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Semilinear Hyperbolic Systems
with

Singular Non-Local Boundary Conditions:
Reflection of Singularities and Delta Waves

I. Kmit and G. Hörmann

Abstract. In this paper we study initial-boundary value problems for first-order semilinear
hyperbolic systems where the boundary conditions are non-local. We focus on situations involv-
ing strong singularities, of the Dirac delta type, in the initial data as well as in the boundary
conditions. In such cases we prove an existence and uniqueness result in an algebra of gener-
alized functions. Furthermore, we investigate the existence and structure of delta waves, i.e.,
distributional limits of solutions to the regularized systems. Due to the additional singularities
in the boundary data the search for delta waves requires a delicate splitting of the solution
into a linearly evolving singular part and a regular part satisfying a nonlinear equation. A
new feature in the splitting procedure used here, compared to delta waves in pure initial value
problems, is the dependence of the singular part also on part of the regular part due to singu-
larities enetering from the boundary. Finally, we include simple examples where the existence
of delta waves breaks down.

Keywords: Semilinear hyperbolic equations, Colombeau algebras, non-local boundary condi-
tions, delta waves
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1. Introduction

We study propagation and reflection of strong singularities in non-local boundary value
problems for first-order semilinear hyperbolic systems. We investigate existence and
uniqueness of generalized solutions to (n × n)-systems in two variables with smooth
coefficients in diagonal form. In the domain

Π =
{

(x, t)
∣∣∣ − L < x < L and t > 0

}
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we consider the following initial-boundary value problem for the generalized function
U :

(∂t + λ(x, t)∂x)U = f(x, t, U) ((x, t) ∈ Π) (1)

U |t=0 = A(x) (x ∈ (−L,L)) (2)

B(t)U |x=−L + C(t)U |x=L +
∫ L

−L

D(x, t)U dx = H(t) (t ∈ (0,∞)). (3)

Here, U = (U1, . . . , Un), f = (f1, . . . , fn), H = (H1, . . . , Hn), B, C and D are real
(n × n)-matrices, λ = diag(λ1, . . . , λn) is a diagonal matrix with λ1 ≤ . . . ≤ λk < 0 <
λk+1 ≤ . . . ≤ λn (k is fixed and 1 ≤ k ≤ n).

Problems like (1) - (3) generalize previously considered mathematical models for
age-structured populations in biology and demography (c.f. [2, 17, 18]). A particular
example is the following model discussed in [18]:

(∂t + ∂x)u = mu(x, t)u + f(x, t) (x ∈ (0,∞), t ∈ (0,∞))

u|t=0 = a(x) (x ∈ (0,∞))

u|x=0 = β(t)
∫ x2

x1

h(x, t)K(x, t)u dx (t ∈ (0,∞))

where u(x, t) is the population density of age x at time t, f(x, t) is the migrant density,
µ(x, t) is the death rate, β(t), h(x, t), K(x, t) are the standard demographic indices.

In present paper we will study generalized solutions U to problem (1) - (3) within
the Colombeau algebra G(Π) when λ and f are smooth functions and the initial and
boundary data are allowed to be generalized functions. For example, the initial data
can model discontinuously distributed populations by arbitrary measures and the inter-
actions at the boundary may be shock-like or stochastic.

To be precise, we will assume that entries of A are generalized functions in the
Colombeau algebra G[−L,L], entries of B, C, and H are generalized functions in G(R+),
and entries of D are from G(Π). Throughout this paper G(Ω) and G(Ω) will always
denote the full version of the Colombeau algebra over an open subset Ω of Rn and
its closure Ω, respectively (as defined in [1, 3, 11]). We recall in particular the basic
definitions of the algebra G(Ω) which will contain the generalized solution U .

As a preliminary step we introduce the mollifier spaces used to parameterize the
regularizing sequences of generalized functions. For q ∈ N0 denote

Aq(R) =
{

ϕ ∈ D(R)
∣∣∣∣

∫
ϕ(x) dx = 1,

∫
xkϕ(x) dx = 0 for 1 ≤ k ≤ q

}

Aq(Rn) =
{

ϕ(x1, . . . , xn) =
n∏

i=1

ϕ0(xi)
∣∣∣∣ ϕ0 ∈ Aq(R)

}
.

For ϕ ∈ A0(Rn) define ϕε(x) = 1
εn ϕ

(
x
ε

)
(ε > 0). Let Ω ⊂ Rn and introduce the algebra

of moderate elements E(Ω) in the following way. We recall that C∞(Ω) is the space
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of smooth functions in Ω, all whose derivatives are continuously extendable up to the
boundary of Ω. Define

E(Ω) =
{

u : A0 × Ω → R
∣∣∣ u(ϕ, ·) ∈ C∞(Ω) for all ϕ ∈ A0(R)

}
.

Thus, the subalgebra EM (Ω) is defined by the elements u ∈ E(Ω) with the property:

∀K ⊂ Ω compact and ∀α ∈ Nn
0 , ∃N ∈ N such that ∀ϕ ∈ AN (Rn)

∃C > 0 and ∃η > 0 with supx∈K |∂αu(ϕε, x)| ≤ Cε−N (0 < ε < η).

The ideal N (Ω) consists of all u ∈ E(Ω) with the following property:

∀K ⊂ Ω compact and ∀α ∈ Nn
0 , ∃N ∈ N such that ∀q ≥ N and ∀ϕ ∈ Aq(Rn),

∃C > 0 and ∃η > 0 with supx∈K |∂αu(ϕε, x)| ≤ Cεq−N (0 < ε < η).

Finally,
G(Ω) = EM (Ω)/N (Ω)

is an associative, commutative differential algebra. The algebra G(Ω) on open set is
constructed in the same manner (with Ω in place of Ω in the definition above). Note
that G(Ω) admits a canonical embedding of D′(Ω).

The use of algebras of generalized functions, in particular Colombeau algebras, in
this situation is motivated by several facts. First, when we are going to transform
the boundary conditions (3) into a more convenient form, this involves division and
multiplication by discontinuous functions and measures. Although this is in general
impossible within the setting of distribution theory it still leads to an equivalent problem
within G(Π). Second, as will be indicated by the examples in Section 3, problem (1) - (3)
with distributional initial and boundary data can not be expected to admit distributional
solutions in general.

In Section 2 we will prove a general existence and uniqueness result for problem
(1) - (3) within the Colombeau algebra G(Π). In Section 3 we focus on the question
of existence of delta waves in the case D = 0 (no integral in the boundary terms).
This means that we model initial data a which are distributions of discrete support by
convolution with a scaled mollifier ϕε(x) as the net aε = a ∗ ϕε. Assume that bε, cε

and hε are representatives of the generalized boundary data and let uε be the unique
smooth (regularized) solution to the problem

(∂t + λ(x, t)∂x)uε = f(x, t, uε) ((x, t) ∈ Π) (4)
uε|t=0 = aε(x) (x ∈ (−L,L)) (5)

bε(t)uε|x=−L + cε(t)uε|x=L = hε(t) (t ∈ (0,∞)). (6)

In the case the net (uε)ε>0 of smooth functions (which we also call a sequential solution)
has a limit v ∈ D′ as ε → 0 this limit is called a delta wave. Note that (uε)ε also
defines the (class of) the corresponding Colombeau solution U = cl[(uε)ε] which is then
said to be associated with v. We will state a positive result provided some additional
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assumptions on the data are valid but also show an instance of non-existence of delta
waves for a particular choice of data.

