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On the Cauchy Problem
for a Degenerate Parabolic Equation

M. Winkler

Abstract. Existence and uniqueness of global positive solutions to the degenerate parabolic
problem

ut = f(u)∆u in Rn × (0,∞)

u|t=0 = u0

)

with f ∈ C0([0,∞)) ∩ C1((0,∞)) satisfying f(0) = 0 and f(s) > 0 for s > 0 are investigated.
It is proved that, without any further conditions on f , decay of u0 in space implies uniform
zero convergence of u(t) as t → ∞. Furthermore, for a certain class of functions f explicit
decay rates are established.
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0. Introduction

We are concerned with positive solutions to the Cauchy problem for a class of degenerate
parabolic equations

ut = f(u)∆u in Rn × (0,∞)

u|t=0 = u0

}
(0.1)

where u0 ∈ C0(Rn) ∩ L∞(Rn) is positive in Rn, while the given function f is required
to be in C0([0,∞))∩C1((0,∞)) with f(s) > 0 for s > 0 and, which makes the equation
degenerate parabolic, f(0) = 0.

So far, to the best of our knowledge, a detailed study on problem (0.1) has been done
only for the special case f(s) = sp (0 < p < 1) or – more or less – slight perturbations
thereof. In this case, namely, the substitution U(x, t) = (1−p)

1−p
p u1−p(x, t) transforms

(0.1) into the Cauchy problem for the porous medium equation Ut = ∆Um with m =
1

1−p > 1 which has been studied by several authors (see [1, 2, 7], for example).

In order to motivate the question of qualitative behavior of solutions of problem
(0.1), let us assume for a moment that f increases to∞ as s ↗∞. If then we investigate
instead of (0.1) the corresponding initial boundary value problem with zero Dirichlet
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winkler@math1.rwth-aachen.de

ISSN 0232-2064 / $ 2.50 c© Heldermann Verlag Berlin



678 M. Winkler

data in some smooth bounded domain, it is easy to see by a comparison argument
that all solutions tend to zero uniformly in Ω as t → ∞. More generally, replacing in
the latter problem −∆ by any second-order linear elliptic operator A (with sufficiently
smooth coefficients) having first eigenvalue λ1, we achieve global existence and large
time decay as before whenever λ1 > 0. On the other hand, λ1 < 0 implies finite time
blow-up for any positive solution (see, e.g., [5] or [12]). The borderline case λ1 = 0
has been investigated only under special circumstances so far; in [9] there is proved for
f(s) = sp (p > 0) that if u0 decays fast enough near ∂Ω, then u exists globally, while if
u0 decreases sufficiently slowly, then u is bounded away from zero uniformly on compact
subsets of Ω for all times. It is not known, however, whether there are initial data which
cause unboundedness or zero decay of solutions.

In the situation of A = −∆, increasing Ω to Rn means taking λ1 ↘ 0, thus in
problem (0.1) we formally have exactly the borderline case, so the question is whether
one of the tendencies towards blow-up on the one hand or stabilization to zero on the
other hand will win, or if intermediate effects occur. The main results of the present
note are that u exists globally and tends to zero, provided merely that u0 vanishes at
infinity (cf. Section 3), and if u0 and f enjoy further properties, then upper bounds for
the decay rate can be given (cf. Section 2).

Acknowledgement. The author would like to thank M. Wiegner and C. Bandle
for drawing his attention to the problem.

1. Existence and uniqueness

Assuming throughout that

(H1) u0 ∈ C0(Rn) ∩ L∞(Rn) is positive

we are first of all interested in whether problem (0.1) has a solution at all. As we are
familiar with the Dirichlet problem for ut = f(u)∆u on bounded domains, we are led
to the idea to construct a solution on Rn via approximation by a sequence of solutions
on, say, BR = BR(0). More precisely, let, for k ∈ N, u0,k ∈ C1(B̄k) be such that
0 < u0,k < u0,k+1 in Bk, u0,k|∂Bk

= 0 and u0,k ↗ u0 in Rn. Concerning solvability of
the corresponding initial-boundary value problem in Bk with zero boundary values and
initial data u0,k, we have

Lemma 1.1. The problem

∂tuk = f(uk)∆uk in Bk × (0,∞)

uk|∂Bk
= 0

uk|t=0 = u0,k





(1.1)

is uniquely solvable in C0(B̄k× [0,∞))∩C2,1(Bk×(0,∞)). The solution can be obtained
as the C0

loc(B̄k × [0,∞)) ∩C2,1
loc (Bk × (0,∞))-limit of a decreasing sequence of solutions

uk,ε of problem (1.1) with uk,ε|∂Bk
= ε and uk,ε|t=0 = u0,k + ε for ε ↘ 0.
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Proof. Local existence of uε,k and monotonic convergence to a limit function uk is
proved in a standard way using arguments pointed out in detail in [11: Theorem 1.2.2]
(cf. also [10: Theorem 3.2]). To see that the solution actually exists for t ∈ (0,∞) we
only have to note that by comparison ε ≤ uk,ε ≤ ‖u0,k‖L∞(Bk) +ε as long as uk,ε exists,
so that uk,ε and hence uk can be extended for all times

Taking k →∞, we in fact obtain a solution to the original problem.

