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Parametric Weighted Integral Inequalities
for
A-Harmonic Tensors

S. Ding

Abstract. We prove the A,(Q)-weighted Hardy-Littlewood inequality, the A, (2)-weighted
weak reverse Holder inequality and the A, (Q)-weighted Caccioppoli-type estimate for A-har-
monic tensors all being generalizations of classical results.
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1. Introduction

The purpose of this paper is to develop parametric versions of the A, (Q)-weighted
integral inequalities for A-harmonic tensors. These results are of interest in nonlinear
potential theory, degenerate elliptic equations, continuum mechanics, and the LP theory.
They can be used to study the integrability of A-harmonic tensors and to estimate the
integrals for A-harmonic tensors. A-harmonic tensors are differential forms which satisfy
the A-harmonic equation. They are interesting and important extensions of p-harmonic
tensors. In the meantime, p-harmonic tensors are extensions of harmonic functions
and p-harmonic functions, p > 1. Many interesting results of A-harmonic tensors and
their applications in different fields, such as quasiregular mappings and the theory of
elasticity, have been found recently (see [1 - 4, 8 - 12, 14]).

We always assume that ) is a connected open subset of R”. We write R = R!. Balls
are denoted by B, and o B is the ball with the same center as B and with diam(cB) =
odiam(B). We do not distinguish the balls from cubes throughout this paper. The
n-dimensional Lebesgue measure of a set £ C R™ is denoted by |E|. We call w a weight
if we L (R") and w > 0 a.e. Also, in general du = wdx where w is a weight. For

loc
0 < p < oo we denote the weighted LP-norm of a measurable function f over E by

Il = ( [ 17@Puteyas) "

Let {e1,ea,...,e,} be the standard unit basis of R”. Assume that Al = AL(R") is
the linear space of [-vectors spanned by the exterior products e; = e;; Aej, A+ Aej,
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corresponding to all ordered I-tuples I = (i1,42,...,7;) (1 <i1 <ia<...<9y<n;l=
0,1,...,n). The Grassman algebra A = @A is a graded algebra with respect to the
exterior products. For a = Y ale; € A and 3 =Y ples € A the inner product in A is

given by
(a,8) =) a'p’

with summation over all [-tuples I = (i1,42,...,4;) and all integers [ = 0,1,...,n. We
define the Hodge star operator
*: A— A

by the rule
*l=e NeaA---Ney and aAxf =0 NAxa = {(a, B)(x])
for all o, 3 € A. The norm of a € A is given by the formula
laf? = (o, @) = *(a A*a) € A" =R,
The Hodge star is an isometric isomorphism on A with % : Al — A7l and x%(—1)1"=0 .
A — AL
A differential [-form w on 2 is a de Rham current (see [13: Chapter III]) on Q with

values in A(R™). We use D'(Q, A!) to denote the space of all differential I-forms and
LP(Q, AD) to denote the [-forms

w(z) = Zw[(x)dxj = Zwiliz~~iz (x)dxi, Ndxiy A -+ Adxy,
I

with w; € LP(),R) for all ordered I-tuples I. Thus LP(Q, A!) is a Banach space with

[wllp.0 = (/Q !w(ﬂf)l”dw)% = (/Q (ZWI(w)Z)gdw)%~

I

Similarly, W, (€, A") are the differential I-forms on Q whose coefficients are in W (Q,R).
The notations W', (Q,R) and W!

p,loc p,loc
rior derivative by

(92, Al) are self-explanatory. We denote the exte-
d: D'(Q,AY) — D'(Q, A
for [ =0,1,...,n. Its formal adjoint operator
d* : D'(Q,ATH — D'(Q,AD
is given by
d* = (=1)"" xdx on D'(Q, AT (l=0,1,...,n).
Many interesting results have been established in the study of the A-harmonic equa-

tion

d*A(z,dw) =0 (1.1)
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for differential forms, where A : Q x AL(R™) — A!(R™) satisfies the conditions
[A(z, O] < al¢P™ and  (A(2,6),8) > ¢ (1.2)

for almost every x € © and all £ € Al(R™). Here a > 0 is a constant and 1 < p < oo
is a fixed exponent associated with equation (1.1). A solution to equation (1.1) is an
element of the Sobolev space WI} (2, A'=1) such that

,loc

/(A(x,dw),dgo) —0
Q

for all ¢ € W (9, A1) with compact support.
Definition 1.1. We call v an A-harmonic tensor in 2 if u satisfies the A-harmonic
equation (1.1) in Q.

