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Abstract. New existence results are presented for non-resonant second order singular bound-
ary value problems
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where one of the endpoints is regular and the other may be singular or of limit circle type.
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1. Introduction

In this paper we develop an existence theory for

1
p(t)

(p(t)y′(t))′ + τ(t)y(t) = λ f(t, y(t)) a.e. on [0, 1]

which makes use of the relationship between the asymptotic behavior of the non-linearity
f(t,y)

y and the spectrum of the differential operator. In particular, we examine the non-
resonant second order singular boundary value problem

1
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(p(t)y′(t))′ + τ(t) y(t) = λ f(t, y(t)) a.e. on [0, 1]

lim
t→0+

p(t)y′(t) = y(1) = 0
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Throughout p ∈ C[0, 1] ∩ C1(0, 1) together with p > 0 on (0, 1), τ is measurable with
τ > 0 a.e. on [0, 1] and

∫ 1

0
p(x)τ(x) dx < ∞, and λ ∈ R is some parameter. We do not

assume
∫ 1

0
ds

p(s) < ∞ but rather
∫ 1

0
1

p(s)

(∫ s

0
p(x)τ(x) dx

) 1
2 ds < ∞. As a result for the

eigenvalue problem
Lu = λu a.e. on [0, 1]

lim
t→0+

p(t)u′(t) = u(1) = 0

}
(1.1)

where Lu = − 1
pq (pu′)′, one of the endpoints, t = 1, will be regular and the other, t = 0,

may be singular or of limit circle type [6, 7]. For nonlinear non-resonant problems of
limit circle type only a handful of papers have appeared in the literature (see [1, 3, 6]).
All other papers, to our knowledge, concerning nonlinear non-resonant problems discuss
the case when t = 0 and t = 1 are regular points (see [2, 4, 5, 7] and the references
therein). In [6], Fonda and Mawhin presented a technique for discussing non-resonant
problems (i.e. (1.1) with p ≡ 1) based on quadratic forms. We will use part of this
technique in this paper. However, as we will see, many extra steps will be needed to
discuss non-resonant problems when one of the endpoints is of limit circle type.

For notational purposes let w be a weight function. By L2
w[0, 1] we mean the

space of functions u such that
∫ 1

0
w(t)|u(t)|2dt < ∞ (also, if u ∈ L2

w[0, 1], we define

‖u‖w =
( ∫ 1

0
w(t)|u(t)|2dt

) 1
2 ). Let AC[0, 1] be the space of functions which are abso-

lutely continuous on [0, 1].

The following well known existence principle [6, 7] (which is a special case of the
Leray-Schauder continuation theorem), due to O’Regan, will be needed in Section 2.

Theorem 1.1. Suppose the following conditions are satisfied:

(i) p ∈ C[0, 1] ∩ C1(0, 1) with p > 0 on (0, 1).

(ii) τ ∈ L1
p[0, 1] with τ > 0 a.e. on [0, 1].

(iii)
∫ 1

0
1

p(s)

(∫ s

0
p(x)τ(x) dx

)1/2
ds < ∞.

(iv) f : [0, 1]× R→ R is a Carathéodory function, i.e.

(i) t 7→ f(t, y) is measurable for all y ∈ R
(ii) y 7→ f(t, y) is continuous for a.e. t ∈ [0, 1].

(v) f(t,y(t))
τ(t) ∈ L2

pτ [0, 1] whenever y ∈ L2
pτ [0, 1].