Lemma 1.2. Problem (0.1) admits a positive classical solution u ∈ C0(Rn ×
[0,∞)) ∩ C2,1(Rn × (0,∞)) ∩ L∞(Rn × (0,∞)). If uk denotes the solution of prob-
lem (1.1), we have uk → u in C0

loc(Rn × [0,∞)) ∩ C2,1
loc (Rn × (0,∞)).

Proof. As u0,k+1 ≥ u0,k in Bk and u0,k+1|∂Bk
≥ 0, we have uk+1,ε ≥ uk for all ε and

thus uk+1 ≥ uk in Bk× (0,∞). Consequently, as k →∞, the uk monotonically increase
to some limit u which is easily seen to fulfil 0 < u ≤ ‖u0‖L∞(Rn). To find a uniform local
bound from below, let k0 ∈ N be given. Then there exists a constant ck0 > 0 depending
on k0 only such that u0,k ≥ u0,k0+1 ≥ ck0Θk0 in Bk0 for all k > k0, where Θk0 denotes
the Dirichlet eigenfunction of −∆ in Bk0 with max Θk0 = 1, corresponding to the first
eigenvalue λ1,k0 > 0. Setting

y(t) = ck0e
−αt with α = λ1,k0‖f‖L∞((0,ck0 ))

we find that

∂t(yΘk0)− f(yΘk0)∆(yΘk0) = y′Θk0 + λ1,k0f(yΘk0)yΘk0

≤ (y′ + αy)Θk0

≤ 0 in Bk0 × (0,∞)

which yields by comparison

uk ≥ y(t)Θk0(x) in Bk0 × (0,∞) for all k > k0.

Thus for all K× [0, T ] ⊂⊂ Rn× [0,∞) there is a constant cK,T > 0 such that for k large
(depending on K)

uk ≥ cK,T in K × [0, T ].

Together with uk ≤ ‖u0‖L∞(Rn), this provides uniform local two-sided bounds on the
coefficients f(uk) in (1.1). Hence, parabolic Hölder and Schauder estimates (see [6:
Theorems V.1.1 and IV.10.1]) together with the Arzelà-Ascoli theorem show that all
derivatives of uk up to order two converge uniformly to those of u in any compact subset
of Rn × (0,∞) and u solves ut = up∆u. Moreover, if u0 ∈ C1(Rn), the same estimates
show that uk → u even in C0

loc(Rn × [0,∞)) and u|t=0 = u0.
If u0 is merely continuous, we use the result just obtained in the following way: Let

us fix k0 ∈ N and ε > 0. We take ũ0 ∈ C1(Rn) ∩ L∞(Rn) with u0 ≤ ũ0 in Rn and
ũ0 ≤ u0 + ε in Bk0 . By what we have just shown, there is a solution ũ of problem
(0.1) with ũ|t=0 = ũ0 which is continuous down to t = 0. In particular, ũ ≤ u0 + 2ε
in Bk0 × (0, τ) for some sufficiently small τ > 0. By comparison, uk ≤ ũ for all k and
hence

u ≤ u0 + 2ε in Bk0 × (0, τ). (1.2)
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On the other hand, by Dini’s theorem, u0,k → u0 holds uniformly in Bk0 , hence there
is k1 ∈ N such that u0,k1 ≥ u0 − ε in Bk0 . Continuity of uk1 now gives uk1 ≥ u0 − 2ε in
Bk0 × (0, τ) after diminishing τ if necessary. Thus by monotonicity,

uk ≥ u0 − 2ε in Bk0 × (0, τ) for all k ≥ k1. (1.3)

Combining (1.2) and (1.3), we end up with 0 ≤ u−uk ≤ 4ε in Bk0× (0, τ) for all k ≥ k1

which implies u ∈ C0(Rn × [0,∞)) and u|t=0 = u0

In the sequel, most of the assertions on u essentially rely on the fact that u = lim uk;
thus, the question of uniqueness is of great importance. Before answering it we assert
that if u0 vanishes at |x| = ∞, then so does u(t).