A differential I-form u € D'(Q, A!) is called a closed form if du = 0 in Q. Similarly,

a differential (I + 1)-form v € D'(Q, A1*1) is called a co-closed form if d*v = 0. The
equation

A(z,du) = d*v (1.3)

is called the conjugate A-harmonic equation. For example, du = d*v is an analogue of

a Cauchy-Riemann system in R". Clearly, the A-harmonic equation is not affected by

adding a closed form to w and co-closed form to v. Therefore, any type of estimates

between v and v must be modulo such forms. Suppose that u is a solution to equation

(1.1) in ©. Then, at least locally in a ball B, there exists a form v € W (B, A™!) (1 +

é = 1) such that (1.3) holds. Throughout this paper, we always assume that %—ké =1.

Definition 1.2. When v and v satisfy (1.3) in Q and A™! exists in Q, we call u
and v conjugate A-harmonic tensors in ).

Iwaniec and Lutoborski prove the following result in [9]:
Let Q C R™ be a cube or a ball. To each y € Q there corresponds a linear operator
Ky : C(Q,A) — C=(Q, A1)
defined by
1
(Kyw)(xa 517 s 7£l) = / tlilw(t'r +y - ty? T — yugla s 7‘Sl71)dt
0

and the decomposition w = d(Kyw) + K, (dw).
We define another linear operator
Ty: C®(Q.A) — C(Q.AY)
by averaging K, over all points y in Q:

TQw:/Qgp(y)Kywdy

where ¢ € C3°(Q) is normalized by fQ ¢(y) dy = 1. We define the I-form wg € D'(Q, A!)

by ) _
Lo lel fyey)dy =0
@7 d(Tow) ifl=1,2,...,n

for all w € LP(Q,Al) (1 < p < c0).
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2. The A,(f2)-weighted Hardy-Littlewood inequality

In this section, we prove different versions of the A, (£2)-weighted Hardy-Littlewood
inequality.

Definition 2.1. A weight w = w(x) is called an A,-weight for some r > 1 in a
domain 2, write w € A,(Q), if w > 0 a.e. and

p(i o) (i, () 7#) <e e

for any ball B C Q.

See [5, 7] for properties of A, (Q2)-weights. We will need the following generalized
Holder inequality.

Lemma 2.2. Let0<a<oo,0<ﬁ<ooand%:é+%. If f and g are

measurable functions on R™, then

Ifglls.2 < l[fllaellglls.c

for any Q@ C R™.
We also need the following lemma [5].

Lemma 2.3. If w € A.(Q), then there exist constants f > 1 and C' > 0, indepen-
dent of w, such that

1-p
5,8 < C|B| 7 |Jw|1,s

[Jw]
for all balls B C R™.

Hardy and Littlewood prove the following inequality for conjugate harmonic func-
tions in the unit disk D in [6]:

Theorem A. For each p > 0, there is a constant C > 0 such that

/ lu — u(0)[Pdxdy < C’/ lv —v(0)[Pdzdy
D D

for all analytic functions f = u+ v in the unit disk D.

The above Hardy-Littlewood inequality has been generalized into different versions.
In [12] Nolder proves the following version of it.

Theorem B. Let u and v be conjugate A-harmonic tensors in Q C R", o > 1, and
0 < s,t <oo. Then there exists a constant C' > 0, independent of u and v, such that

lu —uplls,5 < CIBIP|lv—cll
for all balls B with cB C ). Here ¢ is any form in W;loc(Q,A) with d*c = 0 and

141

Now we prove the following parametric weighted Hardy-Littlewood inequality.
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Theorem 2.4. Let u and v be conjugate A-harmonic tensors in a domain €2 C R™
and w € A, (Q) for some r > 1. Let 0 < s,t < co. Then there ezists a constant C' > 0,
independent of u and v, such that