Existence, uniqueness and regularity of generalized solutions to the Cauchy problem
for hyperbolic (n × n)-systems in two variables have been investigated in [4, 10, 13].
The existence of delta waves for such problems has been studied in [4 - 6, 11 - 16].
In particular, the sources [14, 15] are devoted to propagation of strong singularities in
Cauchy problems for multidimensional constant coefficient semilinear hyperbolic sys-
tems and in a nonlinear boundary value problem (with a smooth function of (x, t, U)
defining the boundary condition) for a hyperbolic equation, respectively. A main result
of these papers is that, when nonlinear parts of the problem are bounded functions, a
delta-wave exists and splits up into the sum of a linear singular part and a nonlinear
regular part.

The contribution of our paper is that it treats non-local (non-separable and integral)
boundary conditions with singular coefficients. Similarly to the aforementioned results,
we show that a delta wave, if it exists, splits up into a singular and a regular part.

2. Existence and uniqueness of generalized solutions
in the sense of Colombeau

In this section we focus on the questions of existence and uniqueness of a generalized
solution to problem (1) - (3). To formulate the main result of this section we need two
definitions concerning growth properties of Colombeau functions.

Definition 1 (see [11: Definition 17.4(a)]). Let Ω ⊂ Rn. An element V ∈ G(Ω) is
called globally bounded, if it has a representative v ∈ EM (Ω) with the following property:
There is N ∈ N such that for every ϕ ∈ AN (Rn) there exist C > 0 and η > 0 with
supy∈Ω |v(ϕε, y)| ≤ C for 0 < ε < η.

The following definition generalizes [11: Definition 17.4(b)].

Definition 2. Let Ω ⊂ Rn. Suppose we have a function γ : (0, 1) 7→ (0,∞). An
element V ∈ G(Ω) is called locally of γ-growth, if it has a representative v ∈ EM (Ω)
with the following property: For every compact subset K ⊂ Ω there is N ∈ N such that
for every ϕ ∈ AN (Rn) there exist C > 0 and η > 0 with supy∈K |v(ϕε, y)| ≤ Cγ(ε) for
0 < ε < η.

In addition to all the assumptions on λ, f,A, B, C,D and H made in Section 1 we
impose the following conditions:

1. The mapping U 7→ f(x, t, U) and all its derivatives are polynomially bounded,
uniformly for (x, t) varying in compact subsets of Π.

2. The mapping U 7→ ∇Uf(x, t, U) is globally bounded, uniformly for (x, t) varying in
compact subsets of Π.

3. The determinant of the matrix

R(t) =




B1,k+1 . . . B1n C11 . . . C1k

B2,k+1 . . . B2n C21 . . . C2k

...
. . .

...
...

. . .
...

Bn,k+1 . . . Bnn Cn1 . . . Cnk



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has a representative r ∈ EM (Π) with the property: There is N ∈ N such that
for every ϕ ∈ AN (R) there exist C > 0 and η > 0 with inft∈Π |r(ϕε, t)| ≥ C for
0 < ε < η.

4. All elements Rij(t) of the matrix R(t) are globally bounded.
5. supp A(x) ⊂ (−L,L), supp Bij(t), supp Cis(t) ⊂ (0,∞) for 1 ≤ i ≤ n, 1 ≤ j ≤ k

and k + 1 ≤ s ≤ n; supp Dim(x, t) ⊂ (0,∞)× [−L, L] for 1 ≤ i,m ≤ n.
6. Bij(t), Cis(t) and Dim(x, t) for 1 ≤ i,m ≤ n, 1 ≤ j ≤ k, k + 1 ≤ s ≤ n are locally of

γ-growth with respect to a function γ(ε) satisfying the condition γ(ε)γ(ε) = O(ε−N )
for some N ∈ N.

Assumption 1 ensures that the composition f(x, t, U) is a well defined within the
Colombeau algebra G(Π) for arbitrary U ∈ G(Π). Assumption 2 guarantees that prob-
lem (1) - (3) with smooth initial and boundary conditions has a global classical solution.
Next, assumption 3 allows us to transform problem (1) - (3) into an equivalent system
of integral equations. By assumption 5 we have compatibility conditions of any desired
order between (2) and (3). Note that the conditions 1 - 6 are not particularly restric-
tive from the viewpoint of applications. In particular, condition 5 is in correspondence
with mathematical models of the aforementioned applications in mathematical biology
concerning continuous models of discrete structures.

The x-component of the characteristic flow according to the i-th equation in system
(1) satisfies an ordinary differential equation of the form

dx

dt
= λi(x(t), t).

Let ωi(t; x0, t0) denote the (x-component of the) i-th characteristic curve of (1) that
passes through a point (x0, t0) ∈ Π at the parameter value t = t0. The smallest value of
t ≥ 0 at which the characteristic t 7→ (ωi(t; x0, t0), t) intersects the boundary of Π will
be denoted by ti(x0, t0). We illustrate typical cases in the following figure (j ≤ k and
l > k).

Let us transform problem (1) - (3) for a function U ∈ G(Π) into an equivalent
integral operator form (recall that all integrations over finite intervals are carried out
on the level of representatives). We have

Ui(x, t) = (RiU)(x, t) +
∫ t

ti(x,t)

[
U(ωi(τ ; x, t), τ)

×
∫ 1

0

∇Ufi(ωi(τ ;x, t), τ, σU) dσ + fi(ωi(τ ; x, t), τ, 0)
]
dτ

(1 ≤ i ≤ n)

(7)

where

(RiU)(x, t) =
{

Mi(ti(x, t)) if ti(x, t) > 0
Ai(ωi(0; x, t)) if ti(x, t) = 0

and
Mi(t) = Ui|x=−L (k + 1 ≤ i ≤ n)

Mi(t) = Ui|x=L (1 ≤ i ≤ k).
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It follows from assumption 4 and [10] that the matrix R(t) has an inverse with
entries in G(Π), in particular there is a unique element det R−1 ∈ G(Π) such that
detR detR−1 = 1. Therefore

Mi(t) =
1

detR(t)

n∑

j=1

Rad
ji (t)

[
Hj(t)−

k∑
s=1

Bjs(t)Us(−L, t)

−
n∑

s=k+1

Cjs(t)Us(L, t)−
n∑

s=1

∫ L

−L

Djs(x, t)Us(x, t) dx

]
.

Theorem 3. Suppose that assumptions 1 - 6 are met for A ∈ G[−L,L], D ∈ G(Π)
and B, C,H ∈ G(R+). Then problem (1)− (3) has a unique solution U ∈ G(Π).

Proof. We will make use of a priori estimates for global smooth solutions U to
problem (1) - (3) with smooth initial and boundary data. We obtain these global
estimates by iterating the a priori estimates on local smooth solutions in a finite number
of steps. In order to prove existence of a generalized solution we need to take care of
the norms of the coefficients Bij(t) and Cis(t) (1 ≤ i ≤ n, 1 ≤ j ≤ k, k + 1 ≤ s ≤ n)
in each step of the iteration process.

Given T > 0, denote

ΠT =
{

(x, t)
∣∣∣ − L < x < L and 0 < t < T

}
.

The existence will follow from three intermediate claims.