Lemma 1.3. Suppose that, in addition to condition (H1),

‖u0‖L∞(∂BR) → 0 as R →∞. (1.4)

Then
‖u(t)‖L∞(∂BR) → 0 as R →∞ ∀ t > 0. (1.5)

Proof. i) Starting with the radially symmetric case, we first suppose u0(x) =
U0(|x|) in Rn with some non-increasing U0 ∈ C2([0,∞)). Then the u0,k clearly can
be chosen radially symmetric, that is u0,k(x) = U0,k(|x|) where we may assume U0,k ∈
C2([0, R]) to be non-increasing. Then the uk,ε from Lemma 1.1 and thus u are also
radially symmetric, i.e. uk,ε(x, t) = Uk,ε(|x|, t) and u(x, t) = U(|x|, t).

I) We assert that r 7→ Uk,ε(r, t) is non-increasing on (0, R) for all t > 0 which
will imply that r 7→ U(r, t) does not increase on (0,∞) for t > 0. Indeed, by parabolic
regularity theory, z(r, t) = ∂rUk,ε(r, t) is in C0(Q̄) ∩ C2,1(Q) with Q = (0, R) × (0,∞)
and satisfies the linear parabolic equation

zt = f(Uk,ε)zrr +
[

n−1
r f(Uk,ε) + f ′(Uk,ε)

(
(Uk,ε)rr + n−1

r (Uk,ε)r

)]
zr − n−1

r2 f(Uk,ε)z

in Q with coefficients in C0(Q), and as uk,ε ≥ ε, we have z(R, t) ≤ 0 as well as z(0, t) = 0
for all t. Since also z(r, 0) ≤ 0 by assumtion on U0,k, we have z ≤ 0 in Q by comparison.

II) If (1.5) were false, there would be t > 0 and ε0 > 0 such that

u(t) > ε0 in Rn (1.6)

due to the monotonicity property of u(t). We choose a non-decreasing f0 ∈ C∞([0,M ])
with M = ‖u0‖L∞(Rn) such that f0 ≤ f , f0(s) = 0 for s < ε0

4 and f0(s) > 0 for s > ε0
2 .

Finally, we set

Φ(s) =
∫ s

0

f0(σ)
f(σ)

dσ (s > 0)

and test (1.1) with the smooth function f0
f (uk) having compact support in Bk × [τ, t]

(0 < τ < t), to obtain

−
∫ t

τ

∫

Bk

f ′0(uk)|∇uk|2 =
∫ t

τ

∫

Bk

∂tΦ(uk) =
∫

Bk

Φ(uk(t))−
∫

Bk

Φ(uk(τ)),
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and hence upon letting τ ↘ 0,
∫

Bk

Φ(uk(t)) +
∫ t

0

∫

Bk

f ′0(uk)|∇uk|2 ≤
∫

Bk

Φ(u0,k)

by Fatou’s lemma so that
∫

Rn

Φ(u(t)) +
∫ t

0

∫

Rn

f ′0(u)|∇u|2 ≤
∫

Rn

Φ(u0). (1.7)

But by (1.6), Φ(u(t)) ≥ Φ(ε0) > 0 in Rn, hence the left-hand side equals +∞, while∫
Rn Φ(u0) is finite due to (1.4), which is a contradiction.

ii) For general u0, we define a continuous and non-increasing function ϕ on [0,∞)
by ϕ(R) = ‖u0‖L∞(Rn\BR) and fix any non-increasing C2-function Ũ0 with ϕ(R) <

Ũ0(R) < ϕ(R) + 1
R in [0,∞). Then comparison shows that each uk and hence u is

majorized by the corresponding solution ũ evolving from ũ0(x) = Ũ0(|x|), whence (1.5)
follows from part i)

We are now ready to show uniqueness.

Lemma 1.4.
i) If n ≤ 2, then the solution u = limk→∞ uk constructed above is unique within

the class C of non-negative classical solutions of problem (0.1) from C0(Rn × [0,∞)) ∩
C2,1(Rn × (0,∞)) ∩ L∞(Rn × (0,∞)).

ii) If n ≥ 3 and, in addition to condition (H1), (1.4) holds, then u is unique among
all solutions from C sharing the spatial decay property

‖u(t)‖L∞(∂BR) → 0 as R →∞ ∀ t > 0. (1.8)

Proof. We begin by constructing suitable functions to test (0.1) with. For R > 1,
let ϕR(x) = fR(|x|) be the solution of the problem

−∆ϕR(x) = χ(|x|) in BR

ϕR|∂BR
= 0

}
(1.9)

where χ ∈ C∞0 ([0, 1)) with χ[0, 1
2 ] ≤ χ ≤ χ[0,1]. Expressed in terms of fR, problem (1.9)

transforms into
−f ′′R(r)− n−1

r f ′R(r) = χ(r) in (0, R)

fR(R) = 0

}

which is explicitly solved by

fR(r) =
∫ R

r

∫ %

0

( ξ

%

)n−1

χ(ξ) dξd%.

