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Wave Solutions to Reaction-Diffusion Systems
in Perforated Domains

S. Heinze

Abstract. Traveling waves in periodically perforated domains are shown to exist for large
classes of reaction-diffusion systems, provided the homogenized equation admits a non-degener-
ate traveling wave. This can be applied e.g. to a single equation with bistable non-linearity
and to bistable monotone systems. The proof uses the implicit function theorem of a suitably
transformed problem in the space H1. Furthermore, corrector-type estimates are given for the
wave profile and the wave velocity.
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1. Introduction

Front propagation occurs in many applied problems, such as chemical kinetics, com-
bustion, transport in porous media, and in biology. The basic phenomena can often
be described by reaction-diffusion advection equations. In homogeneous media front
propagation has been studied for a long time. However, the study of fronts in inhomo-
geneous media has begun more recently. Since heterogeneities occur in every natural
environment, understanding their influence on the location of fronts, on their profile,
and on their speed is of great importance. Also, for the description of moving interfaces
in the large space-time scaling limit, precise information on the wave speed is needed.
Since the normal velocity of the interface is equal to the speed of the wave in normal
direction, even the formulation of interface motion requires a priori knowledge about
the wave speed (compare [1]).

In the present paper we study a semilinear reaction-diffusion system in a periodically
perforated domain. We also mention that our methods apply equally well to systems
with rapidly oscillating coefficients. But since perforated domains have been much less
studied and are of the same importance, we concentrate on this case.

For ε > 0 consider for u(t, y) ∈ Rm the system

∂tu(t, y) = A∆u(t, y) + f(u(t, y))

∂νu(t, y) = 0

for t > 0, y ∈ Ωε

on ∂Ωε

(1.1)
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where A is a positive diagonal matrix. For the definition of Ωε let Ω be a connected
C2,α-domain in Rn. Let Ω be 1-periodic in each direction ei, where ei denotes the
standard unit vectors in Rn. Now define the ε-periodic set Ωε as Ωε = εΩ. We will
denote by ν the exterior normal vector. As an application of system (1.1) one might
think of a reacting medium with non-reacting inclusions. The non-linearity f(u) is of
class C2(Rm) and has two zeros at p 6= q. Our results will apply to so-called bistable
non-linearities. This and further assumptions on the non-linearity will be explained
below.

For the definition of a traveling front connecting p and q let k be a fixed unit vector
in Rn. The standard definition of a traveling wave has to be modified to account for
the discrete invariance of the domain. A traveling wave in direction k ∈ Rn (|k| = 1)
with velocity c 6= 0 is a solution of system (1.1) satisfying for all t, y

uε(t− ki
ε
c , y + εei) = uε(t, y) (1 ≤ i ≤ n)

uε(−∞, y) = p

uε(∞, y) = q

(1.2)

where ei denotes the standard basis in Rn.
By our method we can also handle the case of a periodically oscillating diffusion

matrix and drift term, i.e.

∂tuj = ∇(Aj(y
ε )∇uj) + 1

ε bj(y
ε )∇uj + fj(u) (1.3)

in Rn, where bj has zero divergence and zero mean value over one period cell.
There are several papers concerning the existence of traveling waves for (1.3). The

known results below are all restricted to a single equation, since they rely in one or the
other from on the maximum principle.

Existence results in cylindrical domains with coefficients depending only on the cross
section of the cylinder can be found in [2 - 4] for different kinds of non-linearities. For
the case of the whole Rn with oscillating diffusion coefficients and combustion-type non-
linearity see [8, 9]. For a bistable non-linearity and with a diffusion matrix close to a
constant existence is shown in [10]. It is known that for large deviations of the diffusion
matrix from a constant matrix no traveling waves can exist, due to the existence of
stationary solutions [11].

As far as we know, fronts in a perforated domain have not been studied previously.
Also, the study of fronts for systems in inhomogeneous media is new.

System (1.1) - (1.2) is a non-standard boundary value problem for a parabolic
equation. It can also be regarded as degenerate elliptic in n + 1 variables, since the
boundary condition in (1.2) is nowhere characteristic. We study system (1.1) - (1.2) for
small ε, i.e. close to the homogenization limit. Usually in homogenization problems one
proves existence for ε > 0 first and shows convergence to the homogenized equations
afterwards. This is quite difficult for the problem at hand due to the elliptic degeneracy,
the unboundedness of the domain and the unknown wave velocity. Going the other way
round seems easier and more natural. So, assuming the existence of a traveling wave
for the homogenized problem, which is in the case studied here an ordinary differential
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equation, the implicit function theorem will be used to obtain in an appropriate function
space a unique branch of traveling waves for small ε.

