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1. Introduction

The purpose of this paper is to prove local Hölder continuity of the gradient of local
weak solutions u ∈ W 1,p

loc (Ω, X) (2 ≤ p < 1 +
√

5) of the equation

divH~a(Xu) = 0 (1)

where
- divH~a(Xu) =

∑2n
k=1 Xkak(Xu)

- ak(q) = |q|p−2qk (k = 1, ..., 2n)
- Ω is an open subset of the Heisenberg group Hn

- Xk (k = 1, ..., 2n) are vector fields generating the corresponding Lie algebra with
their commutators up to the first order

- Xu = (X1u, ..., X2nu).
Let us recall the definitions of the needed functional spaces (see [7]). For any positive
integer i, let us set s = (s1, ..., si), where s1, . . . , si ∈ {1, ..., 2n}, and set |s| = i. Let
us denote by Xs the operator Xs1 · · ·Xsi . For any q ≥ 1 and any positive integer j,
W j,q(Hn, X) denotes the set of functions f ∈ Lq(Hn) such that Xsf ∈ Lq(Hn, X) for
|s| ≤ j, with norm ‖f‖j,q = ‖f‖Lq(Hn) +

∑
|s|≤j ‖Xsf‖Lq(Hn). Further, W j,q

loc (Ω, X) is
the set of functions f such that ϕf ∈ W j,q(Hn, X) for any ϕ ∈ C∞0 (Ω).

We say that u ∈ W 1,p
loc (Ω, X) is a local weak solution of equation (1) if

∫

Ω

ak(Xu)Xk(ϕ) dx = 0 (2)
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for all ϕ ∈ W 1,p(Ω, X) with supp ϕ ⊂ Ω.
We can now state the main results of this paper. From now on Ω′ will denote an

arbitrary open bounded subset of Ω such that Ω′ ⊂⊂ Ω .

Theorem 1.1. Let u ∈ W 1,p
loc (Ω, X) (2 ≤ p < 1 +

√
5) be a local weak solution of

equation (1). Then for any σ ∈ (0, 1) there exists a constant γ(σ) > 0 depending only
on σ and the data such that, for any homogeneous ball B(R) ⊂⊂ Ω′,

‖Xu‖∞,B(R−σR) ≤ γ(σ)
(

1
|B(R)|

∫

B(R)

|Xu|pdx

) 1
p

. (3)

In particular, |Xu| ∈ L∞loc(Ω
′), and for every compact K ⊂ Ω′ there exists a constant

C0 > 0 depending only on the data and dist (K, ∂Ω′) such that ‖Xu‖∞,K ≤ C0.

If a function w is bounded on a set E, then we will set

osc w = supEw − infEw.

Theorem 1.2. Let u ∈ W 1,p
loc (Ω, X) (2 ≤ p < 1 +

√
5) be a local weak solution of

equation (1). Then, any homogeneous ball B(R) ⊂⊂ Ω′, there exists constants ν > 0
and η ∈ (0, 1) depending only on the data and dist (B(R), ∂Ω′) such that

maxi=1,...,2noscB(ρ)Xiu ≤ ν( ρ
R )ηsupB( R

2 )|Xu| (4)

for all ρ < R
2 . In particular, Xu is locally Hölder continuous in Ω′, i.e. for every

compact K ⊂ Ω′ there exist a constant C1 > 0 and α ∈ (0, 1) depending only on the
data and dist (K, ∂Ω′) such that

|Xu(x)−Xu(y)| ≤ C1d(x, y)α (x, y ∈ K)

where d denotes the homogeneous distance associated to Hn.

Theorems 1.1 and 1.2 partially extend to the Heisenberg setting a well-known prop-
erty of the classical p-Laplacian and even of more general equations without any restric-
tions on p. Their proofs always rely on some kind of differentiation of the equation. We
recall among others the papers of K. Uhlenbeck [24], N. N. Ural’tzeva [25], L. Evans [6]
for p ≥ 2 and those of P. Tolksdorf [23], E. Di Benedetto [5] and J. L. Lewis [14] for
1 < p < +∞.

In our context such an approach is complicated by the lack of commutativity of
the vector fields, and therefore more care must be put in the relative procedure. For
p = 2 the differentiation of equations similar to (1) in the Heisenberg group has been
treated in particular by L. Capogna [1, 2] and by A. Cutŕi and M. G. Garroni [4].
In [4] the authors prove a local estimate of the second order horizontal derivatives of
the solutions of the equation −∆Hu = f , where ∆H is the Heisenberg Laplacian and
f ∈ L2

loc(Ω), in order to establish W 2,2 local regularity of the solutions of certain integro-
differential equations, but the existence of the second order derivatives is known and
exploited. In [1] L. Capogna proves the differentiability of some nonlinear Heisenberg
equations divH~a(x,Xu) = f , including the Heisenberg Laplacian, and even the Hölder



C1,α Local Regularity 619

continuity of the homogeneous gradients of their solutions. Via a refined technique
using the Baker-Campbell-Hausdorff’s formula he proves the differentiability along the
commutators’ direction and uses the relative estimate to ”differentiate” the equation.
At this point he can gain even the second goal by standard methods.

If p 6= 2, the degeneracy becames stronger and the method of [1] runs into difficul-
ties. In this case we think it right to rely on approximate arguments introducing the
regularized equations

divH~aε(Xuε) = 0 (5)

for small ε > 0, where ~aε(q) = [(ε+ |q|2) p−2
2 q]. We apply to them a trick from [4] which

enables us to commute the vector fields with double difference quotiens. Thanks to this
tool we can then apply standard techniques developped in [9] together with a local Lp

estimate of Tuε, where T is the first commutator of the vector fields (see Theorem 7.1),
and conclude about the W 2,2 local regularity for uε (see Theorem 4.1). Let us just
remark that in Theorem 4.1 the W 2,2 local integrability of uε is not uniform in ε, but
this is enough to make everything work.