1 a
(/ lu — uB|Swadm) < C|B|” (/ lv — c|twpqt_:dx> (2.2)
B oB

for all balls B with cB C 2 C R", 0 > 1 and 0 < a < 1. Here ¢ is any form in
1 1
W, (9, A) with dc =0 and y = L + L — Gt

q,loc P

As mentioned in Section 1, the A-harmonic equation is not affected by adding a
closed form to uw and co-closed form to v. Therefore, any type of estimates between
and v must be modulo such forms. Thus, (2.2) is equivalent to

(/ |u|8w°‘d:1:) ! < C|B|" (/ lv — c\tht_?dx> ’ (2.2)
B oB

Note that (2.2) can also be written as the symmetric form

1 as %_% ]_ pta #
(E/B|u—uB|Sw°‘dx) <C|B|™™ (E /B|v—c|tw as dm) . (2.2)"

Proof of Theorem 2.4. We first show that (2.2) holds for 0 < a < 1. Let

k = 2. Using Lemma 2.2 we have

</ |u—uB\Swad:c) = (/ (|u—uB|w%)sdx) )
B B
<|lu—up|lkB (/ w%dx) (2.3)
B

&

= |lu —upllk B (/ wdx) .
B

Choose m = ﬁ%_l). Then m < t. By Theorem B we have
a
lu —uplle,s < CilBI v =<l 5 (2.4)

where = ¢ + L — @. Substituting (2.4) into (2.3) yields

@
s

(/ lu — uB|Sw°‘dx> ! < C1|BP|lv — c||fn’UB (/ wdx) . (2.5)
B B

: 11, t— .
Since .- = ; + “=*, by Lemma 2.2 again we find that

1
v = ¢|lm.oB = (/ (Jv— c|w%w_z_§)mdx)
oB
o \* 1\ 7o e
<([ nta) ([ (2)Fw)
oB cB \W
1
— (/ v — c]twp;_?dzv)
oB

T
3

|

VR
T
W
N
S
N—
5
L»—A
Q
&
N——
s
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4 1 'ri s pto %
lv—c||} .5 < (/ (—) 1dm> </ lv — c|tw?dac) . (2.6)
’ oB "W oB

Combining (2.5) and (2.6) we obtain

(/ lu — uB]st‘d:c> )
B
% 1 1 a(rs—l) %
< Cy|BP (/ wdm) (/ (—) r_ldx) (/ v — c|twpq_:da:) :
B oB \W oB

Using the condition that w € A,.(Q) yields

(o)

Hence

(2.7)

o a(r—1)

(LG)7=)

[

<|oB|¥ ! / d 1 / (1)r11d T\
ob] @ —— [ wdzr | | — - .
a loB| Jp 0B8] J,5 \w (2.8)

< CyloB|¥
Substituting (2.8) into (2.7) and noting that 3+ < = %+ % _ (%;%)q b= %—f— % B
—(%Jr%)q, we have

P
u—quxS§4 U_prqt_saxp
([ scim(f -

B oB

where y =1 4+ 1 @:%)q_

Next, we prove that Theorem 2.4 holds if « = 1. By Lemma 2.3 there exist constants
(1 > 1 and Cs5 > 0, independent of w, such that

1-8,
[wllg,.o8 < Cs|B| P w105 (2.9)
Since ﬁ + ﬁé;j = %, then by Lemma 2.2 we have
1
lu = uslls.pw < llwlis sllu—usl s p - (2.10)

By Theorem B, there is a constant Cg > 0, independent of v and v, such that for any
t" > 0 we have

, q
Ju—usll pue < ColBI” v = el o (2.11)
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! __ Bl_l 1 t%+%)q oo .
where ' = 5= + . — ===, Combining (2.10) and (2.11) we obtain

Bis n

lu — uglls,5w < Co|B|” ||w

1 a
s.ellv—clli .5 (2.12)
Now, choose t' = kil where k; is to be determined later. Since [v — ¢ = w™ % v —

c|w%, by Lemma 2.2 we obtain

1
1\ 5%t pt B
o —clle.os < [[(2) ([ p-dufe). e
w k11—17‘73 oB
From (2.9), (2.12) and (2.13) we have

HU - uBHs,B,w

EE TR 1\ %)% .\ (2.14)
< C’7|B|ﬁ e |l fUBH<—> “N (/ lv — c|tw5_sdx) .
’ w L_oB oB

Fi—1°

Set k1 =1+ %, then (’“;# =r—1. By we A,(Q) we know that

q

t
o () )
w|y —
1l,0B w k11717‘TB

1 r—1\ s
—1)q 1 1 1\ = 2.15
= |O'B‘%+(klpt : —/ wdx (— (—) 1dx> (2.15)
|UB| ocB |O-B| oB W

1, (k1—1)g
;4‘17.