Claim 1: Given m ∈ N ∪ {0}, there exists a unique solution U ∈ Cm(Π
t(m)

) to
problem (1)−(3) with smooth initial and boundary data for some t(m) > 0. By condition
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5 the compatibility conditions of any order between (2) and (3) are fulfilled. Since λ is
globally bounded, there exists t0 > 0 such that

ωn(t;−L, τ) < ω1(t; L, τ) ∀ τ ≥ 0, t ∈ [τ, τ + t0]. (8)

Let us fix t0 with property (8). We will choose t(m) so that

t(m) ≤ t0 ∀m ∈ N0. (9)

For t ∈ [0, t0] we can convert the above expression for Mi(t) into the form

Mi(t) =
1

detR(t)

n∑

j=1

Rad
ji (t)

{
Hj(t)−

k∑
s=1

Bjs(t)
[
As(ωs(0;−L, t))

+
∫ t

0

(
U(ωs(τ ;−L, t), τ)

∫ 1

0

∇Ufs(ωs(τ ;−L, t), τ, σU) dσ

+ fs(ωs(τ ;−L, t), τ, 0)
)

dτ

]
−

n∑

s=k+1

Cjs(t)
[
As(ωs(0; L, t))

+
∫ t

0

(
U(ωs(τ ; L, t), τ)

∫ 1

0

∇Ufs(ωs(τ ; L, t), τ, σU) dσ

+ fs(ωs(τ ; L, t), τ, 0)
)

dτ

]
−

n∑

s=k+1

∫ Ls(t)

−L

Djs(x, t)Us(x, t) dx

−
n∑

s=k+1

∫ L

Ls(t)

Djs(x, t)
[
As(ωs(0; x, t))

+
∫ t

0

(
U(ωs(τ ; x, t), τ)

∫ 1

0

∇Ufs(ωs(τ ;x, t), τ, σU) dσ

+ fs(ωs(τ ; x, t), τ, 0)
)

dτ

]
dx−

k∑
s=1

∫ L

Ls(t)

Djs(x, t)Us(x, t) dx

−
k∑

s=1

∫ Ls(t)

−L

Djs(x, t)
[
As(ωs(0; x, t)) +

∫ t

0

(
U(ωs(τ ; x, t), τ)

×
∫ 1

0

∇Ufs(ωs(τ ; x, t), τ, σU) dσ + fs(ωs(τ ; x, t), τ, 0)
)

dτ

]
dx

}

(10)

where
Ls(t) = ωs(t; L, 0)

Ls(t) = ωs(t;−L, 0)

(1 ≤ s ≤ k)

(k + 1 ≤ s ≤ n)

and, therefore,
|L− Ls(t)| ≤ tmaxΠ|λs|
|L + Ls(t)| ≤ tmaxΠ|λs|

(1 ≤ s ≤ k)

(k + 1 ≤ s ≤ n).
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We see that (7) is a system of Volterra integral equations of the second kind to which we
can apply the contraction principle. We apply the operator defined by the right-hand
side of (7) to two continuous functions U1 and U2 having the same boundary and initial
values and compare their difference

∣∣U1
i (x, t)− U2

i (x, t)
∣∣

≤ ∣∣(RiU
1)(x, t)− (RiU

2)(x, t)
∣∣ + n

∫ t

ti(x,t)

max
1≤i≤n

|U1
i − U2

i |

×
∫ 1

0

∣∣∇Ufi(ωi(τ ; x, t), τ, σU1 + (1− σ)U2)
∣∣dσdτ

≤ t(0)q0 max
(x,t)∈Π

T
,1≤i≤n

∣∣U1
i (x, t)− U2

i (x, t)
∣∣

where

q0 = n2 max
t∈[0,T ]
1≤i,j≤n

∣∣∣R
ad
ji (t)
R(t)

∣∣∣

×
[(

max
t∈[0,T ],1≤j≤n

1≤s≤k,k+1≤r≤n

{|Bjs(t)|, |Cjr(t)|
}

+ 2L max
(x,t)∈ΠT

1≤i,j≤n

|Dij(x, t)|
)

× n max
(x,t,y)∈ΠT×R

1≤i≤n

∣∣∇Ufi(x, t, y)
∣∣

+ max
(x,t)∈ΠT

1≤i,j≤n

|Dij(x, t)| max
(x,t)∈ΠT

1≤i≤n

|λi(x, t)|
]

+ n max
(x,t,y)∈ΠT×R

1≤i≤n

∣∣∇Ufi(x, t, y)
∣∣.

Assuming in addition to condition (9) that t0 < 1
q we have thus proved the contraction

property and hence existence and uniqueness of a continuous solution U . We have the
following estimate of U in Πt(0):

|Ui(x, t)| ≤ 1
1− q0t(0)

[
max

x∈[−L,L]
1≤i≤n

|Ai(x)|
(

1 + n2E(1 + 2L) max
t∈[0,T ]
1≤i,j≤n

∣∣∣R
ad
ji (t)
R(t)

∣∣∣
)

+ n max
t∈[0,T ]
1≤i≤n

|Hi(t)| max
t∈[0,T ]
1≤i,j≤n

∣∣∣R
ad
ji (t)
R(t)

∣∣∣

+ n2t(0)E(1 + 2L) max
t∈[0,T ]
1≤i,j≤n

∣∣∣R
ad
ji (t)
R(t)

∣∣∣ max
(x,t)∈ΠT

1≤i≤n

|fi(x, t, 0)|
]

where
E = max

(x,t)∈ΠT
,1≤i,j≤n

1≤s≤k,k+1≤r≤n

{|Bjs(t)|, |Cjr(t)|, |Dij(x, t)|}.
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To proceed with derivatives of higher order let us consider the following initial
boundary problem for ∂xU :

∂xUi(x, t) = (R′ixU)(x, t) +
∫ t

ti(x,t)

[
∇Ufi(ξ, τ, U) · ∂xU(ξ, τ)

− (∂xλi)(ξ, τ)∂xUi(ξ, τ) + (∂xfi)(ξ, τ, U)
]∣∣∣

ξ=ωi(τ ;x,t)
dτ

(1 ≤ i ≤ n)

(12)

where

(R′ixU)(x, t) =

{
1

λi(x,τ)

(
fi(x, τ, U)−M ′

i(τ)
)∣∣∣

τ=ti(x,t)
if ti(x, t) > 0

A′i(ωi(0; x, t)) if ti(x, t) = 0

M ′
i(t) = H̃i(t)− 1

detR(t)

n∑

j=1

Rad
ji (t)

[ k∑
s=1

Bjs(t)(∂tUs)(−L, t)

−
n∑

s=k+1

Cjs(t)(∂tUs)(L, t)−
n∑

s=1

∫ L

−L

Djs(x, t)(∂tUs)(x, t) dx

]

H̃i(t) =
1

detR(t)

n∑

j=1

Rad
ji (t)

×
[
H ′

j(t)−
k∑

s=1

B′
js(t)Us(−L, t)−

n∑

s=k+1

C ′js(t)Us(L, t)

−
n∑

s=1

∫ L

−L

(∂tDjs)(x, t)Us(x, t) dx

]

+
n∑

j=1

( Rad
ji (t)

detR(t)

)′[
Hj(t)−

k∑
s=1

Bjs(t)Us(−L, t)

−
n∑

s=k+1

Cjs(t)Us(L, t)−
n∑

s=1

∫ L

−L

Djs(x, t)Us(x, t) dx

]
.

Since U has been already estimated, H̃i(t) is known. Recalling that ∂tU = f(x, t, U)−
λ(x, t)∂xU (system (1)), we see that problem (12) with respect to ∂xU has the same
structure as problem (7) has with respect to U .

Estimating the function ∂xU in the same manner as U , we obtain continuity and
an estimate of type (11) for ∂xU with the value of

q1 =
(

q0 − n max
(x,t,y)∈ΠT×R

1≤i≤n

∣∣∇Ufi(x, t, y)
∣∣
)

max
(x,t)∈ΠT

1≤i≤n

|λi(x, t)|
(

min
(x,t)∈ΠT

1≤i≤n

|λi(x, t)|
)−1

+ n max
(x,t,y)∈ΠT×R

1≤i≤n

∣∣∇Ufi(x, t, y)
∣∣ + max

(x,t)∈ΠT

1≤i≤n

∣∣(∂xλi)(x, t)
∣∣
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in place of q0 and t(1) < 1
q1

in place of t(0).