In addition, assume that problem (P0) has only the trivial solution. Further, suppose
there is a constant M0, independent of λ, with

‖y‖pτ =
(∫ 1

0

p(t)τ(t)|y(t)|2dt

) 1
2

6= M0

for any solution y (here y ∈ L2
pτ [0, 1] with y ∈ C(0, 1] ∩ C1(0, 1) and py′ ∈ AC[0, 1]) to

problem (Pλ), for each λ ∈ (0, 1). Then problem (P1) has at least one solution.
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Finally, we remark that problems of type (Pλ) occur in many applications in the
physical sciences, for example in radially symmetric nonlinear diffusion in the n-dimen-
sional sphere we have p(t) = tn−1; these problems involve a homogeneous Neumann con-
dition at zero, i.e. limt→0+ tn−1u′(t) = 0. Another example is the Poisson-Boltzmann
equation

y′′ + α
t y′ = f(t, y) (0 < t < 1)

y′(0+) = y(1) = 0 (α ≥ 1)

}
(1.2)

which occurs in the theory of thermal explosions and in the theory of electrohydrody-
namics. The results related to problem (1.2) in the literature [1, 3] usually consider the
situation when inf ∂f

∂y and sup ∂f
∂y are bounded and satisfy a “non-resonant” condition.

In this paper we improve the above existence result (in fact, in our theory the existence
of ∂f

∂y is not assumed).

We also note that the results in [6] are a special case of Theorems 2.1 and 2.2 in
this paper (see the special example after the proof of Theorem 2.1).

2. Non-resonance type problems

In this section we present two existence results for singular boundary value problem
(P1). Conditions (i) - (v) of Theorem 1.1 will be assumed throughout this section.
Notice condition (iii) implies (see [7])

∫ 1

0
p(x)τ(x)

( ∫ 1

x
ds

p(s)

)2
dx < ∞.

Our first result establishes existence if a certain integral inequality is satisfied.

Theorem 2.1. Suppose conditions (i) - (v) of Theorem 1.1 hold and suppose prob-
lem (P0) has only the trivial solution. In addition, assume f has the decomposition

f(t, u) = g1(t, u)u + g2(t, u) + h(t, u)

where g1, g2, h : [0, 1]×R→ R are Carathéodory functions and the following conditions
are satisfied:

(i) ug2(t, u) ≥ 0 for a.e. t ∈ [0, 1] and u ∈ R.

(ii) ∃τ1 ∈ C[0, 1] with τ1(t)τ(t) ≤ g1(t, u) ≤ 0 for a.e. t ∈ [0, 1] and u ∈ R.

(iii) |h(t, u)| ≤ φ1(t) + φ2(t)|u|γ for a.e. t ∈ [0, 1], with 0 ≤ γ < 1.

(iv)
∫ 1

0
p(t)φ1(t)

( ∫ 1

t
ds

p(s)

)1/2
dt < ∞ and

∫ 1

0
p(t)φ2(t)

( ∫ 1

t
ds

p(s)

)(γ+1)/2
dt < ∞.

(v)
∫ 1

0

[
p(u′)2 − (τ − τ1τ)pu2

]
dt > 0 for any 0 6= u ∈ K?

where

K? =

{
w : [0, 1] → R

∣∣∣∣∣
w ∈ L2

pτ [0, 1] with w ∈ C(0, 1]

w′ ∈ L2
p[0, 1] and w(1) = 0

}
.

Then problem (P1) has a solution y ∈ L2
pτ [0, 1] with y ∈ C(0, 1] ∩ C1(0, 1) and py′ ∈

AC[0, 1].
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Proof. We first show that there exists ε > 0 with

∫ 1

0

[
p(y′)2 − (τ − τ1τ)py2

]
dt ≥ ε

(‖y‖2pτ + ‖y′‖2p
)

(2.1)

for any y ∈ K?. If this is not the case, then there exists a sequence {yn} ⊂ K? with

‖yn‖2pτ + ‖y′n‖2p = 1 (2.2)
∫ 1

0

[
p(y′n)2 − (τ − τ1τ)py2

n

]
dt → 0 as n →∞. (2.3)

The Riesz compactness criteria together with a standard result in functional analysis
(if E is a reflexive Banach space, then any norm bounded sequence in E has a weakly
convergent subsequence) implies that there is a subsequence S of integers with

yn → y in L2
pτ [0, 1] and y′n ⇀ y′ in L2

p[0, 1] (2.4)

as n →∞ in S where ⇀ denotes weak convergence.