< Cs|B
Combining (2.14) and (2.15) we have

2
pt

pt
|lu —upl|ls,B,w < Co|B|” (/ lv — c|tqudl‘>
oB

where

S pt npt S s n P
Therefore, (2.2) holds if « = 1. We have completed the proof of Theorem 2.4 i

sogylme 1 ak=D) _ mgttlamp) 11 1 (GHae

We need the following properties of the Whitney covers appearing [12].
Lemma 2.5. Fach Q has a modified Whitney cover of cubes V = {Q;} such that

U;Qi = €, X /5o < Nxa

VT
for all x € R™ and some N > 1, and if Q; N Q; # ¢, then there exists a cube R (this
cube does not need be a member of V) in Q; N Q; such that Q; UQ; C NR. Moreover,
if Q0 is d-John, then there is a distinguished cube Qo € V which can be connected with
every cube QQ € V by a chain of cubes Qp,Q1,...,Qr = Q from V and such that

QCpQ; (i=0,1,2,...,k) for some p=p(n,d).

As applications of Theorem 2.4 we prove the following global A,.(Q2)-weighted Hardy-
Littlewood inequality.
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Theorem 2.6. Let u € D'(Q, A7) and v € D'(Q, A'T1) be conjugate A-harmonic
tensors. Let ¢ < p, v —c € LAY (1=1,2,...,n—1) and w € A.(Q). If s is

defined by
= — " (g<ct<oo) (2.16)
ng +t(q — p) ’ '

then there exists a constant C > 0, independent of u and v, such that

</ |U\Sw“d:c) <cC (/ v — offw's dac) ’
0 0

for any domain Q C R™ with || < oco. Here c is any form in W}

q,loc
Proof. From (2.2)" we have

(/ ]u|3wadx> s < Q" </ lv — c|twpqt_:dx) ’ (2.17)
Q oQ

(3+w)a
p

(Q,A) with d*c = 0.

. Substituting (2.16) into the expression of v we get

+__

- (2.18)

Wherevzé—k%—
1
y==

5

1 ng +t(q — 1
(ngi):q ¢=p) 1 (q+i>:0'
pt  np npt n pt  np
Thus we find that (2.17) reduces to

1 a
(/ |u|3wo‘dx) <C (/ lv — c|twp;: dx) : (2.19)
oQ

Combining (2.19) and Lemma 2.5, we get

(/ uf*w adx) gQEV (/ uf*w "‘dm)

<> (/ |u|Sw® X\/—de)

QeV

< 2 (L) xoro

4

pto pt
§26’1</ \v—c|tqudx) X /50
Qev oQ

€
t

< ch </ |U—C|twpqtsadx>p X\/EQ

QevV

< (/ lv — ¢ wpqtsadx)p Zx\/gQ

< (s (/ lv—clt pqtsada:)

The proof of Theorem 2.6 has been completed B
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Note that a € (0, 1] is arbitrary in Theorem 2.4. Hence, if we choose a to be some
special values, we will have some different versions of the Hardy-Littlewood inequality.
For example, if we let o = ¢s, gs < 1. By Theorem 2.4, we have the following symmetric
version of the Hardy-Littlewood inequality.

Corollary 2.7. Let u and v be conjugate A-harmonic tensors in a domain 2 C R™
and w € A (Q) for somer > 1. Let0 <t < oo and gs < 1. Then there exists a constant
C > 0, independent of u and v, such that

1 1
</ lu — uB\squd:U> < C|B|" (/ lv — c]twptdx>
B ocB

for all balls B with cB C @ C R™ and o > 1. Here ¢ is any form in W;’ZOC(Q,A) with

d¥c=0 and’)/:%—F%— (%";ﬁ)q

If we choose a = 1% and pt > 1 in Theorem 2.4, we obtain the following symmetric

version.