Proceeding further by induction, we estimate all higher derivatives of U with respect
to x. So, for ∂m

x U we obtain an estimate of type (11) with the value of

qm =
(

q0 − n max
(x,t,y)∈ΠT×R

1≤i≤n

∣∣∇Ufi(x, t, y)
∣∣
)(

max
(x,t)∈ΠT

1≤i≤n

|λi(x, t)|
)m(

min
(x,t)∈ΠT

1≤i≤n

|λi(x, t)|
)−m

+ n max
(x,t,y)∈ΠT×R

1≤i≤n

∣∣∇Ufi(x, t, y)
∣∣ + m max

(x,t)∈ΠT

1≤i≤n

|(∂xλi)(x, t)|

in place of q0 and t(m) < 1
qm

in place of t(0) (in addition to condition (9)). Using
system (1) and its suitable differentiations, we estimate all derivatives with respect to t
and all mixed derivatives.

Claim 2: For an arbitrarily fixed T > 0, in the domain ΠT there exists a unique
smooth solution U to problem (1)−(3) with smooth initial and boundary data. We prove
this claim for U ∈ C(ΠT

) in dT/t(0)e steps (dxe denoting the smallest integer n ≥ x)
by iterating the local existence and uniqueness result in domains

(Πkt(0) ∩ΠT ) \Π
(k−1)t(0)

(1 ≤ k ≤ dT/t(0)e).
We can do so since q0 depends on T and does not depend on t(0). Using estimate (11)
dT/t(0)e times and each time starting with the final value U from the previous step, we
obtain the a priori estimate

max
(x,t)∈ΠT

1≤i≤n

|Ui(x, t)| ≤
( 1

1− q0t(0)

)dT/t(0)e
P (E)

(
1 + max

x∈[−L,L]
1≤i≤n

|Ai(x)|+ max
t∈[0,T ]
1≤i≤n

|Hi(t)|
)

where P (E) is a polynomial of degree dT/t(0)e with positive coefficients depending
on f(x, t, 0), R(t), n, L and T . By Claim 1, a similar global estimate is true for all
derivatives of U .

Claim 3: For an arbitrarily fixed T > 0, a prospective representative u ∈ E(Π
T
)

of the solution U to problem (1) − (3) is moderate. We consider all initial and bound-
ary data as elements of the corresponding Colombeau algebras (according to the as-
sumptions of the theorem). We choose representatives a, b, c, d and h of A, B,C, D
and H, respectively, with the properties required in the theorem. Let φ = ϕ ⊗ ϕ ∈
A0(R2). Consider a prospective representative u = u(φ, x, t) of U which is the classi-
cal smooth solution to problem (1) - (3) with initial data a(ϕ, x) and boundary data
b(ϕ, t), c(ϕ, t), d(φ, x, t), h(ϕ, t). Our goal is to show that u is moderate, i.e. that u ∈ E .
Let ε be small enough and φ ∈ AN with N chosen so large that the following conditions
are true:
a) The moderation property holds for a(ϕε, x) and h(ϕε, t).
b) The global-boundedness estimate (see Definition 1) holds for bij(ϕε, t) and cis(ϕε, t),

where 1 ≤ i ≤ n, k + 1 ≤ j ≤ n, 1 ≤ s ≤ k.
c) The local-γ-growth estimate (see Definition 2) holds for bij(ϕε, t), cis(ϕε, t) and

dim(φ, x, t), where 1 ≤ i, m ≤ n, 1 ≤ j ≤ k, k + 1 ≤ s ≤ n, with function γ
specified in assumption 7.
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Since q0 ≤ C1γ(ε) for sufficiently small ε, we can choose t(0) = 1
2C1γ(ε) < 1

2q0
. Taking

into account the inequality

2d2TC1γ(ε)e ≤ γ(ε)d2TC1γ(ε)e ≤ C0ε
−N0

for small enough ε, we now rewrite estimate (13) for the function uε = u(φε, x, t) as

max
(x,t)∈ΠT

1≤i≤n

|uε
i (x, t)| ≤ 2d2TC1γ(ε)eC2ε

−N
(
1 + C3ε

−N + C4ε
−N

) ≤ Cε−N1 .

By Claim 2, a similar estimate is true for all derivatives of uε
i (x, t). As T is an arbitrary

fixed positive real number, the existence part of the theorem follows.

The proof of the uniqueness part follows the same scheme. The only difference is
that now we consider problem (1) - (3) with respect to a solution with right hand sides
of (2) and (3) in N . Note that it is sufficient then to check negligibility at order zero
[7].

3. Case studies: existence and non-existence of delta waves

3.1 Existence of delta wave solutions. Under appropriate assumptions we wish to
prove that a generalized solution to the problem (1) - (3) in G(Π) admits an associated
distribution. To simplify notation we consider the case of a (2 × 2)-system (the same
results hold for (n× n)-systems of this kind). Namely,

(∂t + λ−(x, t)∂x)u1 = f1(x, t, u) = p1(x, t)g1(u)

(∂t + λ+(x, t)∂x)u2 = f2(x, t, u) = p2(x, t)g2(u)
(14)

u|t=0 = as(x) + ar(x) (15)

u1|x=L =
(
b1s(t) + b1r(t)

)
u1|x=−L +

(
c1s(t) + c1r(t)

)
u2|x=L + h1s(t) + h1r(t)

u2|x=−L =
(
b2s(t) + b2r(t)

)
u1|x=−L +

(
c2s(t) + c2r(t)

)
u2|x=L + h2s(t) + h2r(t)

(16)

where as(x) ∈ E ′(−L,L) has point support at finitely many points −L < x∗1 < x∗2 <
. . . < x∗m < L, bs, cs ∈ E ′(0,∞) have point support at points 0 < t∗1 < t∗2 < . . . < t∗l and
hs ∈ E ′(0,∞) have point support at points 0 < t∗∗1 < t∗∗2 < . . . < t∗∗q . This assumption
means that for every x∗i (1 ≤ i ≤ m) at least one of the functions a1s or a2s has its
singular support at x = x∗i ; for every t∗j (1 ≤ j ≤ l) at least one of the functions
b1s, b2s, c1s or c2s has the singular support at t = t∗j ; and for every t∗∗k (1 ≤ k ≤ q) at
least one of the functions h1s or h2s has its singular support at t = t∗∗k . Furthermore,
as, bs, cs, hs are sums of Dirac measures concentrated at various points. Moreover, we
suppose that λ− < 0 < λ+, the function ar ∈ C1[−L,L] is the regular part of the
initial conditions (15) and the functions br, cr, hr ∈ C1[0,∞] are the regular parts of the
boundary conditions (16). Besides, the functions λ and f are continuous with respect
to all their arguments, are C1 with respect to x, and λ is globally bounded in Π. We
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assume also that zero-order and first-order compatibility conditions between (15) and
(16) are satisfied:

a1r(L) = b1r(0)a1r(−L) + c1r(0)a2r(L) + h1r(0)

a2r(−L) = b2r(0)a1r(−L) + c2r(0)a2r(L) + h2r(0)

and
p1(L, 0)g1(ar(L))− λ−(L, 0)a′1r(L)

= b′1r(0)a1r(−L) + c′1r(0)a2r(L) + h′1r(0)

+ b1r(0)
[
p1(−L, 0)g1(ar(−L))− λ−(−L, 0)a′1r(−L)

]

+ c1r(0)
[
p2(L, 0)g2(ar(L))− λ+(L, 0)a′2r(L)

]

p2(−L, 0)g2(ar(−L))− λ+(−L, 0)a′2r(−L)

= b′2r(0)a1r(−L) + c′2r(0)a2r(L) + h′2r(0)

+ b2r(0)
[
p1(−L, 0)g1(ar(−L))− λ−(−L, 0)a′1r(−L)

]

+ c2r(0)
[
p2(L, 0)g2(ar(L))− λ+(L, 0)a′2r(L)

]
.