Note {yn} is bounded in L2
pτ [0, 1] (see (2.2)) and, for r > 0, Hölder’s inequality yields

Z 1

0

p(t)τ(t)|yn(t + r)− yn(t)|2dt =

Z 1

0

pτ

����
Z t+r

t

y′n(s)ds

����
2

dt

≤ ‖y′n‖2p
Z 1

0

pτ

Z t+r

t

ds

p(s)
dt

≤
Z 1

0

pτ

Z 1

t

ds

p(s)
dt−

Z 1

0

pτ

Z 1

t+r

ds

p(s)
dt

→ 0 as r → 0+

by the Lebesgue dominated convergence theorem and assumption (iii) of Theorem 1.1. Thus

{yn} is relatively compact in L2
pτ [0, 1].

Next, a standard result in functional analysis [7] yields

∫ 1

0

p[y′]2dt ≤ lim inf
∫ 1

0

p[y′n]2dt. (2.5)

Now (2.3) - (2.5) and the fact that lim inf[sn + tn] ≥ lim inf sn + lim inf tn for sequences
{sn} and {tn} imply ∫ 1

0

[
p(y′)2 − (τ − τ1τ)py2

]
dt ≤ 0 (2.6)

since

lim inf
∫ 1

0

(τ − τ1τ)py2
ndt =

∫ 1

0

(τ − τ1τ)py2dt.
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Note y(1) = 0 since in fact yn → y in C[ε, 1] (ε > 0) by the Arzela-Ascoli theorem. By
assumption (v) we have y ≡ 0. However,

‖yn‖2pτ + ‖y′n‖2p =
∫ 1

0

pτy2
ndt +

∫ 1

0

(τ − τ1τ)py2
ndt

+
∫ 1

0

[
p(y′n)2 − (τ − τ1τ)py2

n

]
dt

→ 0 as n →∞ in S

which is impossible. Thus (2.1) holds for some ε > 0.

Let y be a solution to problem (Pλ) for some 0 < λ < 1. Note, in particular, y ∈ K?.
Multiply the differential equation by y and integrate from 0 to 1 to obtain

∫ 1

0

[
p(y′)2 − τpy2

]
dt = −λ

∫ 1

0

py2g1(t, y) dt− λ

∫ 1

0

pyg2(t, y) dt− λ

∫ 1

0

pyh(t, y) dt

and so (use assumptions (i) - (ii))

∫ 1

0

[
p(y′)2 − (τ − τ1τ)py2

]
dt ≤

∫ 1

0

p|yh(t, y)| dt.

This together with assumption (iii) and (2.1) imply that there exists ε > 0 (fix it) with

ε
(‖y‖2pτ + ‖y′‖2p

) ≤
∫ 1

0

pφ1|y| dt +
∫ 1

0

pφ2|y|γ+1dt.

Since y(1) = 0, we have from Hölder’s inequality

|y(t)| =
∣∣∣∣
∫ 1

t

y′(s) ds

∣∣∣∣ ≤ ‖y′‖p

(∫ 1

t

ds

p(s)

) 1
2

for t ∈ (0, 1), and so

ε
(‖y‖2pτ + ‖y′‖2p

) ≤ K0‖y′‖p + K1‖y′‖γ+1
p (2.7)

where

K0 =
∫ 1

0

p(t)φ1(t)
(∫ 1

t

ds

p(s)

) 1
2

dt and K1 =
∫ 1

0

p(t)φ2(t)
(∫ 1

t

ds

p(s)

) γ+1
2

dt.