Now weak solutions are actually strong solutions and it is therefore possible to
differentiate equations (5) and prove local boundedness and Hölder continuity of Xuε

by the methods of [5]. These are the contents of Theorems 5.2 and 6.5, respectively. At
this point these estimates are uniform in ε and this allows us to conclude about u in
Theorems 1.1 and 1.2 by standard arguments, possibly up to subsequences [13, 14].

There is a strong limitation on the range of admissibility for p. This comes from
Theorem 7.1: actually, we do not know if it holds for p ≥ 1 +

√
5. It is not clear to

us whether this is just a technical limitation linked to the method used (a different
technique could improve the result). However, besides its employ in Section 4, Theorem
7.1 furnishes an estimate which, as far as we know, is new in literature for p 6= 2. Its
proof is mainly founded on the Baker-Campbell-Hausdorff formula and some arguments
from the theory of function spaces.

Finally, we observe that, as it happens in the Euclidean setting, Theorems 1.1
and 1.2 can be employed to obtain C1,α local regularity for the solutions of obstacle
problems, even for more general operators.

The plan of the work is the following: in Section 2 we recall the basics about
Heisenberg group and in Section 3 we present and prove some introductory lemmas.
Section 4 is concerned with the W 2,2 local regularity for uε. Sections 5 and 6 are
devoted to prove Theorems 5.2 and 6.5. Finally, in Section 7 we prove Theorem 7.1.

2. Basic knowledge

The Heisenberg group Hn is the Lie group whose underlying manifold is R2n+1 with the
following group law: for all x = (x′, t) = (x1, ..., x2n, t) and y = (y′, s) = (y1, ..., y2n, s),

x ◦ y =
(
x′ + y′, t + s + 2[x′, y′]

)

where [x′, y′] =
∑n

i=1(yixi+n − xiyi+n). This is a homogeneous group, that is a group
with dilations, defined as δλ(x′, t) = (λx′, λ2t) where the direction t plays a particular



620 S. Marchi

role (the space is non-isotropic) corresponding to the definition of the group action. A
norm for Hn which is homogeneous of degree 1 with respect to the dilations can be
given by

|x|4 = |(x′, t)|4 = |x′|4 + t2
(
x = (x′, t) ∈ Hn

)
,

and

d(x, y) = |y−1 ◦ x| (
x, y ∈ Hn, y−1 = −y

)

is then the associated distance. B(x, r) will denote the homogeneous ball centered in
x ∈ Hn with radius r > 0.

For every function w defined on Hn, both left and right translations are defined on
Hn as

Lyw(x) = w(y ◦ x)

Ryw(x) = w(x ◦ y).

The Lebesgue measure is invariant with respect to the translations of the group, though
the shape of the ball changes if one shifts its center, and it is proportional to the Q-th
power of the radius, where Q = 2n + 2 is the homogeneous dimension of Hn, that is
|B(x, r)| ' rQ|B(0, 1)|.

An operator N on Hn is left-invariant if Ly(Nw) = N(Lyw), and similarly for right
invariance. The Lie algebra L(X) of left-invariant vector fields corresponding to Hn is
generated by

Xi = ∂xi + 2xi+n∂t

Xi+n = ∂xi+n − 2xi∂t

T = −4∂t

for i = 1, ..., n. Since [Xi, Xi+n] = −[Xi+n, Xi] = T (i = 1, ..., n) and [Xj , Xk] = 0 in
any other case, the vector fields Xi (i = 1, ..., 2n) satisfy the Hörmander condition of
order 1 [10], that is together with their first order commutators they span the whole Lie
algebra.

The vector fields Xi do not commute with right translations. In particular, we
cannot interchange them with difference quotiens operators

Dhw(x) =
w(x ◦ h)− w(x)

|h|
(
x ∈ Hn, h = (h′, 0)

)
.

This is the main difficulty we meet in proving the existence of the second order ”hori-
zontal derivatives” (i.e. the ones along X1, ..., X2n).
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3. Difference quotiens and a priori bounds

For more details on this argument see also [1, 4]. Let us set, for any w ∈ C∞0 (Ω) and
for any h = (h′, 0) = (h1, ..., h2n, 0) with h1, . . . , h2n ≥ 0,

Dhw(x) =
w(x ◦ h)− w(x)

|h|

D−hw(x) =
w(x ◦ h−1)− w(x)

−|h| .

(6)

Remark 3.1. It is easy to show that

D−hDhw(x) =
2w(x)− w(x ◦ h)− w(x ◦ h−1)

−|h|2 = DhD−hw(x).

Remark 3.2. For any function w ∈ Lp(Ω) with compact support ω ⊂ Ω, for any

f ∈ L
p

p−1
loc (Ω) and for any h such that |h| < d(ω, ∂Ω) we have

∫
fD±hw dx = −

∫
wD∓hf dx.

Lemma 3.3. For any w ∈ C∞0 (Ω) and for any i = 1, ..., n,

Xi(D−hDhw(x)) = D−hDh(Xiw(x))

− hi+n

2|h|2
[
(Tw)(x ◦ h)− (Tw)(x ◦ h−1)

]
(7)

Xi+n(D−hDhw(x)) = D−hDh(Xi+nw(x))

+
hi

2|h|2
[
(Tw)(x ◦ h)− (Tw)(x ◦ h−1)

]
. (8)

Proof. We limit ourselves to (7) since (8) is similar. We have

Xi(D−hDhw(x))

= − 1
|h|2

{
2(Xiw)(x)

−
[
(∂xiw)(x ◦ h) + 2xi+n(∂tw)(x ◦ h) + 2hi+n(∂tw)(x ◦ h)

]

−
[
(∂xiw(x ◦ h−1) + 2xi+n(∂tw)(x ◦ h−1)− 2hi+n(∂tw)(x ◦ h−1)

]}

= − 1
|h|2

{
2(Xiw)(x)

−
[
(Xiw)(x ◦ h) + 2hi+n(∂tw)(x ◦ h)

]

−
[
(Xiw)(x ◦ h−1)− 2hi+n(∂tw)(x ◦ h−1)

]}

= D−hDh(Xiw)(x)− hi+n

2|h|2
[
(Tw)(x ◦ h)− (Tw)(x ◦ h−1)

]

and the proof is finished
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For any i = 1, ..., 2n, hi will be the point of Hn whose j-th coordinate is hi if j = i
and 0 otherwise.