Observe that fR is non-decreasing in R and

f ′R(R) = −
∫ R

0

( ξ

R

)n−1

χ(ξ) dξ ≥ − 1
Rn−1

∫ 1

0

ξn−1dξ = − 1
nRn−1
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which implies

∂NϕR|∂BR
≥ − 1

nRn−1
. (1.10)

Abbreviating Hs =
∫ s

1
dσ

f(σ) for s > 0, we rewrite problem (0.1) in the form

∂tHu−∆u = 0 in Rn × (0,∞)

u|t=0 = u0

}

and assume v is another solution of (0.1) from the indicated class. By comparison,
v ≥ uk in Bk × (0,∞) for all k, hence v ≥ u. Multiplying ∂t(Hv −Hu)−∆(v − u) = 0
by ϕR and integrating over BR × [τ, t] (0 < τ < t) we get

I1 + I2 + I3

:=
∫

BR

(Hv −Hu)(t) · ϕR +
∫ t

τ

∫

BR

(v − u) · χ(|x|) +
∫ t

τ

∫

∂BR

(v − u) · ∂NϕR

=
∫

BR

(Hv −Hu)(τ) · ϕR =: I4. (1.11)

Both Hu and Hv are continuous in B̄R × [0,∞) and equal Hu0 for t = 0, thus

I4 → 0 as τ → 0. (1.12)

As v ≥ u,
I2 ≥ 0 (1.13)

while by (1.10)

I3 ≥ − 1
nRn−1

∫ t

τ

∫

∂BR

(v − u) ≥ −c

∫ t

0

‖v(s)‖L∞(∂BR)ds. (1.14)

Now in the case n ≥ 3, (1.8) and Lebesgue’s dominated convergence theorem show that
∫ t

0

‖v(s)‖L∞(∂BR)ds → 0 as R →∞ (1.15)

which in view of (1.12) - (1.14) immediately gives Hv(t) ≤ Hu(t) or v(t) ≤ u(t) on Rn

since ϕR is non-decreasing in R and positive in BR. If n ≤ 2, however, it follows from

fR(r) ≥ 1
n

(
1
2

)n
∫ R

min{1,r}
%1−nd%

that limR→∞ ϕR = ∞ uniformly on compact subsets of Rn, so that using the trivial
estimate I3 ≥ −c‖v‖L∞(Rn×(0,∞)) (instead of (1.15)) and taking R → ∞ in (1.11)
we infer that |{Hv(t) > Hu(t)}| = 0 and thus u is unique within the set of classical
solutions without satisfying any further decay condition

Remark. By a slight modification in the proof (using Hölder’s inequality to guar-
antee that lim infR→∞ I3 = 0) it is possible to replace (1.8) by a ‘decay in mean’
requirement u ∈ L∞loc

(
[0,∞); Lq(Rn)

)
for any q ≥ 1, provided of course that u = lim uk

enjoys this property at all (cf. Lemma 2.1).
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2. Large time decay: the case of nice f

In this section we asssume that f , apart from being merely positive for positive argu-
ments, satisfies in addition

(H2) For all M > 0 there exists β = β(M) > 0 such that sf ′(s)
f(s) ≥ β on (0,M).

Note that condition (H2) is fulfilled, e.g., by f(s) = sp (p > 0) (with β = p), as well as
by f(s) = e−

1
sp (p > 0) (with β(M) = p

Mp ), but neither by non-monotonic functions
nor by those approaching zero very slowly as s ↘ 0, such as f(s) = 1

1+| ln s|p (p > 0).

In particular, we shall see in a minute that condition (H2) endows the solution
u = lim uk from Lemma 1.2 with one first important feature, namely the one of non-
increasing distance to zero in any of the spaces Lq(Rn) (0 < q < ∞). Consequently, due
to the remark following Lemma 1.4, it is unique in the class of non-negative bounded
classical solutions from L∞loc([0,∞); Lq(Rn)) provided that, besides condition (H1), u0

fulfils

(H3) u0 ∈ Lq(Rn) for some q > 0 with q ≥ 1− β, β = β(‖u0‖L∞(Rn)).

Throughout this section, whenever the parameter q arises it will be assumed implicitly
that condition (H3) holds for this q.