First we transform equation (1.1) with boundary condition (1.2) to a fixed domain.
Let

z = y
ε ∈ Ω and x = ky + ct + εχ(y

ε ) ∈ R (1.4)

where χ = χ(z) is the up to a constant unique periodic solution of the cell problem

∆zχ = 0

∂νχ + νk = 0

in Ω

on ∂Ω

}
. (1.5)

Since ∂Ω is of class C2,α, the solution χ is bounded in C2,α(Ω). In the new coordinates
problem (1.1) - (1.2) transform to

A∆εuε − c∂xuε + f(uε) = 0

∂νuε = 0

for x ∈ R, z ∈ Ω

for x ∈ R, z ∈ ∂Ω

}
(1.6)

and
uε is 1-periodic in each zi

uε(−∞, z) = p, uε(∞, z) = q
(1.7)

where
∆ε = ∇ε∇ε = 1

ε2 ∆z + 2
ε (k +∇zχ)∇z∂x + |k +∇zχ|2∂xx

∇ε = 1
ε∇z + (k +∇zχ)∂x.

(1.8)

Observe that in (1.6) ν(k +∇zχ) = 0 and in (1.8) ∆zχ = 0 is used.

For the application of the implicit function theorem we will consider problem (1.6)
- (1.7) also for negative ε. The term εχ(z) in (1.4) is crucial for our approach. It
accounts for the first order approximation, such that solutions of problem (1.6) - (1.7)
will converge in H1 strongly as ε → 0. Without this term convergence takes place at
best in L2 only. But in this space the non-linearity is not differentiable making the use
of the implicit function theorem impossible.

By periodicity it is enough to restrict (1.6) to z ∈ D = Ω ∩ [0, 1]n, considered as a
subset of the flat torus.

The homogenized system for traveling waves, i.e. the limit problem of (1.6) - (1.7)
for ε → 0 has the form

Ahu′′ − cu′ + f(u) = 0 in R
u(−∞) = p

u(∞) = q





(1.9)

which will be justified in Lemma 2. The homogenized diffusion matrix Ah is computed
as follows. With χ(z) as above we define

Ah = A−
∫

D

|k +∇zχ|2 = A−A−
∫

D

|∇zχ|2 (1.10)
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where the integral denotes the average. The last equality follows from (1.5) and partial
integration. It implies 0 < Ah < A as matrices.

Let H be the linearization of (1.9) at (u, c) = (u0, c0), given by

Hv = Ahv′′ − c0v′ + Duf(u0)v for v ∈ H2(R). (1.11)

Throughout the paper the crucial assumptions will be made that the homogenized
problem (1.9) admits a solution (u0, c0) such that:

(A1) u0 approaches p and q exponentially as x → ±∞.
(A2) The range of H is closed in L2(R).
(A3) H and and its adjoint H∗ have an algebraically simple eigenvalue 0.
(A4) c0 6= 0.
(A5) The nonlinearity f is in C2(Rm,Rm) and satisfies the dissipativity condition

uifi(u) < 0 for |ui| > M. (1.12)

We now comment on these assumptions. From (A1) it follows that u0′ and u0′′

decay exponentially at ±∞. This is always fulfilled if (u, u′) = (p, 0) and (u, u′) = (q, 0)
are hyperbolic rest states of system (1.9), which is a generic assumption. Conditions
(A2) and (A3) are difficult to verify for systems. Condition (A3) implies that the kernel
of A is spanned by u′0(x).

The last point allows to modify f(u) such that Duf(u) and Duuf(u) are uniformly
bounded for all u ∈ Rm preserving condition (A5). This modification will be needed
for the differentiability of the mapping u 7→ f(u) in Sobolev spaces. Actually, we
will construct C2-solutions of system (1.6) for this modified non-linearity. The maxi-
mum principle applied to the i-th equation in (1.6) gives |ui|∞ < M for the modified
non-linearity. Hence we have a solution of the original problem. In the sequel this
modification will always be assumed. Observe that (A1) - (A4) are just assumptions on
the homogenized system (1.9), which is much easier to study than system (1.6) - (1.7).

In Chapter 4 it will be shown that all assumptions are satisfied for a single equation
with cubic-like non-linearity and so-called monotone bistable systems. They are not sat-
isfied, if there exists a continuum of wave velocities, as for Fischer-type non-linearities.
In this case one might try a Lyapunov-Schmidt reduction in order to obtain a continuum
of waves. The case of a standing wave, i.e. c0 = 0 has to be treated differently and will
not be considered here. By changing x to −x one can always achieve c0 > 0.