Lemma 3.4. For any w ∈ C∞0 (Ω) and for any i = 1, ..., 2n,

lim
hi→0

D±hiw = Xiw. (9)

Proof. Let us observe that for any x ∈ Ω

Dhiw(x) = 1
hi

∫ 1

0

(Xw)(x ◦ δθh
i) · hi dθ =

∫ 1

0

(Xiw)(x ◦ δθh
i) dθ.

The poof is accomplished observing that x ◦ δθh
i → x when hi → 0

Lemma 3.5. Let u ∈ Lp
loc(Ω), i ∈ {1, ..., 2n} and w ∈ C∞0 (Ω) with ω = supp w ⊂⊂

Ω. If there exists constants ε > 0 and C > 0 such that

sup
0<hi<ε

∫

ω

|Dhiu|p ≤ Cp, (10)

then Xiu ∈ Lp(ω) and ‖Xiu‖Lp(ω) ≤ C. Conversely, if Xiu ∈ Lp
loc(Ω), then (10) holds

for any ω = supp w ⊂⊂ Ω, w ∈ C∞0 (Ω), and C = 2‖Xiu‖Lp(ω).

Proof. It follows from [1: Proposition 2.3]

4. W 2,2
loc-regularity for solutions of the approximate equation

As we discussed in the introduction, a crucial step in the proof of Theorems 1.1 and 1.2
is to show that the weak solutions uε of the approximate equations are actually strong
solutions, namely that uε ∈ W 2,2

loc (Ω, X). The aim of this section is to make precise this
general statement. Let Ω′ be an open bounded set such that Ω′ ⊂⊂ Ω. Then we have

Theorem 4.1. Let 2 ≤ p < 1 +
√

5 and, for any ε ∈ (0, 1), let uε ∈ W 1,p
loc (Ω, X) be

a local weak solution of equation (5). Then uε ∈ W 2,2
loc (Ω, X) and, for any Ω′′ ⊂⊂ Ω′,

∫

Ω′′
V p−2

ε |X2uε|2dx ≤ C(Ω′′, Ω′)
∫

Ω′
(|uε|p + V p

ε ) dx

where V 2
ε = ε + |Xuε|2.

Proof. For notational simplicity we will drop the subscript ε and denote the solu-
tion of equation (5) by u. We briefly recall some piece of notation used in the previous
sections; for any ε > 0 and for any z ∈ R2n we will denote

V 2(z) = ε + |z|2
W 2

hi(x) = ε + |Xu(x)|2 + |Xu(x ◦ hi)|2

zhi

(θ) = Xu + θhiDhiXu

zhi

k (θ) = Xku + θhiDhiXku.



C1,α Local Regularity 623

Let now B(3R) be a homogeneous ball of radius 3R such that B(3R) ⊂ Ω′. For an
arbitrary i = 1, ..., n let

ϕ = −
(
D−hiDhi + D−hi+nDhi+n + DhiD−hi + Dhi+nD−hi+n

)
w

where w = g6u and g is a cut-off function between B(R) and B(2R). Let us observe that
the existence of cut-of functions in the Heisenberg group follows by standard methods
whenever one observes that the horizontal gradient of the gauge distance has lenght less
or equal than one (this is a trivial computation from the definition in Section 2). Let
us recall that hi and hi+n are always assumed to be non-negative.

In Section 7 we will prove that Tw ∈ Lp(Ω′). Thanks to this fact and Lemma 3.3
we obtain ϕ ∈ W 1,p

0 (Ω, X); this makes ϕ a right test function for equation (5). Let us
multiply equation (5) by the test function ϕ. On account of Remark 3.2, we obtain

0 =
2n∑

k=1

∫

Ω

D±hiakD±hiXkw dx

+
2n∑

k=1

∫

Ω

D±hi+nakD±hi+nXkw dx

+
∫

Ω

[
(D±hi)ai+n − (D±hi+n)ai

]
Tw dx

=: I1 + I2 + I3

(11)

where ± in I1, I2, I3 means the sum of the terms corresponding to both the signs.

Estimates of I1 and I2: Let us observe that, for any i, k = 1, ..., 2n,

Dhiak = 1
hi

∫ 1

0

d

dθ
ak(Xu + θhiDhiXu) dθ

=
∫ 1

0

ak
j (Xu + θhiDhiXu)DhiXju dθ

= αkj
hi DhiXju

(12)

where αkj
hi :=

∫ 1

0
ak

j (Xu + θhiDhiXu) dθ and the sum over j is understood even if not
explicitely written. Thanks to the previous notation we have

ak
j (zhi

) = (p− 2)V p−4(zhi

)zhi

k zhi

j + V p−2(zhi

)δkj (13)

where δkj = 1 if k = 1 and δkj = 0 if k 6= j. An easy calculation gives

2n∑

k,j=1

ak
j (zhi

)DhiXkuDhiXju ≥ V p−2(zhi

)|DhiXu|2. (14)
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In virtue of (12) and (14) we easily obtain

2n∑

k=1

DhiakDhiXku =
2n∑

k,j=1

αkj
hi DhiXkuDhiXju

≥ c

∫ 1

0

V p−2(zhi

) dθ |DhiXu|2.
(15)