Lemma 2.1. For all q > 0 with q ≥ 1− β,
∫

Rn

uq(t) ≤
∫

Rn

uq
0 ∀ t > 0. (2.1)

Proof. The procedure is similar to the one used in part i)/II) of the proof of Lemma
1.3, but we have to be a bit more careful here since our integrals cover regions where u
is small. In virtue of Fatou’s lemma, it suffices to prove that for all k and all t > 0

∫

Bk

uq
k(t) ≤

∫

Bk

uq
0,k. (2.2)

To this end let, for some sequence δ = (δj) with δj ↘ 0, ϕδ ∈ C∞([0,∞)) be such
that χ[δ,∞) ≤ ϕδ ≤ χ[ δ

2 ,∞), ϕ′δ ≥ 0 and ϕδ ↗ 1 on (0,∞) as δ ↘ 0. Then for all

0 < τ < t < ∞ the function ψ = ϕδ(uk) · uq−1
k is smooth and has compact support in

Bk × [τ, t], hence testing (1.1) with ψ gives

0 =
∫ t

τ

∫

Bk

ϕδ(uk)uq−1
k ∂tuk +

∫ t

τ

∫

Bk

∇uk · ∇
(
f(uk)uq−1

k ϕδ(uk)
)

=: I1 + I2.

Here I2 is non-negative since F (s) = sq−1f(s)ϕδ(s) has its derivative

F ′(s) ≥ sq−2f(s)
(
(q − 1 + β)ϕ(s) + sϕ′(s)

)

non-negative due to the choice of q. Setting

Φδ(s) =
∫ s

0

ϕδ(σ)σq−1dσ
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we have Φδ(s) ↗ 1
q sq as δ ↘ 0 and thus

I1 =
∫

Bk

Φδ(uk(t))−
∫

Bk

Φδ(uk(τ)) → 1
q

∫

Bk

uq
k(t)− 1

q

∫

Bk

uq
k(τ)

as δ → 0 by Beppo Levi’s theorem, where we notice that both terms on the right are
finite for fixed k. Thus,

∫

Bk

uq
k(t) ≤

∫

Bk

uq
k(τ) ∀ 0 < τ < t < ∞

which implies (2.2) as τ → 0 since uk is continuous on B̄k × [0,∞)

The monotonicity hypothesis (H2) translates into a monotonicity property of our
solution.

Lemma 2.2. For all k ∈ N we have

∂tuk

uk
≥ − 1

βt
in Rn × (0,∞). (2.3)

Consequently,
ut

u
≥ − 1

βt
in Rn × (0,∞). (2.4)

Proof. For fixed τ > 0, classical regulartiy theory tells us that the approximate
solutions uk,ε from Lemma 1.1 are in C2,1(B̄k × [τ,∞)), hence the function

zk,ε =
∂tuk,ε

uk,ε
= f(uk,ε)uk,ε∆uk,ε =: F (uk,ε)∆uk,ε

is in C0(B̄k × [τ,∞)) and fulfils

∂tzk,ε =
(f ′(uk,ε)uk,ε − f(uk,ε)

u2
k,ε

)
uk,εzk,ε∆uk,ε +

f(uk,ε)
uk,ε

∆(uk,εzk,ε)

=
f ′(uk,ε)uk,ε

f(uk,ε)
z2
k,ε +

f(uk,ε)
uk,ε

(
uk,ε∆zk,ε + 2∇uk,ε · ∇zk,ε

)
.

zk,ε vanishes at ∂Bk × [τ,∞), while at t = τ , zk,ε ≥ −M for all M ≥ Mε and some
sufficiently large Mε > 0. Hence, by comparison, zk,ε ≥ ϕM on Bk × (τ,∞) for all
M ≥ Mε, where ϕM (t) is the solution of ϕ′M = βϕ2

M on (τ,∞), ϕM (τ) = −M , i.e.
ϕM (t) = − 1

β(t−τ)+M−1 . Consequently, zk,ε ≥ − 1
β(t−τ) on Bk × (τ,∞) for all τ > 0,

hence also zk,ε ≥ − 1
βt on Bk × (0,∞). Taking successively ε → 0 and then k →∞, we

arrive at (2.3) and (2.4), respectively

Via Lemma 2.2, condition (H2) (together with condition (H3)) will imply addi-
tional regularity properties of the solution which are not a priori obvious in the context
of degenerate parabolic equations. At the same time, it provides a quantitative homog-
enization rate.
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Lemma 2.3. For all q > 0 with q > 1− β, the estimate
∫

Rn

|∇hq(u(t))|2 ≤ 1
t

1
β(q−1+β)

∫

Rn

uq
0 (2.5)

holds for t ∈ (0,∞) where hq(s) =
∫ s

0
σ

q
2−1

√
f(σ) dσ (s ≥ 0).

