in L∞(Ω;RnN ).

If the standard scalar product in RnN is denoted by P : Q, then the Lagrangian l(u, τ)
and the conjugate function f∗ are by definition

l(u, τ) =
∫

Ω

τ : ∇u dx−
∫

Ω

f∗(τ) dx, (u, τ) ∈ {
u0 + W̊ 1

1 (Ω;RN )
}× L∞(Ω;RnN )

f∗(Q) = sup
P∈RnN

{
P : Q− f(P )

}
, Q ∈ RnN .
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Problems (P) and (P∗) are related via (see [5])

inf
{
J(u) : u ∈ u0 + W̊ 1

1 (Ω;RN )
}

= sup
{
R(τ) : τ ∈ L∞(Ω;RnN )

}

and – if we assume the existence of regular solutions u∗ and σ of problems (P) and
(P∗), respectively – by the duality relation

σ(x) = ∇f(∇u∗(x)). (1.1)

A second way to handle the lack of existence is to look for a generalized minimizer of
the original problem in BV (Ω;RN ), the space of functions with bounded variation. If
we now denote by u∗ a generalized BV -minimizer of problem (P) in the sense that
u∗ ∈M,

M =
{

u ∈ BV (Ω;RN )
∣∣∣∣

u is the L1-limit of a J-minimizing

sequence from u0 + W̊ 1
1 (Ω;RN )

}
,

then (1.1) becomes
σ(x) = ∇f(∇u∗(x)) for all x ∈ Ωu∗ (1.2)

where Ωu∗ ⊂ Ω is the open set of all u∗-regular points, i.e. u∗ is of class C1,α in some
neighbourhood of x ∈ Ωu∗ . Equation (1.2) is established in [3] where some special
generalized minimizer is fixed. With this information arbitrary solutions u∗ ∈ M are
handled using the relaxed minimax inequality (see, for instance, [4, 12]).

If we assume D2f(P ) > 0 for all P , then using the regularity results of [1] it is
proved in [3] that u∗ is regular on an open set of full measure, hence by (1.2) partial
C0,α-regularity in the usual sense is ensured for σ.

If degenerate problems are studied, i.e. under the weaker assumption D2f ≥ 0, then
the approach outlined above in general does not lead to satisfying results. Let us sketch
the two main problems by considering a prominent example (compare [7]):

f(P ) =
(
1 + |P |k) 1

k (k > 2). (1.3)

On one hand, (1.2) is a quite vague statement since the regular set Ωu∗ may be very
small. On the other hand, and this is even more restrictive since we are interested in
regularity results for σ, partial Hölder continuity of σ for the integrand (1.3) at hand
follows a priori only on [D2f(∇u∗(x)) > 0] = [∇u∗(x) 6= 0]. However, an intrinsic
theorem should be formulated in terms of σ, i.e. the domain of partial regularity is
expected to be

[σ(x) 6= 0] ⊃ [∇au∗(x) 6= 0] (1.4)

where the inclusion follows on account of (1.2) and of course is meant modulo sets of
measure zero. Here, to be a little bit more precise, ∇au∗ denotes the absolute continuous
part of ∇u∗ with respect to the Lebesgue-measure and ∇su∗ will be used as the symbol
for the singular part.

In our paper, a generalization of the classical duality relation (1.1) is established for
almost all x ∈ Ω: we leave the regularity of u∗ as starting point and prove by arguments
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from measure theory and by an approximation Lemma of [3] that there is a generalized
minimizer u∗ ∈ BV (Ω;RN ) of Problem (P) such that σ(x) = ∇f(∇au∗(x)) for almost
all x ∈ Ω where the degenerate situation D2f ≥ 0 also is covered (compare Assumption
2.1). Coming back to the above example, we see that in fact equality (again modulo sets
of measure zero) holds in (1.4) and analogous results of course are true in the case of
more general degenerate integrands. As an application, an intrinsic regularity theorem
for the dual solution σ can be formulated just in terms of σ and the data, independent
of u∗ (compare Corollary 4.2 for details).