(17)

Denote by J∗ the set of all points (x∗i , 0), (−L, t∗j ), (L, t∗p) such that t = t∗j is a point of
support for bs(t) and t = t∗p is a point of support for cs(t); by J∗∗ the set of all points
(−L, t∗∗k ), (L, t∗∗n ) such that t = t∗∗k is a point of support for h2s(t) and t = t∗∗l is a point
of support for h1s(t). Let J = J∗ ∪ J∗∗. The union of the characteristic curves issuing
from all points of J∗ (respectively, J) and their “reflections” at the boundary ∂Π in the
direction of decreasing time up to t = 0 (respectively, in the direction of increasing time)
in accordance with (14) and (16) is denoted by I− (respectively, I+). The set I− will
keep track of the appearance of singularities issuing from points in J∗ \ ([−L,L]× {0})
and the set I+ describes the propagation of all singularities.

We denote by Iε
− (respectively, Iε

+) the union of all characteristic curves issuing from
the ε-neighborhoods of all points included in J∗ (respectively, J) and their “reflections”
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at the boundary ∂Π accordingly with (14) and (16). In a similar way we introduce

the sets I
(x∗i ,0)
+ , I

(−L,t∗j )

± , I
(L,t∗p)

± , I
(−L,t∗∗n )
+ , I

(L,t∗∗l )
+ the unions of all characteristic curves

issuing from the corresponding points of J , with positive resp. negative time orientation,
and their “reflections” at the boundary ∂Π. We denote by I

(x∗i ,0),ε
+ , and similarly for

the other sets, the neighborhoods of I
(x∗i ,0)
+ of “thickness” ε. Let I = I− ∪ I+. Observe

that I = ∩ε>0I
ε. So, for any T > 0 the domain ΠT is divided by I into finitely many

disjoint subdomains Πi, i.e. Π \ I = ∪iΠi.
Our aim is to show that a delta wave, if it exists, splits up into the sum v + w of

a regular part w and a singular part v. The function w is a classical solution to the
nonlinear problem

(∂t + λ(x, t)∂x)w = f(x, t, w) (18)

w|t=0 = ar(x) (19)

w1|x=L = b1r(t)w1|x=−L + c1r(t)w2|x=L + h1r(t)

w2|x=−L = b2r(t)w1|x=−L + c2r(t)w2|x=L + h2r(t).
(20)

The function v is equal to limε→0 vε in D′(Π), where vε for every ε > 0 is the classical
solution to the linear problem

(∂t + λ(x, t)∂x)vε = fε(x, t, w) (21)

vε|t=0 = aε
s(x) + aε

r(x) (22)

vε
1|x=L =

(
bε
1s(t) + bε

1r(t)
)
vε
1|x=−L +

(
cε
1s(t) + cε

1r(t)
)
vε
2|x=L + hε

1s(t) + hε
1r(t)

vε
2|x=−L =

(
bε
2s(t) + bε

2r(t)
)
vε
1|x=−L +

(
cε
2s(t) + cε

2r(t)
)
vε
2|x=L + hε

2s(t) + hε
2r(t)

(23)

where
fε

i (x, t, w) = pε
i (x, t)gi(w)

and
aε

s = as ∗ ϕε, bε
s = bs ∗ ϕε, cε

s = cs ∗ ϕε, hε
s = hs ∗ ϕε.

Here {ϕε}ε>0 is a model delta net, i.e.

ϕε(x) = 1
εϕ

(
x
ε

)

where ϕ is an arbitrarily fixed function of D(R) with
∫

ϕ(x) = 1. The functions
aε

r, b
ε
r, c

ε
r, h

ε
r and pε are defined as follows. Suppose that

(ι) When restricted to ∂Π, each pair of the sets I
(x∗i ,0)
+ and I

(−L,t∗j )

− , I
(x∗i ,0)
+ and I

(L,t∗p)

− ,

I
(−L,t∗j )

+ and I
(L,t∗p)

− (if t∗j < t∗p), I
(−L,t∗j )

− and I
(L,t∗p)

+ (if t∗j > t∗p) do not intersect.

In particular, this means that propagating singularities do not hit the singularity points
at the boundary (to avoid multiplication of delta distributions there). As a consequence,

there exists ε0 such that condition (ι) holds true for the sets I
(x∗i ,0),ε
+ , I

(−L,t∗j ),ε

± , I
(L,t∗p),ε

±
for all ε < ε0. For the rest of this section we assume ε < 1

2ε0. We consider the set
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Iε
− ∩ ([−L,L]×{0}) consisting of a finite number of intervals with centers (x̄i, 0) (x̄1 <

x̄2 < . . . < x̄N1) and of lengths 2ε̃i(ε, λ) (1 ≤ i ≤ N1), respectively; similarly Iε ∩
(∂ΠT \ ([−L, L] × {0})) consists of a finite number of intervals with centers (−L, t̄j)
and/or (L, t̄j) (t̄1 < t̄2 < . . . < t̄N2) and of lengths 2εj(ε, λ) (1 ≤ j ≤ N2), respectively.
It is clear that ε̃i(ε, λ) = ε if x̄i = x∗i , that εj(ε, λ) = ε if t̄j = t∗j or t̄j = t∗∗j , and that
ε̃i and εj depends on ε and λ. Furthermore, ε̃i → 0 and εj → 0 as ε → 0. Suppose
that t̄1 > 0, x̄1 > −L, x̄N1 < L and choose ε so small that t̄1 − ε1 > 0, x̄1 − ε̃1 >
−L, x̄N1 + ε̃N1 < L.

We choose aε
r and hε

r with the properties

aε
r ∈ C1[−L,L]

aε
r(x) = ar(x)

(
x ∈ [x̄i − ε̃i, x̄i + ε̃i]

)

0 ≤ aε
r(x) ≤ max

x1∈[x̄i−2ε̃i,x̄i+2ε̃i]
ar(x1)

(
x ∈ (x̄i − 2ε̃i, x̄i − ε̃i] ∪ [x̄i + ε̃i, x̄i + 2ε̃i)

)

aε
r(x) = 0

(
x /∈ [x̄i − 2ε̃i, x̄i + 2ε̃i]

)

and

hε
r ∈ C1[0, T ]

hε
r(t) = hr(t)

(
t ∈ [t̄j − εj , t̄j + εj ]

)

0 ≤ hε
r(t) ≤ max

t1∈[t̄j−2εj ,t̄j+2εj ]
hr(t1)

(
t ∈ (t̄j − 2εj , t̄j − εj ] ∪ [t̄j + εj , t̄j + 2εj)

)

hε
r(t) = 0

(
t /∈ [t̄j − 2εj , t̄j + 2εj ]

)
.

In a similar way we define bε
r and cε

r. Then we choose pε with the properties

pε ∈ C1,0
x,t (Π

T
)

pε(x, t) = p(x, t)
(
(x, t) ∈ Īε

−
)

0 ≤ pε(x, t) ≤ max
(x1,t1)∈Ī2ε

−
p(x1, t1)

(
(x, t) ∈ I2ε

− \ Iε
−

)

pε(x, t) = 0
(
(x, t) /∈ I2ε

−
)
.