Now preparations for the existence theorem will be given and its proof will be
outlined. If not otherwise indicated L2 means L2(R×D) with norm | · |2 and H1 means
H1(R×D) with norm | · |1,2. We decompose u as

u(x, z) = u0(x) + v(x, z)

with v ∈ L2. Now fix α > 0 and define for c > 0 and ε 6= 0

Lc,εv = A∆εv − cvx − αv (1.13)
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with domain

D(Lc,ε) =
{

v ∈ H1
∣∣∣ ∇ε

i∇ε
jv ∈ L2 and ∂νv = 0 on R× ∂D

}
. (1.14)

Similarly, define for ε = 0
Lc,0v = Ahvxx − cvx − αv (1.15)

with domain
D(Lc,0) = H2(R). (1.16)

The introduction of α > 0 avoids the zero in the spectrum of the operators above. In
Lemma 2.1 it will be shown that Lc,ε is invertible for all ε. In Lemma 2.2 it will be
proven that for w ∈ L2

lim
ε→0

L−1
c,εw = L−1

c,0 −
∫

D

w

holds in H1. This is the convergence of the resolvents in the homogenization limit. One
calculates for ε 6= 0

Lc,εu
0 = |k +∇zχ|2A∂xxu0 − c∂xu0 − αu0.

For ε 6= 0 rewrite (1.6) - (1.7) as an equation for v. Using (1.9) we get

Lc,εv = −|k +∇zχ|2A∂xxu0 + c∂xu0 − f(u0 + v)− αv

and define Kc(v) as the right-hand side. Consider Kc(v) as a map from H1 to L2. Since
f and Duf are bounded, Kc will be of class C1 (see [7]). Thus consider G(v, c, ε) =
(G1, G2)(v, c, ε) for any c ∈ R and v ∈ H1 where

G1(v, c, ε) = v − L−1
c,εKc(v) (ε 6= 0) (1.17)

G1(v, c, 0) = v − L−1
c,0 −

∫

D

Kc(v) (1.18)

G2(v, c, ε) =
∫

R−×D

(
(u0 − p + v)2 − (u0 − p)2

) ∀ ε. (1.19)

The second component of G will fix the shift in x. For fixed ε the operator G maps
H1×R into itself. In Lemma 2.3 it is shown that G(v, c, ε) is differentiable in (v, c) and
D(v,c)G(v, c, ε) is continuous at (v, c, ε) = (0, c0, 0). The invertibility of D(v,c)G(0, c0, 0)
is proven in Lemma 2.4, provided the main assumptions (A1) - (A5) hold. Thus the
implicit function theorem implies the existence of a unique local branch in H1 × R of
zeros (vε, cε) of G(v, c, ε). Since L−1

c,ε actually maps into D(Lc,ε) it follows that vε is a
weak solution of problem (1.2). Regularity theory implies that vε is a classical solution
of problem (1.2). This gives the following main result:

Theorem 1.1. Under assumption (A1) - (A5), for |ε| < ε0 there exists a unique
branch of classical solutions (uε, cε) of problem (1.6) − (1.7) such that cε → c0 and
uε − u0 → 0 in H1(R×D) as ε → 0.

In Chapter 2 the existence proof of the theorem will be given in detail. In Chapter 3
the following error estimates for the wave profile and the wave velocity will be derived.
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Theorem 1.2. Let (uε, cε) be the unique solution branch given in Theorem 1.1.
Assume that the non-linearity is in C2. Then the estimates

|uε − u0|L2(R×D) ≤ Mε2 (1.20)

|∂x(uε − u0)|L2(R×D) ≤ Mε2 (1.21)

|∇z(uε − u0)|L2(R×D) ≤ Mε3 (1.22)

|cε − c0| ≤ Mε2 (1.23)

hold for some constant M independent of ε < ε0.

The estimates are of second order by our choice of the coordinate transformation
(1.4). For the scalar case and monotone systems all the assumptions (A1) - (A5) will
be verified in Chapter 4.

2. Proof of existence

In a series of lemmas all the requirements for the application of the implicit function
theorem will be verified. At first, in order to set up an equation in H1, the existence of
L−1

c,ε is needed. In order to simplify the notation in this chapter the diffusion matrix A
is assumed to be the identity.

Lemma 2.1. The operators

Lc,0 : D(Lc,0) → L2(R)

Lc,ε : D(Lc,ε) → L2(R×D) (ε 6= 0)

are invertible for all c > 0 and α > 0. There is a constant M independent of ε such
that

|L−1
c,εg|1,2 ≤ M |g|2 (2.1)

holds.

Proof. Consider only the case ε 6= 0, since the case ε = 0 is simpler. Let v be in
the kernel of Lc,ε. Taking v as a test function in Lc,εv = 0 we get

∫

R×D

(|∇εv|2 + αv2) = 0.

Hence v = 0. It is easy to see that the adjoint L∗c,ε of Lc,ε is the same as Lc,ε, except
c has to be replaced by −c. The same calculation as above shows that the kernel of
L∗c,ε is zero. It remains to show that the graph of Lc,ε and the range R(Lc,ε) are closed.
The first property will be obtained as a byproduct of the proof of the second. Let
Lc,εvn = gn ∈ R(Lc,ε) such that the right-hand side has a limit g ∈ L2. Testing with
vn gives ∫

R×D

(|∇εvn|2 + αv2
n) =

∫

R×D

gnvn
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and hence ∫

R×D

(|∇εvn|2 + α
2 v2

n) ≤ 1
2α

∫

R×D

g2
n. (2.2)

Now let
Dhvn =

1
2h

(
vn(x + h, z)− vn(x− h, z)

) ∈ H1

denote the symmetric difference quotient in x-direction and use it as a test function in
(1.6) to obtain

∫

R×D

(∇εDhvn∇εvn + cDhvn∂xvn + αDhvnvn

)
= −

∫

R×D

gnDhvn.