Now (2.7) guarantees that there is a constant M > 0, independent of λ, with ‖y′‖p ≤ M .
This together with (2.7) guarantees the existence of a constant M0 > 0, independent of
λ, with ‖y‖pτ ≤ M0. The result now follows from Theorem 1.1



732 R. P. Agarwal et. al.

We now discuss briefly assumption (v) of Theorem 2.1. Inequalities of this type play
a major role in the literature of calculus of variation. We illustrate the ideas involved
with a simple example. Consider the problem

1
p
(py′)′ + µqy = f(t, y) a.e. on [0, 1]

lim
t→0+

p(t)y′(t) = y(1) = 0





(2.8)

with q ∈ L1
p[0, 1], q > 0 a.e. on [0, 1], and

µ(1− τ1(t)) < λ0 for t ∈ [0, 1], (2.9)

λ0 being the first eigenvalue of problem (1.1) with Lu = − 1
pq (pu′)′. Let also assumptions

(i), (iii) - (v) of Theorem 1.1 and assumptions (i) - (iv) of Theorem 2.1 hold, with τ(t) =
µq(t)). Recall (see [7: Chapter 11], limit circle case) that L has a countable number
of real eigenvalues λi > 0 (arranged so that λ0 < λ1 < λ2 < . . .) with corresponding
(orthonormal) eigenfunctions ψi. The set {ψi} form a basis of L2

pq[0, 1], and so for any
u ∈ K? we have

u(t) =
∞∑

i=0

ηiψi(t), ηi = 〈u, ψi〉pq

where 〈u, v〉pq =
∫ 1

0
pquvdt.

We claim that problem (2.8) has at least one solution. This follows immediately
from Theorem 2.1 once we show its condition (v) is satisfied. First notice from (2.9)
(note τ1 ∈ C[0, 1]) that there exists δ > 0 with µ(1− τ1(t)) ≤ λ0 − δ for t ∈ [0, 1]. Now
for u ∈ K? we have

∫ 1

0

[
p(u′)2 − (τ − τ1τ)pu2

]
dt ≥

∫ 1

0

[
p(u′)2 − (λ0 − δ)pqu2

]
dt

=
∞∑

i=0

η2
i

[
λi − (λ0 − δ)

] ∫ 1

0

pqψ2
i dt

since (pψ′i)
′+λipqψi = 0 a.e. on [0, 1] and limt→0+ p(t)ψi(t) = ψi(1) = 0. Consequently,

∫ 1

0

[
p(u′)2 − (τ − τ1τ)pu2

]
dt ≥ δ

∞∑

i=0

η2
i

∫ 1

0

pqψ2
i dt = δ

∫ 1

0

pq|u|2dt > 0

for u 6= 0. Thus condition (v) of Theorem 2.1 holds, so our claim is established.

For the remainder of this paper let

E =
{

y ∈ L2
pτ [0, 1] : y′ ∈ L2

p[0, 1] and y(1) = 0
}

.

For u, v ∈ E we define

〈u, v〉 =
∫ 1

0

pτuvdt +
∫ 1

0

pu′v′dt.
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We show E is complete. Let {yn} be a Cauchy sequence in E. Then there exist functions
y ∈ L2

pτ [0, 1] and u ∈ L2
p[0, 1] with yn → y in L2

pτ [0, 1] and y′n → u in L2
p[0, 1] as n →∞.

Let

v(t) = −
∫ 1

t

u(s) ds.

Note v(1) = 0. Also, notice since yn ∈ E (so yn(1) = 0) that

∫ 1

0

p(t)τ(t)|yn(t)− v(t)|2dt

=
∫ 1

0

p(t)τ(t)
∣∣∣∣
∫ 1

t

(yn − v)′(s)ds

∣∣∣∣
2

dt

≤
(∫ 1

0

p(t)τ(t)
∫ 1

t

ds

p(s)
dt

)(∫ 1

0

p(s)|(yn − v)′(s)|2ds

)

=
(∫ 1

0

p(t)τ(t)
∫ 1

t

ds

p(s)
dt

)(∫ 1

0

p(s)|y′n(s)− u(s)|2ds

)

and the right-hand side goes to zero as n → ∞. Thus yn → v in L2
pτ [0, 1] as n → ∞,

and so y = v a.e. on [0, 1]. As a result, yn → v in E, so E is complete. [In fact,
in the following theorem, we could let E be the space of functions y ∈ L2

pτ [0, 1] with
y′ ∈ L2

p[0, 1].]