By [9: Lemma 8.3] we have
∫ 1

0

V p−2(zhi

) dθ ≥ cW p−2
hi . (16)

Hence, from the two inequalities above we get

2n∑

k=1

DhiakDhiXku ≥ cW p−2
hi |DhiXu|2. (17)

Now let us observe that

DhiXkw = g6DhiXku + 6g5XkuDhig

+ 6g5DhiuXkg + 30ug4DhigXkg + 6g5uDhiXkg.
(18)

Then, from (17) and (18) we obtain

2n∑

k=1

∫

Ω

DhiakDhiXkw dx

≥ c

∫

Ω′
g6W p−2

hi |DhiXu|2 dx

+ 6
∫

Ω′
g5DhiakXkuDhig dx

+ 6
∫

Ω′
g5DhiakDhiuXkg dx

+ 30
∫

Ω′
g4uDhiak Dhig Xkg dx

+ 6
∫

Ω′
g5uDhiak DhiXkg dx

=: J1 + J2 + J3 + J4 + J5.

(19)

Estimate of J2, ..., J5. By [9: Lemma 8.3] we have, for any k, j = 1, ..., 2n,

|αkj
hi | ≤ cW p−2

hi . (20)

On account of (12), (20) and the Hölder inequality we have

|J2| = 6
∣∣∣∣
∫

Ω′
g5αkj

hi DhiXjuXkuDhig dx

∣∣∣∣

≤ δ

∫

Ω′
g6W p−2

hi |DhiXu|2 dx + cδ−1

∫

Ω′
g4W p

hi |Dhig|2 dx.

(21)
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As for hi < R ∫

B(2R)

W p
hi dx ≤

∫

B(3R)

V p dx (22)

it follow from (21) and (22)

|J2| ≤ δ

∫

Ω′
g6W p−2

hi |DhiXu|2 dx + cδ−1R−2

∫

Ω′
V pdx. (23)

Taking into account

∫

Ω′
g2W p−2

hi |Dhiu|2dx ≤ c

∫

Ω′
g2(W p

hi + |Dhiu|p) dx (24)

and in virtue of Lemma 3.5, the same estimate holds for |J3|:

|J3| ≤ δ

∫

Ω′
g6W p−2

hi |DhiXu|2 dx + cδ−1R−2

∫

Ω′
V pdx. (24)

On account that

∫

Ω′
g2W p−2

hi |u|2 dx ≤ c

∫

Ω′
g2W p

hi dx + c

∫

Ω′
g2|u|p dx (25)

we similarly obtain

|J4|, |J5| ≤ δ

∫

Ω′
g6W p−2

hi |DhiXu|2 dx + cδ−1R−4

∫

Ω′
(V p + |u|p) dx. (26)

An analogous result can be obtained switching between hi and −hi. The estimate of I2

proceeds exactly in the same way; therefore, from (19), (23), (24), (26) and the analogous
inequalities about I2, and taking δ small enough we obtain, for any i = 1, ..., n,

I1 + I2 ≥ c

∫

Ω′
g6

[
W p−2
±hi |D±hiXu|2 + W p−2

±hi+n |D±hi+nXu|2
]
dx

− cR−4

∫

Ω′
(V p + |u|p) dx.

(27)

Estimate of I3. As u, Xu ∈ Lp
loc(Ω

′) and

∫

Ω′
|T (g2u)|pdx ≤ cR−4p

∫

Ω′
(V p + |u|p) dx
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(see Theorem 7.1), we have

∣∣∣∣
∫

Ω′
Dhiai+nTw dx

∣∣∣∣

=
∣∣∣∣
∫

Ω′
g4Dhiai+nT (g2u) dx +

∫

Ω′
g2uDhiai+nT (g4) dx

∣∣∣∣

≤ δ

∫

Ω′
g6W p−2

hi |DhiXu|2dx

+ cδ−1

∫

Ω′
g2W p−2

hi |T (g2u)|2dx + cR−4

∫

Ω′
g4W p−2

hi |u|2dx

≤ δ

∫

Ω′
g6W p−2

hi |DhiXu|2dx

+ cδ−1

∫

Ω′
g2(W p

hi + |T (g2u)|p) dx + cR−4

∫

Ω′
g4(W p

hi + |u|p) dx

≤ δ

∫

Ω′
g6W p−2

hi |DhiXu|2dx + cR−4p

∫

Ω′
(V p + |u|p) dx.

(28)

The other three terms of I3, that is
∫

Ω′
D−hiai+nTw dx,

∫

Ω′
Dhi+naiTw dx,

∫

Ω′
D−hi+naiTw dx

can be estimated in the same way. Inserting all these estimates together with (27) into
(11) gives ∫

Ω′
g6W 2−p

hi |DhiXu|2 ≤ cR−4p

∫

Ω′
(V p + |u|p) dx (29)

for any i = 1, ..., 2n. This inequality enable us to affirm that, for any i = 1, ..., 2n,
DhiXu is bounded in L2(BR). By Lemma 3.5, possibly up to a subsequence, DhiXu

converges in L2
loc(B(R)) to XiXu for hi → 0 and then u ∈ W 2,2

loc (B(R)). Moreover, we
can extract from it a subsequence converging for a.e. x ∈ B(R). By Lemma 3.5,

Whi → (ε + 2|Xu|2) 1
2 for a.e. x ∈ B(R) as hi → 0.