2. Preliminaries

Throughout this paper Ω ⊂ Rn is assumed to be a bounded Lipschitz domain and the
integrand f under consideration satisfies

Assumption 2.1. The function f is smooth, strictly convex and of linear growth
in the following sense:

(i) f ∈ C2(RnN ,R).
(ii) f(P ) > 0 for all P ∈ RnN , P 6= 0, and f(0) = 0.
(iii) f((1 − λ)P + λQ) < (1 − λ)f(P ) + λf(Q) for all P 6= Q ∈ RnN and for all

0 < λ < 1. Suppose further that there is a real number M such that, for all
P and Q ∈ RnN , 0 ≤ D2f(P )(Q, Q) ≤ M 1√

1+|P |2 |Q|
2 where, moreover, strict

inequality on the left-hand side is assumed if P, Q 6= 0.
(iv) There is a real number A such that |∇f(P )| ≤ A for all P ∈ RnN .
(v) For numbers a > 0 and b ∈ R we have f(P ) ≥ a|P |+ b for all P ∈ RnN .

Remark 2.2.

1. Of course, assumption (ii) is supposed without loss of generality and the model
integrand considered in (1.3) satisfies assumption (iii).

2. Ωu∗ is a subset of the non-degenerate points satisfying

lim
r→0

1
|Br(x)|

∫

Br(x)

|∇au∗ − P | dx + lim
r→0

1
|Br(x)|

∫

Br(x)

|∇su∗| = 0

for some matrix P ∈ RnN such that D2f(P ) > 0 (see [1, 3]). Hence we have ∇au∗ = 0
almost everywhere on the complement Ωc

u∗ of Ωu∗ . However, this provides no results at
all because no topological information on Ωc

u∗ is available. Moreover, the singular part
∇su∗ is not necessarily vanishing on Ωc

u∗ .

Notice that by strict convexity and by the Theorem on Domain Invariance (see,
for instance, [9: p. 77/Corollary 3.22]) ∇f is known to be one-to-one, hence an open
mapping and ∇f : RnN → Im(∇f) := ∇f(RnN ) is a homeomorphism (compare [2]).

A powerful tool for the analysis of problem (P) and in consequence of problem
(P∗) is the δ-regularization: assume in the following without loss of generality that the
boundary values u0 are of class W 1

2 (Ω;RN ) (see [3: Remark 6.3] for a natural extension)
and consider for any δ ∈ (0, 1) the perturbed minimization problem
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(Pδ) Jδ(u) = δ
2

∫
Ω
|∇u|2dx +

∫
Ω

f(∇u) dx → min in u0 + W̊ 1
2 (Ω;RN ).

Denote further by uδ the unique solution of problem (Pδ) and let

σδ := δ∇uδ +∇f(∇uδ). (2.1)

Then the Euler equation for problem (Pδ) reads as

∫

Ω

σδ : ∇ϕdx = 0 for all ϕ ∈ W̊ 1
2 (Ω;RN ). (2.2)

Moreover, there is a number c > 0 satisfying Jδ(uδ) ≤ Jδ(u0) ≤ J1(u0) ≤ c and it
follows immediately that σδ ⇁: σ in L2(Ω;RN ) as δ → 0. Next, following the ideas of
Seregin [11], it is proved in [3] (see Lemma 3.1) that σ maximizes the dual variational
problem (P∗). The proof also shows that uδ is a J-minimizing sequence and that

δ

∫

Ω

|∇uδ|2dx → 0 as δ → 0. (2.3)

Finally, on account of (2.2), it is not hard to prove that (again see [3, 10 - 12])

‖σδ‖W 1
2 (Ω̃;RnN ) ≤ c(Ω̃) for all open subsets Ω̃ b Ω. (2.4)

Hence, passing to a subsequence (which is not relabelled), we may assume by (2.3) -
(2.4) that, for a.a. x ∈ Ω,

σδ(x) → σ(x)

δ∇uδ(x) → 0.
(2.5)

Remark 2.3. Having established (2.4) and thus (2.5)1, we make no further use of
the upper bound for D2f stated in Assumption 2.1/(iii).

Passing to another subsequence and observing that Jδ(uδ) is uniformly bounded, a

L1-cluster point u∗ of uδ is fixed in the following: uδ
L1

−→u∗ ∈ BV (Ω;RnN ) as δ → 0.