Proof. For fixed t we gain from Lemma 2.2 the inequality −∆uk ≤ 1
βt

uk

f(uk) which

we test with the compactly supported function uq−1
k f(uk)ϕδ(uk) ∈ C2(B̄k), ϕδ as in

the proof of Lemma 2.1, to obtain

I :=
∫

Bk

∇uk · ∇
(
uq−1

k f(uk)ϕδ(uk)
) ≤ 1

βt

∫

Bk

uq
kϕδ(uk) ≤ 1

βt

∫

Rn

uq
0

where we have made use of Lemma 2.1. Using again

F (s) = sq−1f(s)ϕδ(s) with F ′(s) ≥ (q − 1 + β)sq−2f(s)ϕ(s)

we observe
I =

∫

Bk

F ′(uk)|∇uk|2

≥ (q − 1 + β)
∫

Bk

ϕδ(uk)uq−2
k f(uk)|∇uk|2

= (q − 1 + β)
∫

Bk

ϕδ(uk)|∇hq(uk)|2

and complete the proof upon letting δ ↘ 0 and then k → ∞, each time employing
Fatou’s lemma

In order to derive decay estimates for u itself (rather than its gradient), we em-
ploy the Gagliardo-Nirenberg inequality, a suitable formulation of which is given for
convenience in the following lemma. Note that integrability powers µ < 1 are involved.

Lemma 2.4. Suppose s ∈ (1, n?) where n? = 2n
n−2 for n ≥ 3 and n? = ∞ for n ≤ 2.

Then for all µ ∈ (0, s), there is a constant c0 = c0(s, µ) such that the estimate

‖ϕ‖Ls(Rn) ≤ c0‖∇ϕ‖a
L2(Rn)‖ϕ‖1−a

Lµ(Rn) (2.6)

holds for all ϕ ∈ Lµ(Rn) with ∇ϕ ∈ L2(Rn), the number a ∈ (0, 1) being defined by

−n
s =

(
1− n

2

)
a− n

µ (1− a). (2.7)

Proof. For µ ≥ 1, (2.6) is the standard Gagliardo-Nirenberg inequality proved,
e.g., in [8: Chapter 3.4]. For µ ∈ (0, 1), we first apply this – with µ replaced by 1 – to
obtain

‖ϕ‖Ls(Rn) ≤ c1‖∇ϕ‖b
L2(Rn)‖ϕ‖1−b

L1(Rn) where −n
s =

(
1− n

2

)
b− n(1− b).

By standard interpolation, using Hölder’s inequality,

‖ϕ‖L1(Rn) ≤ ‖ϕ‖c
Ls(Rn)‖ϕ‖1−c

Lµ(Rn) with c = s 1−µ
s−µ .

Now (2.6) follows upon combining these inequalities and using that b
1−(1−b)c coincides

with a which follows from an elementary calculation
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The main result of the present section is

Theorem 2.5. Let q > 0 be such that q > 1− β.
i) For all r ∈ [max{q, 2q

n? − β},∞) and all s ∈ [1,∞) with s > 2q
r+β , there are

constants α > 0 and c > 0 such that

‖hr(u(t))‖Ls(Rn) ≤ ct−α for all t > 0. (2.8)

ii) If n = 1, then in addition

‖hr(u(t))‖L∞(R) ≤ ct−α for all t > 0 (2.9)

with α = 1
2+ 2q

r+β

.

Proof.
i) As r ≥ q, we have by interpolation

‖u0‖Lr(Rn) ≤ ‖u0‖1−
q
r

L∞(Rn)‖u0‖
q
r

Lq(Rn) < ∞.

Hence Lemma 2.3 applies to give

‖∇hr(u(t))‖L2(Rn) ≤ ct−
1
2 ‖u0‖

r
2
Lr(Rn).

On the other hand, we obtain from an integration of (H2) that f(σ) ≤ cσβ , so that
hr(σ) ≤ cσ

r+β
2 . Thus, setting µ = 2q

r+β , we employ Lemma 2.1 to see that

‖hr(u(t))‖Lµ(Rn) ≤ C
(‖u0‖Lq(Rn)∩L∞(Rn)

)
.

Now the Gagliardo-Nirenberg inequality yields

‖hr(u(t))‖Ls(Rn) ≤ c‖∇hr(u(t))‖a
L2(Rn)‖hr(u(t))‖1−a

Lµ(Rn) (2.10)

for all s ∈ (max{µ, 1}, n?), with

a =
1
µ − 1

s
1
µ + 1

n − 1
2

(2.11)

which is in (0, 1) since µ < s < n?.
If n ≥ 3, (2.10) continues to hold for a = 1 and s = n? < ∞, and for s > n?,

interpolation between n? and ∞ gives

‖hr(u(t))‖Ls(Rn) ≤ c‖hr(u(t))‖
n?

s

Ln? (Rn)
≤ ct−

n?