The first and third term on the left vanish after a shift in x. Difference quotients of
H1-functions converge weakly in L2 to the derivative as h → 0. Hence one concludes

c

∫

R×D

|∂xvn|2 = −
∫

R×D

gn∂xvn (2.3)

|∂xvn|22 ≤ 1
c2 |gn|22. (2.4)

Adding (2.2) and (2.4) implies the uniform L2-estimates for ∇zvn

|∇zvn|2 ≤ ε

(
1√
2α

+
|k +∇zχ|∞

c

)
|gn|2 (2.5)

for ∇zvn. Hence we may extract a subsequence of vn such that vn ⇁ v weakly in
H1. Thus we can pass to the limit in the weak formulation of Lc,εvn = gn and obtain
Lc,εv = g weakly in H1. Since N(Lc,ε) is trivial, the limit v is unique and the whole
sequence converges.

It remains to show that v ∈ D(Lc,ε). For obtaining L2-estimates of ∇ε
i∇ε

jv one
proceeds as usual in regularity theory (see [6: Theorems 8.8 and 8.12]). Omitting
details, only modifications are indicated. For w ∈ H1(R×D) such that the support of
w has a positive distance to R× ∂D, let

Dh
i w(x, z) =

1
hε

(
w

(
x + εhki + εχ(z + hei)− εχ(z), z + hei

)− w(x, z)
)

denote the difference quotient corresponding to ∇ε
i w. Now use D−h

j w for w = η2D+h
i v,

with η ∈ C1
0 (D), as a test function in (1.6). In this way L2(R×D′)-bounds for ∇ε

i∇ε
jv

are obtained for any D′ ⊂ D which has a positive distance to ∂D. Near the boundary
∂D the estimates are more conveniently derived in the original coordinates (t, y), using
the standard procedure of straightening the boundary. Therefore, ∇ε

i∇ε
jv ∈ L2 holds.

Furthermore, this implies that the boundary condition ν∇zv = ν∇εv = 0 on R× ∂D is
preserved for the limit v. Thus v ∈ D(Lc,ε) and R(Lc,ε) is closed. The above calculations
also prove (2.1)

The next lemma essentially shows the validity of the homogenization limit.
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Lemma 2.2. Let c > 0 and α > 0. Then:
(i) In H1, L−1

c,εg → L−1
c,0 −

∫
D

g holds for all g ∈ L2 as ε → 0.

(ii) G : H1 × R+ × R→ H1 × R is continuous.

Proof. Estimates (2.2), (2.4) and (2.5) in Lemma 2.1 show that, as ε → 0, vε =
L−1

c,εg converges for a subsequence strongly in L2
loc and weakly in H1 to some v0 and

∇zv
0 = 0 holds. Now take φ ∈ H1(R) as a test function in (1.6). Then

∫

R×D

(
∂xφ(∇zχ + k)

(
1
ε∇zv

ε + (∇zχ + k)∂xvε
)

+ cφ∂xvε + αφvε
)

= −
∫

R×D

φg.

The term with 1
ε vanishes after partial integration, by the definition (1.5) of χ. Hence

the limit v0 satisfies
∫

R×D

(
∂xφ|∇zχ + k|2∂xv0 + cφ∂xv0 + αφv0

)
= −

∫

R×D

φg.

Thus, by the definition of Ah in (1.10), Lc,0v
0 = −∫

D
g holds weakly and v0 ∈ H2 follows.

In order to prove strong convergence in H1 let ṽε = vε − v0 and calculate

Lc,εṽ
ε = g −−

∫

D

g + (Ah − |∇zχ + k|2)v0
xx =: a.

Observe that a has zero mean value with respect to the z-variable. Now define

ṽε(x) = −
∫

D

ṽε(x, z)dz.

Testing (1.6) with ṽε and using the Poincare inequality and estimate (2.5) gives
∫

R×D

(|∇εṽε|2 + α|ṽε|2) = −
∫

R×D

a(ṽε − ṽε) ≤ M1|a|L2 |∇z ṽ
ε|L2 ≤ M2ε.

Hence vε → v0 and ∇zv
ε → 0 strongly in L2. Now use (2.3) for vε and v0 and the weak

convergence in H1 to conclude

c

∫

R×D

|∂xvε|2 =
∫

R×D

g∂xvε →
∫

R×D

gv0
x = c

∫

R×D

|v0
x|2,

i.e. the H1-norm converges. Together with the weak convergence this implies the strong
convergence in H1, proving assertion (i).