Theorem 2.2. Suppose conditions (i) - (v) of Theorem 1.1 hold and assume problem
(P0) has only the trivial solution. In addition, assume f has the decomposition

f(t, u) = g(t, u)u + h(t, u)

where g, h : [0, 1] × R → R are Carathéodory functions satisfying conditions (iii) - (iv)
of Theorem 2.1. Also, suppose the following conditions are satisfied:

(i) There exist 0 ≤ −τ1, τ2 ∈ C[0, 1] with τ1(t)τ(t) ≤ g1(t, u) ≤ τ2(t)τ(t) for a.e.
t ∈ [0, 1] and u ∈ R.

(ii) E = Ω⊕Γ where Ω ⊆ K? is finite-dimensional and for every 0 6= y = u+v ∈ K?

with u ∈ Ω, v ∈ Γ we have R(y) > 0

where

R(y) =
∫ 1

0

[
p(v′)2 − (τ − ττ1)pv2

]
dt−

∫ 1

0

[
p(u′)2 − (τ − ττ2)pu2

]
dt.

Then problem (P1) has at least one solution.

Remark 2.1. The set K? in condition (ii) here is as defined in condition (v) of
Theorem 2.1. In (ii) we have y = u+v with u ∈ Ω and v ∈ Γ, so

∫ 1

0
pτuv dt+

∫ 1

0
pu′v′dt =

0.

Proof of Theorem 2.2. We first show that there exists ε > 0 with

R(y) ≥ ε
(‖y‖2pτ + ‖y′‖2p

)
(2.10)
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for any y ∈ K?; here y = u + v with u ∈ Ω and v ∈ Γ. If this is false, then there exists
a sequence {yn} ⊂ K? with ‖yn‖2pτ + ‖y′n‖2p = 1 and

R(yn) → 0 as n →∞. (2.11)

Note yn = un + vn with un ∈ Ω and vn ∈ Γ. Now there is a subsequence S of integers
with

yn → y in L2
pτ [0, 1] and y′n ⇀ y′ in L2

p[0, 1] (2.12)

as n → ∞ in S. Also, since strong and weak convergence are the same in finite-
dimensional spaces we have

u′n → u′ in L2
p[0, 1] as n →∞ in S. (2.13)

We also have ∫ 1

0

p[v′]2dt ≤ lim inf
∫ 1

0

p[v′n]2dt. (2.14)

Now (2.11) - (2.14) imply that R(y) ≤ 0. From assumption (ii) we have y ≡ 0. Finally
(note E = Ω⊕ Γ, so

∫ 1

0
pτunvndt +

∫ 1

0
pu′nv′ndt = 0),

‖yn‖2pτ + ‖y′n‖2p = R(yn) +
∫ 1

0

pτ [v2
n + u2

n] dt + 2
∫ 1

0

p[u′n]2dt

+
∫ 1

0

(
[τ − τ1τ ]pv2

n − [τ − τ2τ ]pu2
n

)
dt

→ 0 as n →∞ in S

which is impossible. Thus (2.10) holds for some ε > 0.
Let y (= u + v) be a solution to problem (Pλ) for some 0 < λ < 1. Then

−
∫ 1

0

(v − u)[(py′)′ + pτy]dt = −λ

∫ 1

0

p(v − u)yg(t, y) dt− λ

∫ 1

0

p(v − u)h(t, y) dt

and so integration by parts yield

∫ 1

0

[
p(v′)2 + pv2(−τ + λg(t, y))

]
dt−

∫ 1

0

[
p(u′)2 + pu2(−τ + λg(t, y))

]
dt

≤
∫ 1

0

p|v − u||h(t, y)| dt.

(2.15)

Now
pv2

[− τ + λg(t, y)
]

= pv2
[− (τ − τ1τ) + λg(t, y)− τ1τ

]

≥ pv2
[− (τ − τ1τ) + (λ− 1)τ1τ

]

≥ −p(τ − τ1τ)v2 a.e. on [0, 1].