2s

and thus (2.8) follows.
ii) In one space dimension, s = ∞ is allowed in (2.10), where now a = 2

2+µ . The
proof is complete
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Corollary 2.6. Suppose f(s) = sp (p ≥ 1) and ϑ ∈ (p
2 , p

2n?] with the exception
ϑ < ∞ for n = 2. Then for all u0 ∈

⋂
q>0 Lq(Rn) and all ε > 0 there is a constant

cε > 0 such that the corresponding solution u of problem (0.1) satisfies

‖u(t)‖Lϑ(Rn) ≤ cεt
− 1

p +ε. (2.12)

Proof. Noting that β = p and hr(σ) = 2
r+pσ

r+p
2 in this case, we choose r = q small

such that

r < 2ϑ− p, µ =
2q

r + p
< 1, and

a

r + p
≥ 1

p
− ε, where a =

1− µ
s

1 + 2−n
n µ

.

We set s = 2ϑ
r+p to obtain 1 < s ≤ n? and s < n? if n = 2. Going back to the proof of

Theorem 2.5, (2.11) now reads

‖u(t)‖
r+p
2

L
r+p
2 s(Rn)

≤ ct−
a
2 or ‖u(t)‖Lϑ(Rn) ≤ ct−

a
r+p ≤ ct−

1
p +ε

which is exactly the claim

Remark. It is easy to see that if f(s) = sp (p ≥ 1) and Ω ⊂ Rn is a smooth
bounded domain, then a family of solutions of problem (0.1) is given by uγ(x, t) =
(γ + pt)−

1
p W (x), where γ > 0 and W is the positive solution of ∆W + W 1−p = 0 in Ω,

W |∂Ω = 0 (cf. [10]). Accordingly, estimate (2.12) is not far away from being sharp.

One might ask whether uniform decay can be achieved also for space dimensions
higher than one, possibly not at a fixed rate. A positive answer to this question will be
the subject of the following section.

3. Large time decay: the case of general f

Although we have seen that condition (H2) covers a not too tiny class of diffusion
coefficient functions f (including positive powers as the most frequently mentioned
representants), we do so far have no guaranty that solutions might behave completely
different if we perturb such an f so as to violate (H2). One particular question is
whether or not we may admit f ′ to change sign (or touch zero) at least for s bounded
away from zero. Keeping in mind that large time decay surely takes place in case of
the familiar heat equation (where f ≡ 1 and hence condition (H2) is hurt), one might
conjecture that, if existing at all, something like a ‘no decay phenomenon’ should be
caused by a bad behavior of f near zero rather than for larger values. The problems
even seem to increase if we admit that for general f with f(0) = 0 we do not know
how to control the derivatives of u near points where u is small (and these will be
quite a lot if u is to vanish asymptotically), so that the decay arguments from Section 2,
basing upon homogenization in space, seem to be little adequate in the present situation.
Searching for an alternative approach, we note that due to the comparison principle,
once we have shown decay of one special solution u, we at the same time have proved
zero convergence of any other solution with initial value less than u0. Therefore the
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key to the main result of this section will be to find out under which assumptions
on u0 a radially symmetric solution decays. Fortunately, the weakest possible spatial
decay hypothesis limR→∞ ‖u0‖L∞(∂BR) = 0 (that is sharp in the sense that admitting
lim infR→∞ ‖u0‖L∞(∂BR) > 0 would allow constant initial data which, however, trivially
solve problem (0.1)) turns out to be sufficient for uniform decay in the case of arbitrary
function f .

Theorem 3.1. Suppose that, in addition to condition (H1), ‖u0‖L∞(∂BR) → 0 as
R →∞. Then the solution u of problem (0.1) satisfies

‖u(t)‖L∞(Rn) → 0 as t →∞. (3.1)

Proof. i) We first note that by a reduction argument similar to the one used in the
proof of Lemma 1.3, we may assume without loss of generality that u(x, t) = U(|x|, t)
is radially symmetric and r 7→ U(r, t) non-increasing on (0,∞) for all t ≥ 0.

ii) We claim that for all ε > 0 there is a constant T0 > 0 such that

u(t) < ε on ∂B1 for all t ≥ T0. (3.2)