The continuity of G1 at ε = 0 follows easily from assertion (i), since the non-
linearity f maps H1 continuously into L2. The continuity of G1(v, c, ε) for ε 6= 0 is
proved similarly, but simpler, as above. At last, the continuity of G2 is obvious

Next the Fréchet differentiability of G(v, c, ε) with respect to (v, c) will be proven.
Remark that Lemma 2.2 only implies the continuity of the Gâteaux derivatives as ε → 0.
At (v, c, ε) = (0, c0, 0) higher regularity properties of u0 will be used to prove the
continuity of D(v,c)G(v, c, ε) at (0, c0, ε). This will suffice for the application of the
implicit function theorem.
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Lemma 2.3. If the solution u0 of system (1.6)− (1.7) and the non-linearity f are
of C2(Rm,Rm)-type, then for fixed ε ∈ R the operator G(v, c, ε) is Fréchet differentiable
with respect to (v, c) ∈ H1(R×D)× R+ and D(v,c)G(v, c, ε) is continuous at (0, c0, 0).

Proof. Since f and Duf are bounded, the mapping f is continuously Fréchet dif-
ferentiable from H1 to L2 (see [7]). The operators L−1

c,ε and L−1
c,0 −

∫
D

map L2 into H1.
Hence for fixed ε ∈ R the operator G(v, c, ε) is continuously Fréchet differentiable from
H1 × R+ to H1 × R with derivative

D(v,c)G(v, c, ε)
(v

c̃

)
=

(
ṽ − L−1

c,ε

(
DvKc(v)ṽ + c̃∂x(L−1

c,εKc(v) + u0)
)

2
∫
R−×D

(u0 + v − p)ṽ

)
(2.6)

for ε 6= 0 and

D(v,c)G(v, c, 0)
( ṽ

c̃

)
=

(
ṽ − L−1

c,0

(−∫
D

DvKc(v)ṽ + c̃∂x

(
L−1

c,0 −
∫

D
Kc(v) + u0

))

2
∫
R−×D

(u0 + v − p)ṽ

)
(2.7)

with v, ṽ ∈ H1 and DvKc(v)ṽ = −(Duf(u0+v)+α)ṽ. Observe that the first components
in (2.6) - (2.7) make sense since ∂xL−1

c,εKc(v) ∈ L2 and ∂xL−1
c,0 −

∫
D

Kc(v) ∈ L2(R). We
have used the identities DcL

−1
c,ε = L−1

c,ε∂xL−1
c,ε and DcKc = ∂xu0. In particular, at

(v, c, ε) = (0, c0, 0) we obtain, using G(0, c0, 0) = 0, that

M
( ṽ

c̃

)
:= D(v,c)G(0, c0, 0)

( ṽ

c̃

)
=

(
ṽ − L−1

c0,0

(−∫
D

DvKc0(0)ṽ + c̃∂xu0
)

2
∫
R−×D

(u0 − p)ṽ

)
(2.8)

holds.
In order to prove continuity at (0, c0, 0) consider first the case c̃ = 0 in (2.6) - (2.7).

Lemma 2.2 implies that DvG1(v, c, ε)ṽ → DvG1(v, c, 0)ṽ in H1, but gives no uniform
convergence in ṽ as ε → 0. Uniform convergence will now be proven as (v, c, ε) →
(0, c0, 0). For this define

wε = L−1
c,εDvKc(v)ṽ and w0 = L−1

c0,0−
∫

D

DvKc0(0)ṽ

for ε 6= 0. Let w = wε − w0 and calculate

Lc,εw = a + b (2.9)

with
a =

(
Ah − |∇zχ + k|2)w0

xx −
(
Duf(u0) + α

)
ṽ +−

∫

D

(
Duf(u0) + α

)
ṽ

b = −(
Duf(u0 + v)−Duf(u0)

)
ṽ + (c0 − c)∂xw0.

The definition of w0 is equivalent to

Ahw0
xx − c0w0

x − αw0 = −−
∫

D

(
Duf(u0) + α

)
ṽ.
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Since f ∈ C2(R), u0 ∈ H3(R) ∩ C3(R) and ṽ ∈ H1 one concludes that ∂
(3)
x w0 ∈ L2

and hence a, ∂xa ∈ L2. This fails, if one tries to prove continuity of DvG1 in a full
neighborhood of (v, c, ε) = (0, c0, 0). Furthermore, a and ∂xa have zero mean with
respect to D. Since f is continuously differentiable from H1 to L2 and L−1

c,0 is bounded
from L2 to H1, it follows |w0

x|2 ≤ M |ṽ|1,2 and |b|2 ≤ η|ṽ|1,2 where η → 0 as |v|1,2 → 0
and c → c0. Testing (2.9) with w and using the Poincare inequality with constant γ
yields

|∇εw|22 + α
2 |w|22 ≤ γ|a|2|∇zw|2 + 1

2α |b|22. (2.10)

Estimate (2.3) gives, using again the Poincare inequality,

c
2 |∂xw|22 ≤ γ|∂xa|2|∇zw|2 + 1

2c |b|22. (2.11)

Adding suitable multiples of (2.10) and (2.11) implies

1
2ε2 |∇zw|22 ≤ γ

(|a|2 + 2
c |∂xa|2

)|∇zw|2 +
(

1
c2 + 1

2α

)|b|22. (2.12)

Hence |∇zw|2 is small, if |v|1,2, c− c0 and ε are small. Now (2.11) and (2.12) imply the
same for |w|2 and |∂xw|2. This holds uniformly for |ṽ|1,2 ≤ 1, proving the continuity of
DvG1(v, c, ε) at (0, c0, 0).