The proof of Theorem 4.1 is then finished, passing to the limit hi → 0 in (29) for any
i = 1, ..., 2n and summing up the resulting inequalities over i = 1, ..., 2n, on account
that Ω′′ can be covered by a finite number of balls B(R) for R small enough

Remark 4.2. We would point out that, thanks to Theorem 4.1, we can now differ-
entiate formally equations

∫
B(R)

ak
ε(Xuε)Xkϕ dx = 0 along Xi (i = 1, ....2n) obtaining

∫

B(R)

ak
ε,j(Xuε)XiXjuεXkϕ dx = 0 (30)

for any ϕ ∈ W 1,p
0 (B(R), X) where B(R) ⊂ Ω′.
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5. Local boundedness of the gradient

We can now rely on the results of the previous sections to prove Theorems 1.1 and 1.2.
Here we are concerned with Theorem 1.1 and we will use a technique due to [5]. First of
all we will establish uniform local boundedness of the functions uε. Let Ω′ be an open
bounded set such that Ω′ ⊂⊂ Ω.

The following result can be found in [3: Theorem 3.4].

Lemma 5.1. For any compact K ⊂ Ω′ there exists a constant C > 0 depending
only on the structural constants and on dist (K, ∂Ω′) such that

‖uε‖∞,K ≤ C. (31)

Let x0 ∈ Ω′ arbitrarily fixed and, for any ρ > 0, let B(ρ) be the ball centered at x0

of radius ρ. Further, let B(R) ⊂⊂ Ω′.

Theorem 5.2. For any σ ∈ (0.1) there exists a constant γ(σ) > 0 depending only
on the structural constants and σ such that

∥∥[ε + |Xuε|2]
∥∥ p

2

∞,B(R−σR)
≤ γ(σ) 1

|B(R)|

∫

B(R)

[ε + |Xuε|2]
p
2 dx (32)

for all ε > 0.

Proof. Let us recall that the coefficients ak
ε satisfy the estimates

ak
εjξkξj ≥ γ0V

p−2
ε |ξ|2 (ξ ∈ Rn) (33)

|ak
εj | ≤ γ1V

p−2
ε (34)

with constants γ0 and γ1 independent on ε, where V 2
ε = ε + |Xuε|2 and, thanks to

Theorem 4.1, ∫

Ω′
V p−2

ε |X2uε|2 < c(ε). (35)

In virtue of this estimate, we can set in (30) the test function ϕ = XiuεV
α
ε g2 with

α > 0, where g is a cut-off function between B(R − σR) with σ ∈ (0, 1) and B(R).
Applying now standard methods to (30) gives on account of (33) - (34)

∫

B(R)

|XV
p+α

2
ε |2g2dx ≤ γ

∫

B(R)

V p+α
ε |Xg|2dx (36)

where γ is a structural constant independent on R, ε and α. If H = V
p
2

ε and θ = 1 + α
p ,

this estimate can be rewritten as
∫

B(R)

|XHθ|2g2dx ≤
∫

B(R)

H2θ|Xg|2dx. (37)

On account of Lemma 5.1 we can apply here the Moser iteration technique [18] in a
suitable adapted version due to [3: Lemma 3.29]. Then we obtain (31)
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6. Local Hölder continuity of the gradient

As before let Ω′ be an arbitrary open bounded subset of Ω such that Ω′ ⊂⊂ Ω, let
x0 ∈ Ω′ be an arbitrary point and, for any ρ > 0, let B(ρ) be the ball centered at x0 of
radius ρ. Let R > 0 such that B(2R) ⊂ Ω′. Let us observe that thanks to Theorem 5.1
and the results of [1] the solutions uε of equation (5) are now smooth. Therefore, for
any ρ ≤ R and ε > 0, we can set

µε(ρ) = max
i

supB(ρ)|Xiuε|
ωε(ρ) = max

i
oscB(ρ)Xiuε.

Our purpose is to establish Hölder continuity of Xuε at x0, uniformly in ε > 0. The
technique is due to [5, 6], but in this particular setting we use also some results of [17].
We do not want to deal with all the proofs in depth. We will mostly refer to [5, 17],
even if we will discuss all needed modifications in details.

The general idea consists in proving the existence of positive structural constants α ∈
(0, 1), δ0 and σ0, independent on ε such that, for all small ρ, if the subset of B(ρ) where
Xuε degenerates is ”small”, then the equation behaves in B(ρ) as a non-degenerate
elliptic equation (in this case we get ωε(ρ

2 ) ≤ δ0ρ
α), whereas if Xuε degenerates in a

”thick” portion of B(ρ), then we have µε(ρ
2 ) ≤ σ0µε(2ρ). The Hölder continuity follows

from both cases by a standard iteration technique [12].
The following result can be found in [3: Theorem 3.35].

Lemma 6.1 (Local Hölder continuity of uε). For any compact K ⊂ Ω′ there exist
some constants C > 0 and β ∈ (0, 1) depending only on the structural constants and
dist (K, ∂Ω′) such that

|uε(x)− uε(y)| ≤ C|x− y|β (x, y ∈ K) (38)

for all ε > 0.

Lemma 6.2. There exists a constant C such that, for any v ∈ W 1,1(B(R), X) and
for any real numbers l > k,

(l − k)|A+
l,R| ≤ C R|B(R)|

|B(R)\A+
k,R

|

∫

A+
k,R

\A+
l,R

|Xv| dx (39)

where A+
s,R = {x ∈ B(R)| v(x) > s}.

Proof. By Poincaré’s inequality [11: Theorem 2.1 and final remarks] there exists
a constant C > 0 such that, for any f ∈ C∞(B(R)),

∫

B(R)

|f − f | dx ≤ CR

∫

B(R)

|Xf | dx (40)

where f = 1
|B(R)|

∫
B(R)

f . From here we have

v ≤ CR
|N0|

∫

B(R)

|Xv| dx (41)
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for all v ∈ W 1,1(B(R), X), where N0 = {x ∈ B(R)| v(x) = 0}. From both inequalities
together we get ∫

B(R)

|v(x)| dx ≤ CR|B(R)|
|N0|

∫

B(R)

|Xv| dx. (42)

Applying this to the function

ṽ =





0 if v(x) ≤ k
v(x)− k if k ≤ v(x) ≤ l
l − k if v(x) ≥ l

we obtain (39). So the lemma is proved

Let us now set ϕ = ±(Xiuε − k)±ξ2 in (35) for k ∈ R and i = 1, ..., 2n, where ξ is a
cut-off function with support contained in B(R). We obtain

∫

B(R)

V p−2
ε |X(Xiuε − k)±|2dx ≤ γ

∫

B(R)

V p−2
ε |(Xiuε − k)±|2|Xξ|2dx (43)

where V 2
ε = ε + |Xuε|2 and γ is a structural constant independent on ε.