Suppose on the contrary that for some ε0 > 0 and a sequence of times tk ↗ ∞ we
had u(tk) ≥ ε0 on ∂B1. Let Θ denote the first Dirichlet eigenfunction of −∆ in B1

corresponding to the first eigenvalue λ1 > 0 with maxΘ = 1, and set

z(x, t) = y(t)Θ(x) with y(t) = ε0e
−γ(t−tk) and γ = λ1‖f(u)‖L∞(Rn×(0,∞))

in B1 × [tk,∞). Then z ≤ u on ∂B1 and, as u(t)|B̄1
takes its minimum on ∂B1 by step

i), also at t = tk. Moreover, zt − f(u)∆z = y′Θ + λ1f(u)yΘ ≤ 0, so that u ≥ z in
B1 × [tk,∞) by comparison, which implies the existence of numbers δ > 0 and ρ > 0
such that

u ≥ ε0

2
in Bρ × [tk, tk + δ] ∀ k ∈ N. (3.3)

Next, we choose a non-decreasing f0 ∈ C∞([0,M ]), M = ‖u0‖L∞(Rn), such that f0(s) =
0 for s < ε0

8 and f0(s) = α(s− ε0
8 ) for s > ε0

4 , where α = mins∈[
ε0
8 ,M ] f(s) > 0, so that

f0 < f and f ′0 = α > 0 on [ ε0
4 ,M ]. As in the proof of Lemma 1.3, we set

Φ(s) =
∫ s

0

f0(σ)
f(σ)

dσ

and test (1.1) with f0
f (uk) to obtain after taking k →∞

∫

Rn

Φ(u(t)) +
∫ t

0

∫

Rn

|∇h(u)|2 ≤
∫

Rn

Φ(u0) ∀ t > 0 (3.4)

where h(s) =
∫ s

0

√
f ′0(σ) dσ. Note that the right-hand side in (3.4) is finite since by

assumption the set {u0 ≥ ε0
8 } is compact.
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Let us now fix R large such that |BR|Φ( ε0
3 ) ≥ 2

∫
Rn Φ(u0) and define a function

v(r, t) on [0,∞)2 by v(|x|, t) = h(u(x, t)). By (3.4),
∫∞
0

∫∞
0

rn−1|vr|2drdt < ∞, hence
for each k there is t̃k ∈ [tk, tk + δ] such that

∫ R

ρ
2

|vr(r, t̃k)|2dr → 0, that is ‖vr(·, t̃k)‖L2(( ρ
2 ,R)) → 0 as k →∞.

We thus find a subsequence such that v(·, t̃k) → w in C0([ρ
2 , R]), where w must be a

constant. By (3.3), w ≥ h( ε0
2 ), whence by uniform convergence we have u(t̃k) ≥ ε0

3 in
BR for some large t̃k. But as Φ′ ≥ 0, this implies

∫

Rn

Φ(u(t̃k)) ≥
∫

BR

Φ(u(t̃k)) ≥ |BR|Φ
(

ε0
3

)
>

∫

Rn

Φ(u0)

which is absurd in view of (3.4).
iii) Now let ε > 0 be given and fix T0 such that (3.2) holds. If e ∈ C2(B̄1) denotes

the solution of −∆e = 1 in B1, e|∂B1 = 1, we have e ≥ 1 in B1 and therefore the
function

z(x, t) = ε + y(t)e(x) with y(t) = ‖u(T0)‖L∞(Rn)e
−µ(t−T0),

µ > 0 small to be fixed soon, majorizes u at t = T0 and, by (3.2), also on ∂B1× [T0,∞).
As

zt − f(z)∆z = [−µe + f(ε + ye)]y

is non-negative in B1 × (T0,∞) if we choose

µ =
1

‖e‖L∞(B1)
min

s∈[ε,M ]
f(s), where M = ε + ‖u(T0)‖L∞(Rn)‖e‖L∞(B1)

we infer from the comparison principle that u ≤ z in B1×(T1,∞) and therefore u(t) < 2ε
in B1 (and thus in all of Rn by monotonicity) for all sufficiently large t

Remark. Except for the uniqueness proof in Lemma 1.4, none of our arguments
actually required that the domain under consideration has no boundary. In fact, all of
the existence and decay assertions remain valid if Rn is replaced by any (bounded or
unbounded) domain Ω ⊂ Rn with, e.g., Lipschitz boundary.

Finally, we mention that all the results from Sections 1 and 3 remain valid without
any change if we drop the degeneracy condition f(0) = 0 – note that then Section
2 becomes obsolete since condition (H2) implies f(s) ≤ f(1)sβ for s ∈ (0, 1), hence
f(0) = 0. Indeed, reviewing the proofs shows that the degenerate case (to which we
have restricted ourselves) seems to be the most critical among all cases im which f(s) > 0
for s > 0 is required.

Accordingly, we obtain as a corollary to Theorem 3.1 that for any quasilinear equa-
tion ut = f(u)∆u with f ∈ C0([0,∞)) ∩ C1((0,∞)) positive on (0,∞), every solution
evolving from positive initial data decaying arbitrarily slowly in space decays uniformly
as time tends to infinity.
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