3. Main theorem

With this notation, in particular with subsequences {uδ} and {σδ} given as above, our
main theorem reads as follows.

Theorem 3.1. The unique solution σ of the dual problem (P∗) satisfies σ(x) =
∇f(∇au∗(x)) for almost all x ∈ Ω.

Remark 3.2. It remains an open question whether σ = ∇f(∇au) holds for any
generalized minimizer u ∈M.

The proof of Theorem 3.1 requires the construction of “large” sets of uniform con-
vergence according to
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Proposition 3.3. There is a measurable function v : Ω → RnN , and for any ε > 0
there is a compact set K b Ω such that:

(i) σδ ⇒ σ on K, σ(x) /∈ ∂Im(∇f) for all x ∈ K.

(ii) δ∇uδ ⇒ 0 on K.

(iii) ∇uδ ⇒ v on K.

(iv) The restriction of v on K is a continuous function.

(v) |Ω−K| < ε.

Remark 3.4 In the following it is obvious that we can restrict to the consideration
of Lebesgue points of σ and ∇u∗, respectively. This is always assumed as a general
hypothesis.

Proof of Proposition 3.3 Let us first define

vi
j(x) = lim sup

δ→0

∂

∂xj
ui

δ(x)
(
i ∈ {1, . . . , N}, j ∈ {1, . . . , n})

which by definition is a measurable function with values in R. Now fix ε > 0. The
uniform convergence stated in (i) and (ii) on a compact set K̃ b Ω with |Ω − K̃| < ε

2

follows on account of (2.5) and Egoroff’s theorem. Setting N =
{
x ∈ Ω : σ(x) ∈

∂Im(∇f)
}

it was proved in [2] that |N | = 0. So, choose an open set U ⊃ N with
|U | < ε

2 . Then K := K̃ − U is a compact set such that (i) and (ii) are true and in
addition K satisfies (v).

Next observe that we have on K as δ → 0

∇f(∇uδ(x)) = σδ(x)− δ∇uδ(x) → σ(x). (3.1)

If x0 ∈ K is fixed, then σ(x0) /∈ ∂Im(∇f) implies that there is a constant ρ = ρ(x0)
such that for all δ sufficiently small dist

(∇f(∇uδ(x0)), ∂Im(∇f)
) ≥ ρ. In other words,

we have for all δ sufficiently small

∇f(∇uδ(x0)) ∈ C :=
{
Q ∈ Im(∇f) : dist(Q, ∂Im(∇f)) ≥ ρ

}
.

Since C is compact and since ∇f is a homeomorphism, (∇f)−1(C) is compact, in
particular (∇f)−1(C) is bounded and as a consequence

lim sup
δ→0

|∇uδ(x)| < ∞ for all x ∈ K. (3.2)

With (3.1) and (3.2), the pointwise convergence of ∇uδ(x) on K is obtained since ∇f

is one-to-one. Egoroff’s theorem then establishes (iii) on a “large” compact set K̃ ⊂ K,
without loss of generality on K. The proof of (iv) is an application of Lusin’s theorem
and the proposition follows

Given Proposition 3.3, we now come to the
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Proof of Theorem 3.1. Fix ε > 0 and choose K according to the proposition.
Since K is measurable, the Lebesgue-Besicovitch differentiation theorem yields

lim
r→0

|Br(x) ∩K|
|Br(x)| = 1 for a.a. x ∈ K. (3.3)

It is also known that for almost all x ∈ Ω there exists a matrix P ∈ RnN such that

lim
r→0

1
|Br(x)|

∫

Br(x)

|∇u∗ − P |

: = lim
r→0

1
|Br(x)|

∫

Br(x)

|∇au∗ − P | dx + lim
r→0

1
|Br(x)|

∫

Br(x)

|∇su∗| dx

= 0.