Proposition 6.3. Let ρ < R
2 and set λ = µε(2ρ)

2 . Then there exists a constant
C0 > 0 depending only on the data but independent on ε,R, λ such that if for some
1 ≤ i ≤ 2n

∣∣{x ∈ B(2ρ)|Xiuε < λ}∣∣ ≤ C0|B(2ρ)|, then Xiuε ≥ λ
4 for all x ∈ B(ρ).

Analogously, if
∣∣{x ∈ B(2ρ)|Xiuε > −λ}

∣∣ ≤ C0|B(2ρ)|, then Xiuε ≤ −λ
4 for all x ∈ B(ρ).

Proof. As in [5: Proposition 4.1] we distinguish between ε ≥ λ2 and ε < λ2. The
readers are referred there for the first simpler case but we sketch the proof for the second
one owing to make some changes in it with respect to the cited paper.

Also, let ε < λ2. In the following we will drop the subscript ε. If v = |Xiu| p
2 sign Xiu

and A−h,r = {x ∈ B(r)| v(x) < h}, then using (43) as in [5: Proposition 4.1] we easy
obtain ∫

B(r−σr)

|X(v − h)−|2dx ≤ γh2
0(σr)−2|A−h,r| (44)

for any σ ∈ (0, 1), r ≤ 2ρ, h ≤ h0 = λ
p
2 and for a suitable structural constant γ > 0

independent on ε, r, σ and h. Let H = supB(2r)(v−h0)−. Let us observe that if H < h0
2 ,

then Xiu > λ
4 for any x ∈ B(2ρ). Therefore we may assume H ≥ h0

2 . For any integer
j ≥ 0 let

rj = ρ + ρ
2j , hj = h0 − H

4 (1− 1
2j ), Bj = B(rj), Aj = A−hj ,rj

. (45)

For an arbitrary j ≥ 0 let us set h = hj , r = rj , r − σr = rj+1 in (44). We obtain
∫

Bj+1

|X(v − hj)−|2dx ≤ C22j h2
0

ρ2 |Aj |. (46)
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Let s ∈ (2, 2Q
Q−2 ). Applying Poincaré’s inequality [15] to the function (v− hj)−ξ, where

ξ is a cut-off function between Bj+2 and Bj+1, we get

( ∫

Aj+1

|(v − hj)−ξ|sdx

) 1
s

≤ cρ

( ∫

Aj+1

|X(v − hj)−|2dx + ρ−2

∫

Aj+1

|(v − hj)−|2dx

) 1
2

|B(ρ)| 1s− 1
2 .

(47)

By Hölder’s inequality and (46) - (47) we obtain

(
H

2j+3

)2|Aj+2| ≤
∫

Aj+2

|(v − hj)−|2dx

≤
( ∫

Aj+1

|(v − hj)−ξ|sdx

) 2
s

|Aj+1|1− 2
s (48)

≤ cρ2

( ∫

Aj+1

|X(v − hj)−|2dx + H2ρ−2|Aj+1|
)
|B(ρ)| 2s−1|Aj+1|1− 2

s

≤ c22jH2|B(ρ)| 2s−1|Aj |2− 2
s

from which we obtain for any j ≥ 0

|Aj+2|
|B(ρ)| ≤ c24j

( |Aj |
|B(ρ)|

)1+χ (49)

where χ = 1− 2
s > 0. In particular, this gives for any l ≥ 1

|A2l|
|B(ρ)| ≤ c(28)(l−1)

( |A2(l−1)|
|B(ρ)|

)1+χ

. (50)

It follows from here and [12: p. 66/Lemma 4.7] that there exists a constant C0 > 0
depending only on c and b = 28 such that, if |A0| ≤ C0|B0|, then liml→+∞A2l = 0
which implies |{x ∈ B(ρ)|Xiu < λ

22/p }| = 0, and then Xiu ≥ λ
4 for any x ∈ B(ρ). So

Proposition 6.3 is proved

Making only few and obvious changes in [5: Proposition 4.2], using (43) and Lemma
6.2 we easily establish the following counterpart of Proposition 6.3.

Proposition 6.4. Let ρ < R
2 . If the assumptions of Proposition 6.3 fail, then there

exists a structural constant σ0 ∈ (0, 1) independent on ε > 0 and ρ such that, for all
ε > 0, µε(ρ

2 ) ≤ σ0µε(2ρ).

Theorem 6.5. There exist constants γ > 0 and η ∈ (0, 1) depending only on the
data and dist (B(R), ∂Ω′) such that

maxioscB(ρ)Xiuε ≤ γ( ρ
R )ηsupB( R

2 )|Xuε|

for all ρ < R
2 and for all ε > 0.
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Proof. The proof is the same as that of [5: Proposition 4.3] using a result of [17].
We sketch it for sake of completeness. The subscript ε will be dropped.