Problem (21) - (23) can be expressed in an equivalent integral form. Namely, in the
domain

Π0 =
{

(x, t)
∣∣∣ ω2(t;−L, 0) < x < ω1(t; L, 0) and 0 ≤ t < T0

}

system (21) - (23) is equivalent to

vε(x, t) = aε
s(ω(0; x, t)) + aε

r(ω(0; x, t)) +
∫ t

0

fε(ω(τ ; x, t), τ, w) dτ, (24)

in the domain

Π1 =
{

(x, t)
∣∣∣ω2(T0;−L, 0) < x < L and ω̃1(x;L, 0) ≤ t < ω̃2(x;−L, 0)

}
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provided ω̃2(L;−L, 0) ≤ ω̃1(−L; L, 0) it is equivalent to

vε
1(x, t) =

[(
bε
1s(t) + bε

1r(t)
)(

aε
1s(ω1(0;−L, t))

+ aε
1r

(
ω1(0;−L, t)

)
+

∫ t

0

fε
1

(
ω1(τ ;−L, t), τ, w

)
dτ

)

+
(
cε
1s(t) + cε

1r(t)
)(

aε
2s(ω2(0; L, t)) + aε

2r(ω2(0; L, t))

+
∫ t

0

fε
2

(
ω1(τ ;L, t), τ, w

)
dτ

)
+ hε

1r(t) + hε
1s(t)

]∣∣∣∣
t=t1(x,t)

+
∫ t

t1(x,t)

fε
1

(
ω1(τ ; x, t), τ, w

)
dτ

vε
2(x, t) = aε

2s(ω2(0; x, t)) + aε
2r(ω2(0;x, t)) +

∫ t

0

fε
2 (ω2(τ ; x, t), τ, w) dτ

(25)

where T0 is the unique solution to the functional equation ω2(T0;−L, 0) = ω1(T0; L, 0)
and ω̃i(x;x0, t0) is the unique solution to the Cauchy problem

dt
dx = 1

λi(x,t(x))

t(x0) = t0

}
.

In general, in ΠT we have

vε
i (x, t) = (Riv

ε)(x, t) +
∫ t

ti(x,t)

fε
i (ωi(τ ;x, t), τ, w) dτ (26)

where

(Riv
ε)(x, t) =

{
aε

is(ωi(0; x, t)) + aε
ir(ωi(0; x, t)) if ti(x, t) = 0[

(bε
is + bε

ir)v
ε
1(−L, t) + (cε

is + cε
ir)v

ε
2(L, t) + hε

ir + hε
is

]∣∣
t=ti(x,t)

if ti(x, t) > 0.
(27)

The initial and boundary conditions of problems (18) - (20) and (21) - (23) are com-
patible by condition (17) and by our assumptions on ε, respectively. ¿From the proof
of Theorem 3 (Section 2) we immediately obtain existence and uniqueness of solutions
w ∈ C1(Π

T
) and vε ∈ C1(Π

T
) for any fixed ε > 0 and T > 0.

Let uε be the classical solution to the problem

(∂t + λ(x, t)∂x)uε = f(x, t, uε) (28)

uε|t=0 = aε
s(x) + ar(x) (29)

uε
1|x=L =

(
bε
1s(t) + b1r(t)

)
uε

1|x=−L +
(
cε
1s(t) + c1r(t)

)
uε

2|x=L + hε
1s(t) + h1r(t)

uε
2|x=−L =

(
bε
2s(t) + b2r(t)

)
uε

1|x=−L +
(
cε
2s(t) + c2r(t)

)
uε

2|x=L + hε
2s(t) + h2r(t).

(30)

By (17) we have zero-order and first-order compatibility of (29) and (39).
To prove the main result of this section we need the following lemma.
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Lemma 4. Assume that condition (ι) is satisfied, and the functions g and grad g
are globally bounded. Then uε− vε−w when restricted to ∂Π tends to 0 in L1

loc(∂Π) as
ε → 0.

Proof. The proof of the lemma consists of 5 steps. In what follows T is arbitrary
positive real. Let ∂ΠT = ∂Π ∩Π

T
.

Claim 1: The functions vε are bounded on ΠT \ Iε, uniformly in ε. Since ΠT \ Īε =
∪jΠε

j , where Πε
j = (Πj \ Īε) ∩ ΠT , it will be sufficient to show that vε is bounded on

every Π
ε

j uniformly in ε. This follows from (24) - (27) restricted to Π
ε

j , which causes
aε

s = bε
s = cε

s = 0 there. Formulas (24) - (27) include a finite number of integral terms,
each of which is bounded by (1 + ε)C0(λ)maxx,t,u |f | with a constant C0(λ) depending
only on λ. Indeed, for (x, t) ∈ Πε

j

vε
i = (Riv

ε)(x, t) +
∫

∆ε
i
(x,t)

fε
i (ωi(τ ; x, t), τ, w) dτ (31)

where

(Riv
ε)(x, t) =

{ [
bε
irv

ε
1(−L, t) + cε

ir(v
ε
2(L, t) + hε

ir

]∣∣
t=ti(x,t)

if ti(x, t) > 0
aε

ir(ωi(0; x, t)) if ti(x, t) = 0
(32)

and
∆ε

i (x, t) =
{
τ ∈ [0, t]

∣∣(ωi(τ ; x, t), τ) ∈ I2ε
}
. (33)

The integral summand in (31) is bounded by C0(λ)maxx,t,u |f | if ∆ε
i (x, t) = [ti(x, t), t],

and by εC0(λ)maxx,t,u |f | otherwise. Gronwall’s argument and boundedness of g give
the desired ε-uniform a priori estimate.

Claim 2: The functions uε−vε are bounded on ΠT \ Iε, uniformly in ε. The initial-
boundary value problem with respect to uε − vε can be obtained by using systems (21)
- (23) and (28) - (30) and expressed in the form

uε
i − vε

i = (Ri(uε − vε))(x, t)

+
∫ t

ti(x,t)

(
fi(ωi(τ ; x, t), τ, uε)− fε

i (ωi(τ ;x, t), τ, w)
)
dτ

(34)

where

(Ri(uε − vε))(x, t) =




a−ε
ir (ωi(0; x, t)) if ti(x, t) = 0

(bε
is + bε

ir)(u
ε
1 − vε

1)|x=−L + (cε
is + cε

ir)(u
ε
2 − vε

2)|x=L

+b−ε
ir (uε

1 − vε
1)|x=−L + c−ε

ir (uε
2 − vε

2)|x=L

+b−ε
ir vε

1|x=−L + c−ε
ir vε

2|x=L + h−ε
ir if ti(x, t) > 0

and
a−ε

r = ar − aε
r, b−ε

r = br − bε
r, c−ε

r = cr − cε
r, h−ε

r = hr − hε
r. (35)
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Following the idea of the 1-st step, we consider this problem on every Π
ε

j . Restricting
system (34) - (35) to Π

ε

j , we conclude that all summands with aε
s, b

ε
s, c

ε
s vanish. From

Claim 1 it follows that b−ε
ir vε

1|x=−L and c−ε
ir vε

2|x=L are bounded uniformly in ε. As in
Claim 1, the uniform a priori estimate follows.