Let us first consider the case P 6= 0, i.e. x is a non-degenerate point. Going through
the lines of [3] we observe that the duality relation as claimed in the theorem holds in
this case (see, in particular, [3: Formula (6.6)]). Thus we have to study the case

lim
r→0

1
|Br(x)|

∫

Br(x)

|∇u∗| = 0. (3.4)

Observe that (3.4) implies

lim
r→0

1
|Br(x)|

∫

Br(x)

f(∇au∗) dx = 0. (3.5)

In fact, on account of the continuity of f and since f(0) = 0, we may fix a real number
λ > 0 and find κ > 0 such that |P | < κ implies f(P ) < λ. With κ as above we obtain

lim
r→0

1
|Br(x)|

∫

Br(x)

f(∇au∗) dx

≤ lim sup
r→0

1
|Br(x)|

∫

Br(x)∩[|∇au∗|<κ]

f(∇au∗) dx

+ lim sup
r→0

1
|Br(x)|

∫

Br(x)∩[|∇au∗|>κ]

f(∇au∗) dx.

Here the second term on the right-hand side vanishes by the linear growth of f and by
(3.4): for some real numbers c1, c2 > 0 we have

lim sup
r→0

1
|Br(x)|

∫

Br(x)∩[|∇au∗|>κ]

f(∇au∗) dx

≤ c1 lim sup
r→0

1
|Br(x)|

∫

Br(x)∩[|∇au∗|>κ]

|∇au∗| dx

+ c2 lim sup
r→0

1
|Br(x)|

∫

Br(x)∩[|∇au∗|>κ]

1 dx

= 0.
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The remaining term is bounded from above by λ, which is an arbitrary fixed positive
number, thus claim (3.5) is proved.

With (3.3) and (3.4) we define a set GK satisfying |K −GK | = 0 as follows:

GK :=
{

x ∈ K : (3.3) and (3.4) hold true or σ(x) = ∇f(∇au∗(x))
}

.

Remark 3.5. Let us give a short comment on this definition. Consider the set of
all x ∈ K such that (3.3) holds. Then we have to distinguish between the cases “P = 0”,
i.e. (3.4) is true, and “P 6= 0”. As already mentioned, in the second case the duality
relation is proved in [3], in particular |K −GK | = 0.

According to this remark, we fix x̂ ∈ GK satisfying (3.3) and (3.4) and recall the
fact that f achieves its absolute minimum at P = 0, hence 0 = ∇au∗(x̂) and 0 = ∇f(0).
Then we claim that

σ(x̂) = 0 = ∇f(0) = ∇f(∇au∗(x̂)) (3.6)

which immediately yields the theorem by passing to the limit ε → 0. To prove (3.6)
assume by contradiction that σ(x̂) 6= 0. We now claim that there is a real number
γ = γ(x̂) > 0 such that for all δ sufficiently small

γ < |∇uδ(x̂)|. (3.7)

To verify (3.7) let τ = |σ(x̂)| and choose δ0 > 0 sufficiently small to obtain |σδ(x̂) −
σ(x̂)| < τ

2 and |δ∇uδ(x̂)| < τ
4 for all δ < δ0. This gives for all δ < δ0

|∇f(∇uδ(x̂))| ≥ |σδ(x̂)| − |δ∇uδ(x̂)| > τ

4
. (3.8)

If it is supposed in contradiction to (3.7) that there is a sequence δn → 0 such that
∇uδn(x̂) → 0 as n → ∞, then the continuity of ∇f yields ∇f(∇uδn(x̂)) → ∇f(0) = 0
as n →∞ which is excluded by (3.8), hence (3.7) is proved.

By Proposition 3.3/(iii), it also follows that γ ≤ |v(x̂)|. Thus, by continuity of v on
K, there is a real number ρ0 > 0 such that B4ρ0(x̂) b Ω and such that, for any ρ < ρ0,
γ
2 ≤ |v(x)| for all x ∈ Bρ(x̂) ∩ K. Finally, setting κ = γ

4 and recalling the uniform
convergence stated in Proposition 3.3/(iii), we decrease δ0 – if necessary – and arrive at

κ ≤ |∇uδ(x)| for all x ∈ Bρ(x̂) ∩K, 0 < ρ < ρ0 (3.9)

and for all δ < δ0.