Now let ṽ = 0 in (2.6) - (2.7). For all ε 6= 0,

DcG1(v, c, ε) = L−1
c,ε ◦ ∂x ◦ L−1

c,εKc(v)− L−1
c,εu0′

DcG1(v, c, 0) = L−1
c,0 ◦ ∂x ◦ L−1

c,0 −
∫

D

Kc(v)− L−1
c,0u

0′

holds. Lemma 2.2 implies that L−1
c,εKc(v) converges in H1 to L−1

c,0 −
∫

D
Kc(v). Therefore,

∂xL−1
c,εKc(v) converges in L2 to ∂xL−1

c,0 −
∫

D
Kc(v). Lemma 2.2 implies then the continuity

of DcG1(v, c, ε) as ε → 0. The second components of D(v,c)G in (2.6) - (2.7) are
obviously continuous. This completes the proof of the lemma

It remains to show that M = D(v,c)G(0, c0, 0) defined in (2.8) is invertible.

Lemma 2.4. If assumptions (A1) - (A5) are satisfied, then the operator M is
invertible as a map from H1 × R into itself.

Proof. At first let us prov that M has a closed range R(M). For this let

M(ṽn, c̃n) = (g̃n, d̃n) → (g̃, d̃) in H1,2 × R

and let vn = ṽn−g̃n. Then (2.8) implies vn ∈ D(Lc0,0). Furthermore, with the definition
of H in (1.11),

Hvn = Lc0,0vn + (Duf(u0) + α)vn = −−
∫

D

(Duf(u0) + α)g̃n + c̃nu0′ =: gn

holds. Testing with 0 6= w ∈ N(H∗) implies

c̃n

∫

R×D

wu0′ =
∫

R×D

w(Duf(u0) + α)g̃n.
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The left-hand side is non-zero, since zero is an algebraically simple eigenvalue of H, by
condition (A3). Therefore, c̃n converges to some c̃. Furthermore, gn converges in L2(R)
to some g. Using the closedness of R(H), from condition (A2) it follows that Hv = g for
some v ∈ H2(R), which is unique up to adding a multiple of u0′. Let ṽ = v + γu0′ + g,
where γ is chosen such that

2
∫

R−×D

(u0 − p)v = d̃.

It is easy to check that M(ṽ, c̃) = (g̃, d̃) and that R(M) is closed.

Now suppose that M(ṽ, c̃) = 0. From (2.8) ∇z ṽ = 0 follows since L−1
c0,0 maps into

D(Lc0,0) = H2(R). Furthermore,

Lc0,0ṽ + αṽ + Duf(u0)ṽ = c̃u0′.

Observe that the left-hand side is just the linearization H at the homogenized wave
solution. The eigenvalue zero is algebraically simple by condition (A3). This implies
c̃ = 0 and ṽ = γu0′. Now (2.8) implies

0 = 2γ

∫

R−×D

(u0 − p)u0′ = γ(u0(0)− p)2.

Using the assumption u0(0) 6= p we get γ = 0. Hence M has a trivial kernel. The adjoint
of the operator M is given by

M∗
( ṽ

c̃

)
=

(
ṽ + (DufT (u0) + α)L∗−1

c0,0 −
∫

D
ṽ + 2c̃(u0 − p)χR−

− ∫
R u0′L∗−1

c0,0 −
∫

D
ṽ

)
(2.13)

where χR− is the characteristic function of R−. If (ṽ, c̃) is in the kernel of M∗, then the
first equation in (2.13) implies ∇z ṽ = 0 since L∗−1

c0,0 maps into D(L∗c0,0) = H2(R). Using
v = L∗−1

c0,0 ṽ gives

L∗c0,0v + (Duf(u0)T + α)v = −2c̃(u0 − p)χR− .

The left-hand side is the adjoint H∗ of the linearization of (1.9) at (u0, c0). Testing with
u0′ which is in the kernel N(H) of H gives 0 = c̃(u0(0)− p)2 and therefor c̃ = 0. Thus
v is in N(H∗). The second equation in (2.13) implies that v is orthogonal to N(H).
Hence v is in R(H∗) by the closed range theorem. But 0 is an algebraically simple
eigenvalue of the adjoint, implying v = ṽ = 0 and M∗ has a trivial kernel. Thus M is
invertible, proving the lemma

Now all assumptions needed for the application of the implicit function theorem are
fulfilled, completing the proof of the theorem.
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3. Error estimates

In this chapter corrector-type estimates are derived. They will be of second order, since
the first order is incorporated in the coordinate transformation (1.4.)