Claim 3: For the functions uε − w on ΠT \ Iε
+ the estimate

|uε − w| ≤ εC(λ) (36)

with a constant C(λ) depending on λ holds. We consider a similar initial-boundary value
problem for uε −w as we did in Claim 2 for uε − vε. Restricting to ΠT \ Iε

+, we obtain

uε
i (x, t)− wi(x, t) = (Ri(uε − w))(x, t)

+
∫

[ti(x,t),t]\∆ε
i
(x,t)

pi(x, τ)Gi(x, τ) · (uε − w)
∣∣
x=ωi(τ ;x,t)

dτ

+
∫

∆ε
i
(x,t)

pi(x, τ)
(
gi(uε)− gi(w)

)∣∣
x=ωi(τ ;x,t)

dτ

(37)

where

(Ri(uε − w))(x, t)

=
{ [

bir(uε
1 − w1)|x=−L + cir(uε

2 − w2)|x=L

]∣∣
t=ti(x,t)

if ti(x, t) > 0
0 if ti(x, t) = 0

Gi(x, τ) =
∫ 1

0

∇gi

(
σuε(x, τ) + (1− σ)w(x, τ)

)
dσ

∆ε
i (x, t) =

{
τ ∈ [0, t]

∣∣ (ωi(τ ;x, t), τ) ∈ Iε
+

}
.

(38)

In the right-hand side of (37) we used the mean value theorem for g. Observe that the
second integral in (37) is bounded by εC1(λ) maxx,t,u |f |. By Gronwall’s inequality we
easily obtain estimate (36).

Claim 4: The functions uε−vε are bounded on Iε∩(∂ΠT ), uniformly in ε. According
to condition (ι) we have bε

s = cε
s = 0 on I(x∗i ,0),ε. From this and the boundedness of g

we conclude that the claim is true for the set ∪i(I(x∗i ,0),ε ∩ ∂ΠT ).
Let us consider uε

1 − vε
1 on Iε

− ∩ ({−L} × [0, T ]) and uε
2 − vε

2 on Iε
− ∩ ({L} × [0, T ]).

Restricting (34) - (35) to Iε
− ∩ ∂ΠT , we obtain the system

uε
i (x, t)− vε

i (x, t) = (Ri(uε − vε))(x, t)

+
∫

[ti(x,t),t]\∆ε
i
(x,t)

pi(x, τ)Gi(x, τ) · (uε − w)
∣∣
x=ωi(τ ;x,t)

dτ

+
∫

∆ε
i
(x,t)

pi(x, τ)
(
gi(uε)− gi(w)

)∣∣
x=ωi(τ ;x,t)

dτ

(39)

where

(Ri(uε − vε))(x, t)

=
{ [

bir(uε
1 − vε

1)|x=−L + cir(uε
2 − vε

2)|x=L

]∣∣
t=ti(x,t)

if ti(x, t) > 0
0 if ti(x, t) = 0

(40)
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and ∆ε
i (x, t) is given by formula (38). To get the desired estimate∣∣uε(x, t)− vε(x, t)

∣∣ ≤ εC̃(λ) (41)

for all (x, t) ∈ Iε
− ∩ ∂ΠT , we use the upper bound εC1(λ) for the integrals on ∆ε

i (x, t)
and employ Claim 3 for the integrals on [ti(x, t), t] \∆ε

i (x, t).
It is obvious that for any fixed ϕ ∈ D(R) such that

∫
ϕ(x) = 1 we have

bε
s = O

(
1
ε

)
and cε

s = O
(

1
ε

)
. (42)

Estimating the right-hand side of the boundary conditions in (35) by (41) and (42) we
obtain Claim 4.

Claim 5: The function uε−vε−w → 0 when restricted to ∂Π tends to 0 in L1
loc(∂Π)

as ε → 0. We consider the function uε − vε −w on ∂ΠT for some T > 0. From systems
(19) - (20), (22) - (23) and (29) - (30) we obtain

(uε − vε − w)|t=0 = −aε
r (43)

(uε
1 − vε

1 − w1)|x=L = (bε
1s + bε

1r)(u
ε
1 − vε

1)|x=−L + (cε
1s + cε

1r)(u
ε
2 − vε

2)|x=L

+ b−ε
1r uε

1|x=−L + c−ε
1r uε

2|x=L + h−ε
1r

− (
b1rw1|x=−L + c1rw2|x=L + h1r

)

(uε
2 − vε

2 − w2)|x=−L = (bε
2s + bε

2r)(u
ε
1 − vε

1)|x=−L + (cε
2s + cε

2r)(u
ε
2 − vε

2)|x=L

+ b−ε
2r uε

1|x=−L + c−ε
2r uε

2|x=L + h−ε
2r

− (
b2rw1|x=−L + c2rw2|x=L + h2r

)
.

(44)

It is not difficult to show that the function uε(x, t)− vε(x, t)−w(x, t) converges to zero
pointwise on ∂ΠT \ I. Indeed, if (x, t) ∈ Π

T \ I and ε is sufficiently small, then

aε
s = bε

s = cε
s = hε

s = 0

aε
r = bε

r = cε
r = hε

r = 0

b−ε
r = br, c−ε

r = cr, h−ε
r = hr.

¿From Claim 3 it follows that uε(x, t) converges to the solution of problem (18) - (20)
pointwise in ΠT \ I.

Moreover, the function uε(x, t) − vε(x, t) − w(x, t) is bounded uniformly in ε in
∂ΠT . This fact follows from Claims 1, 2, 4 and boundedness of w(x, t). More precisely,
applying Claims 1, 2, 4 and the equalities

(uε
1 − vε

1)|x=L = (bε
1s + bε

1r)(u
ε
1 − vε

1)|x=−L + (cε
1s + cε

1r)(u
ε
2 − vε

2)|x=L

+ b−ε
1r (uε

1 − vε
1)|x=−L + c−ε

1r (uε
2 − vε

2)|x=L

+ b−ε
1r vε

1|x=−L + c−ε
1r vε

2|x=L + h−ε
1r

(uε
2 − vε

2)|x=−L = (bε
2s + bε

2r)(u
ε
1 − vε

1)|x=−L + (cε
2s + cε

2r)(u
ε
2 − vε

2)|x=L

+ b−ε
2r (uε

1 − vε
1)|x=−L + c−ε

2r (uε
2 − vε

2)|x=L

+ b−ε
2r vε

1|x=−L + c−ε
2r vε

2|x=L + h−ε
2r

we conclude that the functions

(bε
is + bε

ir)(u
ε
1 − vε

1)|x=−L + (cε
is + cε

ir)(u
ε
2 − vε

2)|x=L (i = 1, 2)

are uniformly bounded in ε. That b−ε
ir uε

1|x=−L and c−ε
ir uε

2|x=L are uniformly bounded
follows from Claims 1 and 2. Claim 5 follows
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Theorem 5. Assume that all conditions of Lemma 4 are satisfied. Then:
1. vε → v in D′(Π) as ε → 0.
2. vε(x, t) → 0 pointwise for (x, t) ∈ Π \ I as ε → 0.
3. uε − vε − w → 0 in L1

loc(Π) as ε → 0.
4. uε → v + w in D′(Π) as ε → 0.

Proof. To prove Claim 1 we use equations (23) - (25). Note that in these formu-
las the compositions of aε

r, b
ε
r, c

ε
r and fε with ω are in fact independent of ε near the

points where the boundary deltas sit and constitute continuous functions with respect
to t. The simplest terms appearing in the expressions for vε are continuous functions
(independent of ε) and nets converging to measures concentrated on I+ (corresponding
to the regularized deltas in the data). The boundary operator in equation (25) involves
also pull-backs by the C1 map (x, t) 7→ t1(x, t) and products thereof. The same is true
for the boundary operator terms in equation (26) in general. We remark only on the
convergence of the terms of the kind pull-back by t1 of α1 · αε

2, where α1 is continuous
and αε

2 → δt0 . Explicitly writing the action 〈α1 · αε
2(t1(x, t)), ψ(x, t)〉 on a test function

ψ as an integral and transforming variables (y, s) = (x, t1(x, t)), we easily obtain the
limit α1(t0)

∫
ψ(y, t2(y, t0)) dy, where t2(x, t1(x, t)) = t.