Remark 3.6. If in the sense of measures

|∇uδ| ⇁ |∇u∗| (3.10)

would be known, then the compactness of Bρ(x̂) ∩K would imply

κ|Bρ(x̂) ∩K| ≤ lim sup
δ→0

|∇uδ|(Bρ(x̂) ∩K) ≤ |∇u∗|(Bρ(x̂) ∩K)

and passing to the limit ρ → 0 a contradiction would follow from (3.4) and from density
relation (3.3).

Hence we have to establish an appropriate substitute for (3.10), where we use the
“minimality” of {uδ} as additional information. To this purpose let us introduce for
any Lipschitz domain Ω̂ ⊂ Ω the following relaxation.
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Definition 3.7. For all w ∈ BV (Ω̂;RN ) the functional Ĵ(w; Ω̂) is given by

Ĵ(w; Ω̂) = inf
{

lim inf
k→∞

J(wk) : wk ∈ C1(Ω̂;RN ), wk → w in L1
loc(Ω̂;RN )

}
.

Moreover, a representation formula due to Goffman and Serrin is needed (see [8]).

Proposition 3.8. The representation formula

Ĵ(u, Ω̂) =
∫

Ω̂

f(∇au) dx +
∫

Ω̂

f∞
( ∇su

|∇su|
)
d|∇su|

is true for all u ∈ BV (Ω̂;RN ), where f∞ is the recession function of f defined by
f∞(X) = lim supt→+∞

f(tX)
t . As usual, the absolutely continuous part of ∇u with

respect to the Lebesgue measure is denoted by ∇au, the singular part by ∇su and
∇su/|∇su| is the symbol for the Radon-Nikodym derivative.

With this notation the sequence {uδ} is modified as outlined in [3]. There it is proved
that we may choose for almost any ρ as above a sequence {wm} ⊂ u0 + W̊ 1

1 (Ω;RN ),
w̃m := wm|B2ρ(x̂), satisfying the following conditions:

(i) wm → u∗ in L1(Ω;RN ) as m →∞.

(ii) wm|∂B2ρ(x̂) = u∗|∂B2ρ(x̂).

(iii) lim infm→∞ I(w̃m) = infK I = Ĵ(u∗;B2ρ(x̂)).

(iv) w̃m|Bρ(x̂) = uδm|Bρ(x̂).

Here {uδm} denotes a subsequence of {uδ} and we have abbreviated

I : W 1
1 (B2ρ(x̂);RN ) → R, I(w) =

∫

B2ρ(x̂)

f(∇w) dx

K =
{

w ∈ W 1
1 (B2ρ(x̂);RN ) : w|∂B2ρ(x̂) = u∗|∂B2ρ(x̂)

}
.

Remark 3.9. Let us also give some comments on this construction: (i) and (ii) are
explicitely stated in [3: Lemma 7.1]. If |∇uδ| ⇁: µ in the sense of measures, then ρ has
to be chosen such that µ(∂B2ρ(x̂)) = 0 = |∇u∗|(∂B2ρ(x̂)). Assertion (iii) is proved in
[3: Formulas (5.1) and (5.2)]. Finally, (iv) is immediately verified following the proof of
[3: Lemma 7.1].

Now convexity of f and Assumption 2.1/(ii) imply the existence of a real number
ϑ > 0 such that f(P ) > ϑ whenever |P | ≥ κ. Hence we deduce from (3.9) and (iv) that
ϑ ≤ f(∇w̃m) for all x ∈ Bρ(x̂)∩K and for all m ∈ N. This yields (recall f ≥ 0, see (iii)
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and Proposition 3.8)

ϑ
|K ∩Bρ(x̂)|
|B2ρ(x̂)|
≤ 1
|B2ρ(x̂)| lim inf

m→∞

∫

B2ρ(x̂)

f(∇w̃m) dx

=
1

|B2ρ(x̂)| inf
K

I

=
1

|B2ρ(x̂)| Ĵ(u∗; B2ρ(x̂))

=
1

|B2ρ(x̂)|
∫

B2ρ(x̂)

f(∇au∗) dx +
1

|B2ρ(x̂)|
∫

B2ρ(x̂)

f∞
( ∇su∗

|∇su∗|
)
d|∇su∗|.