Let ρ < R
2 and let the assumptions of Proposition 6.3 be verified in B(2ρ). Then

for some i either Xiu > 1
8µ(2ρ) or Xiu < − 1

8µ(2ρ) in B(ρ). In both cases

( 1
8 )p−2µ(2ρ)p−2 ≤ V p−2 ≤ (4n)p−2µ(2ρ)p−2 (51)

in B(ρ). Therefore, writing (43) over the balls B(ρ) for all i = 1, ..., 2n we have

∫

B(ρ−σρ)

|X(Xiu− k)±|2dx ≤ γ(σρ)−2

∫

B(ρ)

|(Xiu− k)±|2dx (52)

for a new structural constant γ. These inequalities state that, for every i = 1, ..., 2n, Xiu
belongs to some ”De Giorgi classes” for all whose functions we stated the local Hölder
continuity [17: Theorem 2.1]. Precisely, ω(ρ

2 ) ≤ δ0ρ
α where δ0 = c supB(R/2) |Xu|R−α

for suitable structural constants c and α ∈ (0, 1) independent on ρ and ε. On the other
hand, if the assumptions of Proposition 6.3 fail in B(ρ), then by Proposition 6.4 there
exists a constant σ0 > 0 such that

µ(ρ
2 ) ≤ σ0µ(2ρ).

Let us now consider a sequence of radii Rj = R
22j (j ≥ 1). If for every j ≥ 1 the assump-

tions of Proposition 6.3 fail in B(Rj), then Proposition 6.4 gives µ(Rj

2 ) ≤ σ0µ(2Rj).
On the other hand, if for some j0 ≥ 1 the assumptions of Proposition 6.3 are verified in
B(Rj0), then as in (51) we can estimate V p−2 from above and below in terms of µ(2Rj0)
in B(Rj0) and hence also in B(Rj) for every j > j0. Therefore, for every j ≥ j0 the
equation behaves in B(Rj) like a non-degenerate equation. From (52) then we obtain
ω(Rj

2 ) ≤ δ0R
α
j for every j ≥ j0, and µ(Rj

2 ) ≤ σ0µ(2Rj) for every 1 ≤ j < j0. The proof
follows from a standard modification of [12: pp. 66 – 67/Lemma 4.8]

7. Estimate of Tuε

In this section we prove, for any 2 ≤ p < 1 +
√

5, that if uε is a local weak solution of
equation (5), then Tuε ∈ Lp

loc(Ω
′). This is a cornerstone for the paper. Just as before,

here Ω′ will denote an arbitrary open bounded subset of Ω such that Ω′ ⊂⊂ Ω.

Theorem 7.1. Let 2 ≤ p < 1 +
√

5 and, for any ε ∈ (0, 1), let uε ∈ W 1,p
loc (Ω, X) be

a local weak solution of equation (5). Further, let B(3R) be an arbitrary homogeneous
ball of radius 3R such that B(3R) ⊂ Ω′ and let g be a cut-off function between B(R)
and B(2R). Then T (g2uε) ∈ Lp(Ω′) and

∫

Ω′
|T (g2uε)|pdx ≤ cR−4p

∫

Ω′
(V p

ε + |uε|p) dx (53)

where V 2
ε = ε + |Xuε|2.
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Proof. If p = 2, then (53) follows from [1]. Let now p > 2. For any α ∈ (0, 1),
s > 0 and any w ∈ C∞0 (Ω) we will denote h∗s = (0, s) and

Dh∗s,α
w(x) =

w(x ◦ h∗s)− w(x)
sα

D−h∗s,α
w(x) =

w(x ◦ (h∗s)−1)− w(x)
−sα

.

We have

D−h∗s,α
Dh∗s,α

w =
w(x ◦ h∗s) + w(x ◦ (h∗s)

−1)− 2w(x)
s2α

= Dh∗s,α
D−h∗s,α

w

and, for every k = 1, ..., 2n,

XkD±h∗s,α
= D±h∗s,α

Xk. (54)

Let us multiply equation (5) by the test function ϕ = D−h∗
s,1/2

(g2Dh∗
s,1/2

uε), g being

a cut-off function between B(R) and B(2R). Let us observe that ϕ ∈ W 1,p
0 (Ω, X) in

virtue of (54). In the following we will drop the subscript ε for the sake of simplicity.
On account of (54) we obtain

∫

Ω

Dh∗
s,1/2

akg2XkDh∗
s,1/2

u dx + 2
∫

Ω

Dh∗
s,1/2

akDh∗
s,1/2

u gXkg dx = 0. (55)

For any p > 1 the first integral in the left-hand side here can be estimated by the same
argument we applied to J2 in Section 4: as

Dh∗
s,1/2

ak = αkj
h∗s

Dh∗
s,1/2

Xju (56)

where

αkj
h∗s

=
∫ 1

0

ak
j (Xu + θs

1
2 Dh∗

s,1/2
Xu) dθ,

then ∫

Ω

Dh∗
s,1/2

akg2XkDh∗
s,1/2

u dx ≥ c

∫

Ω′
g2W p−2

h∗s
|Dh∗

s,1/2
Xu|2dx (57)

where
W 2

h∗s
(x) = ε + |Xu(x)|2 + |Xu(x ◦ h∗s)|2.

To estimate the second integral in the left-hand side of (55), we may count again
on (56) and the estimate |αkj

h∗s
| ≤ c W p−2

h∗s
(see [9: Lemma 8.3]) to obtain

∣∣∣∣
∫

Ω′
Dh∗

s,1/2
akDh∗

s,1/2
u gXkg dx

∣∣∣∣

=
∣∣∣∣
∫

Ω′
αkj

h∗s
Dh∗

s,1/2
XjuDh∗

s,1/2
u gXkg dx

∣∣∣∣

≤ δ

∫

Ω′
g2W p−2

h∗s
|Dh∗

s,1/2
Xu|2 + cδ−1R−2

∫

Ω′
W p−2

h∗s
|Dh∗

s, 1
2

u|2dx

(58)
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where ∫

Ω′
W p−2

h∗s
|Dh∗

s,1/2
u|2dx ≤ c

∫

Ω′
(W p

h∗s
+ |Dh∗

s,1/2
u|p) dx. (59)

On account of (57), (58) with small δ, (59) and the Baker-Campbell-Hausdorff formula
(see [1: Theorem 2.6] for the application we need here) we obtain from (55)