We observe that for any fixed (x0, t0) ∈ ΠT \ I and sufficiently small ε

(Riv
ε)(x0, t0) = 0.

Therefore
vε

i (x0, t0) =
∫

∆ε
i
(x0,t0)

fε
i (ωi(τ ; x0, t0), τ, w) dτ

where ∆ε
i (x, t) is defined by formula (33) and ∆i(x0, t0) 6= [ti(x0, t0), t0]. Thus

|vε(x, t)| ≤ εC0(λ)max
x,t,u

|f |.

This proves Claim 2.
To prove Claim 3, observe that the function uε(x, t)− vε(x, t)−w(x, t) is a solution

to the system of differential equations

(∂t + λ(x, t)∂x)(uε − vε − w)

= f(x, t, uε)− fε(x, t, w)− f(x, t, w)

= F (x, t) · (uε − vε − w) + f(x, t, uε)− f(x, t, uε − vε)− fε(x, t, w)

(45)

with initial conditions (43) and boundary conditions (44), where F (x, t) is the gradient
of f evaluated at an intermediate point. It is clear that the functions f(x, t, uε) −
f(x, t, uε − vε) and fε(x, t, w) are bounded uniformly in ε and converge to 0 pointwise
off I. Therefore these functions converge to 0 in L1

loc-norm. By Lemma 4 the same
conclusion holds true for the function uε(x, t)−vε(x, t)−w(x, t) on ∂ΠT . By Lebesgue’s
dominated theorem we conclude that uε− vε−w → 0 in L1(ΠT ) as ε → 0. This proves
Claim 3. Claim 4 follows from Claims 1 and 3 due to the embedding L1

loc(Π) ↪→ D′(Π)
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We conclude that in situation (14) - (16) a delta wave exists and splits up into a
sum of a regular part w and a singular part v as described in Theorem 5.

3.2 Non-existence of delta waves. We consider simple situations where the charac-
teristic flow is given by straight lines and all distributional data are Dirac measures at
single points.

Example 1 We consider a situation where a propagating delta singularity exactly
hits a Dirac measure at the boundary. This leads to a divergent distributional interaction
of the type δ2. It is described by the equation

(∂t − ∂x)u = 0

with initial value
u|t=0 = δx∗1

and boundary condition
u|x=L = δt∗1u|x=−L + h(t).

The characteristics are (ω(τ ; x, t), τ) = (x + t − τ, τ). The corresponding function of
“departure time” at the boundary for the characteristic to reach the point (x, t) is given
by

t1(x, t) = max(x + t− L, 0).

We regularize the appearing delta distributions by convolution with the mollifiers
ϕε(x) for the initial data and ψε(x) for the boundary data. The corresponding smooth
solution of the regularized initial boundary value problem is denoted by uε and is given
by

uε(x, t) =
{

ϕε(x + t− x∗1) if t1(x, t) = 0
ψε(x + t− L− t∗1)u

ε(−L, x + t− L) + h(x + t− L) if t1(x, t) > 0 (46)

We can compute uε explicitly in the domain

Π1 =
{

(x, t) ∈ Π
∣∣∣− L < x < L and L− x < t < 2L− x

}
,

i.e. where t1 > 0, in two steps. First,

uε(x, t) = ψε(x + t− L− t∗1)u
ε(−L, x + t− L) + h(x + t− L)

by the second case in equation (46). Since (−L, x + t−L) then lies on the boundary of
the domain

Π0 =
{

(x, t) ∈ Π
∣∣∣;−L < x < L and 0 < t < L− x},

where t1 = 0, we have

uε(−L, x + t− L) = ϕε((−L) + (x + t− L)− x∗1) = ϕε(x + t− 2L− x∗1).

Therefore uε is the sum of the ε-independent term h(x+ t−L) and the term ψε(x+ t−
L−t∗1)ϕε(x+t−2L−x∗1) which represents the product of measures concentrated on lines.
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If L + t∗1 6= 2L + x∗1, then on a fixed compact subset of Π1 the supports of the factors
will be separated for ε small enough and the product vanishes. If L + t∗1 = 2L + x∗1, we
show that no distributional limit exists.

Let χ be a test function on R2 and set a = L+ t∗1 = 2L+x∗1. We have to investigate
the convergence properties of

〈
ψε(x + t− a)ϕε(x + t− a), χ(x, t)

〉
=

∫
ψε(x + t− a)ϕε(x + t− a)χ(x, t) d(x, t)

as ε → 0. Upon the change of variables (z, s) = (x+t−a
ε , s) and using the definitions of

ϕε and ψε, we can rewrite this in the form

1
ε

∫
ψ(z)ϕ(z)χ(εz + a− s, s) d(z, s).

The absolute value of the integrand is dominated by the function

‖ψ‖L∞
(
|ϕ(z)| |χ(εz + a− s, s)− χ(a− s, s)|+ |ϕ(z)| |χ(a− s, s)|

)

which has compact support in a fixed compact set K independently of ε if ε is small.
Since |χ(εz + a− s, s)−χ(a− s, s)| → 0 uniformly on K if ε → 0, we can choose ε0 > 0
and estimate the integrand by the integrable function

‖ψ‖L∞
(
|ϕ(z)| |χ(ε0z + a− s, s)− χ(a− s, s)|+ |ϕ(z)| |χ(a− s, s)|

)
.

The pointwise limit of the integrand as ε → 0 is ψ(z)ϕ(z)χ(a − s, s), therefore by the
dominated convergence the above integral (without the factor 1

ε ) has the limit

∫
ψ(z)ϕ(z) dz

∫
χ(a− s, s) ds

as ε → 0. If ψ and φ are chosen so that the first integral is non-zero, then by the
unboundedness of 1

ε we conclude that
〈
ψε(x + t − a)ϕε(x + t − a), χ(x, t)

〉
does not

converge.

Example 2 A similar distributional divergence can be produced by a quadratic
(hence unbounded) right-hand side that eventually picks up a singularity from the
boundary conditions. We consider the equation

(∂t + ∂x)u1 = u2
2

(∂t − ∂x)u2 = 0

}

with initial values
u1|t=0 = 0

u2|t=0 = 1
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and boundary conditions

u2|x=L = (δt∗1 + 1) u2|x=−L

u1|x=−L = u2|x=L

where 0 < t∗1 < 2L. We regularize the delta distribution for the boundary data by
convolution with the mollifiers ϕε(x). It is easy to compute explicitly

uε
2(x, t) = ϕε(max{−t∗1, x + t− L− t∗1}) + 1

in the domain {
(x, t) ∈ Π

∣∣∣− L < x < L and 0 < t < 2L− x
}

and

uε
1(x, t) =

∫ t

0

(
ϕ2

ε(max{−t∗1, ξ(τ) + t− L− t∗1}) + 1
)∣∣

ξ(τ)=τ+x−t
dτ

in the domain {
(x, t) ∈ Π

∣∣∣− L < x < L and 0 < t < x + L
}

.

Obviously, if t > L + t∗1 − x, no distributional limit of uε
1(x, t) as ε → 0 exists.
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