Similarly,
pu2

[− τ + λg(t, y)
] ≤ −p(τ − τ2τ)u2 a.e. on [0, 1].
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Putting these into (2.15) yields

R(y) ≤
∫ 1

0

p|v − u||h(t, y)| dt.

This together with (2.10) implies that there is an ε > 0 with

ε
(‖y‖2pτ + ‖y′‖2p

) ≤
∫ 1

0

p|v − u| |h(t, y)| dt. (2.16)

Next, notice that for t ∈ (0, 1) we have

|v(1)− u(1)| ≤ |v(t)− u(t)|+
∫ 1

t

|(v − u)′(s)| ds

and so for t ∈ (0, 1)

|v(1)− u(1)| ≤ |v(t)− u(t)|+ ‖v′ − u′‖p

(∫ 1

t

ds

p(s)

) 1
2

. (2.17)

Note also that
‖v − u‖2pτ + ‖v′ − u′‖2p = ‖y‖2pτ + ‖y′‖2p (2.18)

and this together with (2.17) yields for t ∈ (0, 1)

|v(1)− u(1)| ≤ |v(t)− u(t)|+ (‖y‖2pτ + ‖y′‖2p
) 1

2

(∫ 1

t

ds

p(s)

) 1
2

.

Multiply this by
√

p(t)τ(t) and integrate from 0 to 1 (using Hölder’s inequality) to
obtain

|v(1)− u(1)|
∫ 1

0

√
p(t)τ(t)dt

≤ ‖v − u‖pτ +
(‖y‖2pτ + ‖y′‖2p

) 1
2

(∫ 1

0

pτ

∫ 1

t

ds

p(s)
dt

) 1
2

.

This together with (2.18) yields

|v(1)− u(1)| ≤ K2

(‖y‖2pτ + ‖y′‖2p
) 1

2 (2.19)

where

K2 =
1 +

( ∫ 1

0
p(t)τ(t)

∫ 1

t
ds

p(s)dt
) 1

2

∫ 1

0

√
p(t)τ(t)dt

.

Also, for t ∈ (0, 1) we have

|v(t)− u(t)| ≤ |v(1)− u(1)|+ ‖v′ − u′‖p

(∫ 1

t

ds

p(s)

) 1
2
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and so (use (2.18) and (2.19)) for t ∈ (0, 1)

|v(t)− u(t)| ≤ (‖y‖2pτ + ‖y′‖2p
) 1

2

{
K2 +

(∫ 1

t

ds

p(s)

) 1
2

}
. (2.20)

In addition, since y(1) = 0 we have |y(t)| ≤ ∫ 1

t
|y′(s)| ds for t ∈ (0, 1) and so

|y(t)| ≤ (‖y‖2pτ + ‖y′‖2p
) 1

2

(∫ 1

t

ds

p(s)

) 1
2

(2.21)

for t ∈ (0, 1). Put condition (iii) of Theorem 2.1 into (2.16) to obtain

ε
(‖y‖2pτ + ‖y′‖2p

)

≤
∫ 1

0

p(t)|v(t)− u(t)|φ1(t) dt +
∫ 1

0

p(t)|v(t)− u(t)| |y(t)|γφ2(t) dt.

This together with (2.20) - (2.21) gives

ε
(‖y‖2pτ + ‖y′‖2p

) ≤ (‖y‖2pτ + ‖y′‖2p
) 1

2

[
K2

∫ 1

0

p(t)φ1(t) dt + K0

]

+
(‖y‖2pτ + ‖y′‖2p

) γ+1
2

[
K2

∫ 1

0

p(t)φ2(t)
(∫ 1

t

ds

p(s)

) γ
2

dt + K1

]

where

K0 =
∫ 1

0

p(t)φ1(t)
(∫ 1

t

ds

p(s)

) 1
2

dt and K1 =
∫ 1

0

p(t)φ2(t)
(∫ 1

t

ds

p(s)

) γ+1
2

dt.

Now since 0 ≤ γ < 1, there exists a constant M > 0, independent of λ, with ‖y‖2pτ +
‖y′‖p ≤ M . The result now follows from Theorem 1.1
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