∫

Ω′
g2W p−2

h∗s
|Dh∗

s,1/2
Xu|2dx ≤ cR−2

∫

Ω′
V pdx. (60)

As ∣∣s 1
2 Dh∗

s,1/2
Xu

∣∣2 =
∣∣Xu(x ◦ h∗s)−Xu(x)

∣∣2

≤ 4
[|Xu(x ◦ h∗s)|2 + |Xu(x)|2]

≤ 4W 2
h∗s

,

then (60) gives
∫

Ω′
s

p−2
2

∣∣Dh∗
s,1/2

X(g2u)
∣∣p ≤ cR−2p

∫

Ω′
(V p + |u|p) dx. (61)

From (54), (61), Lemma 3.5 and the Baker-Campbell-Hausdorff formula we have
∫

Ω′
s

p−2
2

∣∣D−h∗
s,1/2

Dh∗
s,1/2

(g2u)
∣∣p ≤ cR−2p

∫

Ω′
(V p + |u|p) dx,

that is ∫

Ω′
|∆2

s(g
2u)|ps−1− p

2 dx ≤ cR−2p

∫

Ω′
(V p + |u|p) dx (62)

where ∆2
sw = w(x ◦ h∗s)− 2w(x) + w(x ◦ (h∗s)

−1), and then, for any α ∈ (0, 1),

∫ 1

0

∫

Ω′
|∆2

s(g
2u)|ps−1−pβdxds ≤ cR−2p

∫

Ω′
(V p + |u|p) dx (63)

where β = α
p + 1

2 .

Let us now briefly recall some known functional spaces in R and their inclusions.
We refer the readers to [16, 21] for the details. We start with the Besov space Bθ

p,p (θ ∈
(0, 1), p > 1), the completion of C∞0 (R) with respect to the norm

‖ϕ‖Lp +
( ∫

‖∆2
sϕ‖p

Lp |s|−1−pθds

) 1
p

,

where ∆2
sϕ(t) = ϕ(t + s) − 2ϕ(t) + ϕ(t − s). It results [22: p. 37/Formula (9) and

p. 90/Formulas (5) and (9)] Bθ
p,p = W θ,p, where W θ,p is the fractional Sobolev space,

which in turn is linked to the Bessel potential spaces

Hθ,p =
{

ϕ : ‖F−1((1 + |ξ|2)θ/2Fϕ)‖Lp < ∞
}
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where F denotes the Fourier transform, in that Hθ+τ,p ⊂ W θ,p ⊂ Hθ−τ,p for any small
τ > 0. Moreover, the interpolation spaces

(Lp,W 1,p)θ,∞ =
{

ϕ ∈ Lp : sup0<|s|<σ
‖ϕ(·+s)−ϕ(·)‖Lp

|s|θ < ∞
}

for some positive constant σ > 0 satisfy Hθ,p ⊂ (Lp,W 1,p)θ,∞ ⊂ H θ̃,p for any 0 < θ̃ < θ
(see [21: p. 64/Theorem 1, p. 25/Formulas (1) and (4), and p. 185/Formula (11)]).
Collecting the previous inclusions we obtain

(Lp,W 1,p)θ+2τ,∞ ⊂ Hθ+τ,p ⊂ W θ,p = Bθ
p,p ⊂ Hθ−τ,p ⊂ (Lp,W 1,p)θ−τ,∞ (64)

for any θ ∈ (0, 1), p > 1 and any small τ > 0. It follows, in particular,

‖ϕ‖(Lp,W 1,p)β−τ,∞ ≤ c‖ϕ‖Bβ
p,p

(65)

for any ϕ ∈ C∞0 (R), any small τ > 0 and any α ∈ (0, 1), where β = α
p + 1

2 .

From (63) and (65) we obtain

sup
s<σ

∫

Ω′
|Dh∗

s,β−τ
(g2u)|pdx ≤ cR−2p

∫

Ω′
(V p + |u|p) dx. (66)

Let us multiply equation (5) by the function D−h∗
s,β−τ

(g2Dh∗
s,β−τ

u). Let us observe that
it is a right test function for (5) in virtue of (54). Using (66) in place of the Baker-
Campbell-Hausdorff formula (possibly modifying the domain of the cut-off function g)
we can repeat the argument from (55) until (61). More precisely, in place of (61) we
have now ∫

Ω′
s(p−2)(β−τ)|Dh∗

s,β−τ
X(g2u)|pdx ≤ cR−4p

∫

Ω′
(V p + |u|p) dx (67)

from which, arguing as for (62), we obtain
∫

Ω′
|∆2

s(g
2u)|ps−2(β−τ)− p

2 dx ≤ cR−4p

∫

Ω′
(V p + |u|p) dx (68)

and then ∫ 1

0

‖∆2
s(g

2u)‖Lp(Ω′)s
−σds ≤ cR−4

( ∫

Ω′
(V p + |u|p) dx

) 1
p

(69)

where σ = 1
2 + 2

p (β − τ) + α. As β = α
p + 1

2 , then σ = (2α+1)p2+2(1−2τ)p+4α
2p2 .

Now we have σ = 2 if (3− 2α)p2 − 2(1− 2τ)p− 4α = 0, that is

p = 1−2τ+
√

(1−2τ)2+4α(3−2α)

3−2α .

As p → 2 when τ → 1
2 , α → 1, and p → 1 +

√
5 when τ → 0, α → 1, then, for any

p ∈ (2, 1 +
√

5) we can choose α and τ in such a way that σ = 2 in (69). As for any
p ≥ 1 we have B1

p,1(R) ⊂ W 1,p(R) [22: p. 90/Formulas (5) and (10)], then, for any
2 < p < 1 +

√
5, (53) follows from (69) with σ = 2.
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[10] Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119 (1967),
147 – 171.
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