(3.11)

Both sides of (3.11) are independent of m and we may now pass to the limit ρ → 0. By
the density assumption (3.3) it is seen that

lim
ρ→0

ϑ
|K ∩Bρ(x̂)|
|B2ρ(x̂)| = ϑ2−n (3.12)

whereas on account of (3.4), (3.5) and the boundedness of f∞

lim
ρ→0

{
1

|B2ρ(x̂)|
∫

B2ρ(x̂)

f(∇au∗)dx +
1

|B2ρ(x̂)|
∫

B2ρ(x̂)

f∞
( ∇su∗

|∇su∗|
)
d|∇su∗|

}
= 0.

Thus, this together with (3.12) contradicts (3.11) and Theorem 3.1 is proved

4. Application to regularity theory

We finish this paper with a short application of Theorem 3.1 to regularity theory:
the u∗- and the σ-degenerate sets are identified modulo sets of measure zero and, as
a consequence, an intrinsic regularity theorem for σ is obtained for the degenerate
problems under consideration. To this purpose, consider u∗ as given above and set

Ωdeg
u∗ =

{
x ∈ Ω : ∇au∗(x) = 0

}

Ωdeg
σ =

{
x ∈ Ω : σ(x) = ∇f(0) = 0

}
.

Then Ωdeg
u∗ and Ωdeg

σ are well defined on the complements of sets of measure zero. For
a more precise definition one has to consider Lebesgue points of σ, ∇au∗ respectively
where the singular part ∇su∗ should vanish. Since ∇f is one-to-one, Theorem 3.1
implies:

Corollary 4.1. With the above assumptions there exists a generalized minimizer
u∗ ∈M such that

∣∣Ωdeg
u∗ − Ωdeg

σ

∣∣ =
∣∣Ωdeg

σ − Ωdeg
u∗

∣∣ = 0.
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On the other hand, as proved in [3], u∗ is on almost any ball BR(x0) b Ω a local
Ĵ-minimizer and the regularity results of [1] imply the existence of an open set Ωreg ⊂
Ω−Ωdeg

u∗ such that, for any 0 < α < 1, u∗ ∈ C1,α(Ωreg,RN ) and |(Ω−Ωdeg
u∗ )−Ωreg| = 0.

By Theorem 3.1 (in fact (1.2) is sufficient), the dual solution σ is known to be of class
C0,α on Ωreg. Now observe that again by (1.2) and since ∇f is one-to-one the inclusion
Ωreg ⊂ Ω − Ωdeg

σ also holds true. Applying Corollary 4.1 we get the following partial
regularity result for σ.

Corollary 4.2. If f is given as above and if σ denotes the unique solution of the
dual variational problem (P∗), then there is an open set Ωreg ⊂ Ω−Ωdeg

σ such that, for
any 0 < α < 1, σ ∈ C0,α(Ωreg,RnN ) and |(Ω− Ωdeg

σ )− Ωreg| = 0.
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[7] Giaquinta, G. M. and J. Souček: Functionals with linear growth in the calculus of varia-
tions, Parts I and II. Comment. Math. Univ. Carolinae 20 (1979), 143 – 172.

[8] Goffman, C. and J. Serrin: Sublinear functions of measures and variational integrals.
Duke Math. J. 31 (1964), 159 – 168.

[9] Schwartz, J. T.: Nonlinear Functional Analysis. New York et al.: Gordon and Breach
Sci. Publ. 1969.

[10] Seregin, G.: Differentiability of local extremals of variational problems in the mechanics of
perfect elastoplastic media (in Russian). Diff. Uravn. 23 (11) (1987), 1981 – 1991: Engl.
transl. in: Diff. Equ. 23 (1987), 1349 – 1358.

[11] Seregin, G.: Differential properties of solutions of variational problems for functionals
with linear growth. Problemy Mat. Anal. (Leningr. Univ. LGU) 11 (1990), 51 – 79; Engl.
transl. in J. Soviet Math. 64 (1993), 1256 – 1277.

[12] Seregin, G.: Twodimensional variational problems in plasticity theory (in Russian). Izv.
Russ. Acad. Sci. 60 (1996), 175 – 210; Engl. transl. in Izvestiya Math. 60 (1996), 179 –
216.



A Note on Degenerate Variational Problems 599

Received 13.09.1999; in revised version 04.04.2001