Proof of Theorem 1.2. Again suppose for simplicity that the diffusion matrix
is the identity. The formal second order expansion of vε = uε − u0 shows that the
first order term vanishes and the second order term is given by v2(x, z) = ε2u0

xx(x)ψ(z)
where ψ ∈ C2,α, up to a constant unique, is the periodic solution of the problem

∆zψ = −∫
D
|k +∇zχ|2 − |k +∇zχ|2

∂Nψ = 0

in D

on ∂D

}
. (3.1)

In order to obtain an estimate for vε − v2 let wε = G1(v2, c
0, ε), or equivalently, using

equation (1.9) for u0,

Lc,εw
ε =

(
∆zψ −Ah + |k +∇zχ|2

)
u0

xx

+ 2ε(k +∇zχ)∇zψ∂(3)
x u0

+ ε2ψ∂(4)
x u0 − f(u0) + f(u0 + ε2u0

xxψ).

(3.2)

Observe that u0 ∈ C4(R) since f ∈ C2(R) and the derivatives decay exponentially at
infinity. The definition of ψ in (3.1) and that of Ah in (1.10) implies that the term in
front of u0

xx vanishes. Thus (3.2) gives

Lc,εw
ε = εr + ε2sε (3.3)

with
r = 2∂(3)

x u0(k +∇zχ)∇zψ

sε = ∂(4)
x u0ψ + 1

ε2

(
f(u0 + ε2u0

xxψ)− f(u0)
)
.

Since f is uniformly bounded in C2, then sε, r, rx are uniformly bounded in L2. Defini-
tion (1.5) of χ implies

∫
D

r =
∫

D
rx = 0. Let wε(x) = −∫

D
wε(x, z)dz and let Mi denote

appropriate positive constants independent of ε. Testing (3.3) with wε yields
∫

R×D

(|∇εwε|2 + α|wε|2) = −ε

∫

R×D

r(wε − wε)− ε2

∫

R×D

sεwε

≤ M1ε|∇zw
ε|2|r|2 + ε2|sε|2|wε|2.

(3.4)

Equation (2.3) in the proof of Lemma 2.2 gives

cε

∫

R×D

|wε
x|2 = ε

∫

R×D

rx(wε − wε)− ε2

∫

R×D

sεwε
x

≤ εM1|∇zw
ε|2|∂xr|2 + ε2|sε

x|2|wε|2.
(3.5)

In (3.4) - (3.5) the Poincare inequality has been used. Adding a suitable multiple of
(3.4) - (3.5) yields ∫

R×D

(
M2
ε2 |∇zw

ε|2 + α|wε|2) ≤ M3ε
4.
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This and (3.5) imply
|wε|L2(R×D) ≤ M4ε

2

|∇zw
ε|L2(R×D) ≤ M5ε

3

|∂xwε|L2(R×D) ≤ M6ε
2.

Using G1(vε, cε, ε) = 0 implies now
∣∣G1(vε, cε, ε)−G1(ε2u0

xxψ, c0, ε)
∣∣
1,2
≤ M7ε

2.

It is easy to see that
∣∣G2(vε, cε, ε)−G2(ε2u0

xxψ, c0, ε)
∣∣ ≤ M8ε

2.

Since D(v,c)G(0, c0, 0) is invertible and D(v,c)G is continuous at (0, c0, 0), D(v,c)G has
an inverse for small ε. This implies |vε − v2|1,2 ≤ M9ε

2 and |cε − c0| ≤ M10ε
2. The

first inequality gives easily |vε|1,2 ≤ M11ε
2 and (1.20), (1.21) and (1.23) are proved.

Now applying the same procedure as above to the equation Lc,εv
ε = Kc(vε) and using

the estimates for vε and cε gives the improved estimate (1.22) for ∇zv
ε, completing the

proof

We remark that an expansion can be proved for (uε, cε) up to order εj , if f is of class
Cj and if assumptions (A1) - (A5) hold. The second order coefficient in the expansion
of cε = c0 + ε2c2 + O(ε3) turns out to be given by

c2

∫

R
u0

xv = −
∫

D

|∇ψ|2
∫

R
∂(4)

x u0v (3.6)

where v 6= 0 is in the kernel of H∗ and ψ is defined in (3.5). Observe that the integral
on the left-hand side does not vanish since zero is an algebraically simple eigenvalue of
H.

4. The scalar case and monotone systems

It will be shown that in the case of a scalar equation all assumptions (A1) - (A5) are
satisfied for a cubic-like non-linearity:

f ∈ C2([0, 1],R)

f ′(0) < 0 and f ′(1) < 0
∫ 1

0
f(u)du > 0

f(u) has exactly three zeros at 0, 1 and at some a ∈ (0, 1).

A typical example is f(u) = u(u − a)(1 − u) with 0 < a < 1
2 . It is well known [5]

that for this kind of non-linearity (1.9) admits a unique traveling wave (u0, c0) with
u0(−∞) = 0, u0(+∞) = 1, c0 > 0 and u0′ > 0. The linearization H is given by

Hv = Ahv′′ − c0v′ + f ′(u0)v.
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The linearization of (1.9) at ±∞ shows that u0′ decays exponentially. Thus condition
(A1) is fulfilled. Hence u0′ is in the null space N(H) of H and zero is a geometrically
simple eigenvalue of H. Now suppose that

Hv = u0′. (4.1)

From the linearization at −∞ it follows that u0(x) and u0′(x) decay like eλx with

λ =
c

2Ah
+

( c2

4Ah2
− f ′(0)

) 1
2

>
c

Ah
.

Hence w0 = e−xc/Ah

u0′ ∈ L2(R). One checks that w0 ∈ N(H∗) where

H∗w = Ahw′′ + c0w′ + f ′(u0)w.

Testing (4.1) with w0 yields

0 =
∫

R
vH∗w0 =

∫

R
w0Hv =

∫

R
e−xc/Ah

u0′2

which is impossible. Hence 0 is an algebraically simple eigenvalue of H. If H∗w = w0,
then testing with u0′ implies that 0 is also for H∗ an algebraically simple eigenvalue.
This implies condition (A3).

In order to show the closedness of R(H) in condition (A2) let Hvn = gn → g
in L2(R). Suppose that vn is orthogonal to u0′ and that |vn|L2 → ∞ in L2(R). If
wn = vn

|vn|L2
, then

Lc0,0wn = −(f ′(u0) + α)wn +
gn

|vn|L2

is bounded in L2(R). Hence wn is bounded in H2(R) and a subsequence converges
in L2

loc(R) to w. Furthermore, Hw = 0 and hence w = γu0′. But γ = 0 since w is
orthogonal to u0′. In particular, wn tends weakly to zero in L2(R). Choose N so large
that f ′(u0(x)) < f ′(1)

2 < 0 for x ∈ (N,∞). Multiplying Hwn = gn

|vn|L2
→ 0 by wn and

integrating over (N,∞) implies
∫ ∞

N

(−Ah(w′n)2 + f ′(u0)w2
n

) → 0.

since by regularity theory boundary terms tend to zero as n →∞. By the choice of N
and the local convergence this implies convergence to zero in L2(0,∞). Using the same
reasoning at −∞ implies that wn tends to zero strongly in L2(R), which contradicts
|wn|L2(R) = 1. Hence vn and Lc0,0vn = −(f ′(u0) + α)vn + gn are bounded in L2(R).
Using Lemma 2.1 this implies that vn is bounded in H1 and a subsequence converges
weakly in H1(R) to v and Hv = g weakly. This implies that v ∈ H2(R) and hence
R(H) is closed.

At last, condition (A5) is satisfied for a cubic-like non-linearity. Thus all the as-
sumptions are verified and Theorem 1.1 applies.
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Now in the expansion of cε the second order term (3.6) c2, in particular its sign, is
computed in the scalar case. The kernel of H∗ is spanned by v = u0

xe−xc0/Ah

. Hence
(3.6) implies

sign c2 = sign
∫

R
∂(4)

x u0∂xu0e−xc0/Ah

.

Only in some cases, e.g. if f(u) is a cubic function, u(x) and c are explicitly known and
the integral can be evaluated explicitly. It is found in this case that sign c2 = −sign c0.
Thus the speed is slowed down by the inhomogeneities compared to the homogenized
medium. We conjecture this to hold for general bistable non-linearities.

The method in this chapter can be extended to so-called monotone systems with
bistable non-linearity. These are systems admitting a maximum principle. Existence of
monotone traveling waves for the homogenized system and their spectral properties have
been studied in [12]. For convenience we state the assumptions such that conditions
(A1) - (A5) hold. Let p < q where inequalities between vectors are understood to hold
for each component.

1. (Monotonicity) For all u ∈ Rn with p ≤ u ≤ q and all k 6= j, ∂fk

∂uj
(u) ≥ 0.

2. (Bistability) The eigenvalues of Duf(p) and of Duf(q) lie in the left half-plane.
Furthermore, f(u) vanishes at a finite number of points ri (p < ri < q) only and there
exist vectors vi ≥ 0 such that Duf(ri) has at least one eigenvalue in the right half plane.

3. Duf(u) is irreducible for all u between p and q. This means that Duf(u) leaves
none of the hyperplanes invariant spanned by some of the standard basis vectors.

By [12: Chapter 3/Theorem 3.2] Properties 1 and 2 guarantee the existence of a
monotone wave. The spectral properties of the linearization follow from [12: Chapter
3/Theorem 5.1].
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