Corollary 2.8. Let u and v be conjugate A-harmonic tensors in a domain 2 C R™
and w € A, (Q) for somer > 1. Let 0 <t < oo and pt > 1. Then there exists a constant
C > 0, independent of u and v, such that

a1
(/ lu — uB\Swﬁdx> < C|B|" (/ v — c]twa_sda;>
B oB

for all balls B with cB C 2 C R™ and o > 1. Here c is any form in qu’loc(Q,A) with
_ G+aa

d*c:Oand'y=§+% >

If we choose a = % in Theorem 2.4, we obtain the following result.

Corollary 2.9. Let u and v be conjugate A-harmonic tensors in a domain 2 C R™
and w € A.(Q) for some r > 1. Let 0 < s,t < co. Then there exists a constant C > 0,
independent of u and v, such that

L L
(/ lu — uB|Sw%dm> < C|B|” (/ lv — c|tw%dx>
B ocB

for all balls B with cB C 2 C R™ and o > 1. Here ¢ is any form in W;JOC(Q,A) with

141
d*CZO a/ﬂd’y:%_'_%_(t—;n)q

If we choose @ = 1 in Theorem 2.4, we have the following corollary.

Corollary 2.10. Letu andv be conjugate A-harmonic tensors in a domain 2 C R™
and w € A, (Q) for somer > 1. Let 0 < s,t < co. Then there exists a constant C' > 0,
independent of u and v, such that

a 1
</ lu — uB]swdx) < C|B|” (/ lv — c\twg_zdx)
B oB
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for all balls B with cB C 2 C R™ and o > 1. Here ¢ is any form in qu (2, A) with

141
d*CZO a/ﬂd’y:%_'_%_(t—;n)q

,loc

Remark. By making different choices for a in Theorem 2.6, we shall have different
versions of the global Hardy-Littlewood inequality. Considering the length of the paper,
we do not list them here.

3. The A,(f2)-weighted weak reverse Holder inequality

In [12], Nolder obtains the following Caccioppoli-type inequality.

Theorem C. Let u be an A-harmonic tensor in Q) and let c > 1. Then there exists
a constant C' > 0, independent of u, such that

|dul|s.z < Cdiam(B) ' |lu — ¢

s,ocB

for all balls or cubes B with o B C Q) and all closed forms c¢. Here 1 < s < 0.
The following weak reverse Holder inequality appears in [12].
Theorem D. Let u be an A-harmonic tensor in 2, 0 > 1 and 0 < s,t < co. Then

there exists a constant C > 0, independent of u, such that

t—s
5.8 < OB [lullt,o8

[l

for all balls or cubes B with cB C §2.

Using the same method as those used in Section 2, we prove the following A, (€2)-
weighted weak reverse Holder inequality with parameter o for A-harmonic tensors.

Theorem 3.1. Let u € D'(Q,AY) (I =0,1,...,n) be an A-harmonic tensor in a
domain Q@ C R™, o > 1. Assume that 0 < s,t < co and w € A.(Q) for some r > 1.
Then there exists a constant C > 0, independent of u, such that

1 : 1 v\
(E/B|u|swo‘dx) SC(E /B|u|thdx> (3.1)

for all balls B with o B C €2 and any real number o with 0 < o < 1.

Proof. First, we suppose that 0 < a < 1. Let k = :*~. From Lemma 2.2 we find
that

</B|u|swadxf _ (/Bqu\w%ydxf
< (/B |u|kdx)% (/B(w—)—dx)_ (3.2)

@

~lulls ([ wic)
B
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for all balls B with o B C Q). Let m = —5+af(tr_1). By Theorem D we obtain
m—k
lulle,B < C1|B| ¥ ||u||m,oB- (3.3)

. .. . . . 1 1 t— .
Using the Holder inequality with -~ = 5 + =* yields

il = ([ (Qufutu%)mas)
oB
w )7 1y 582k e
g(/ |u\thd:c> (/ (_)< )dx> (3.4)
oB ocB \W
at % ]. 7‘11 s
- tw¥d / ~)"
(/UB ful m> < oB <w> !

Combining (3.2) - (3.4) we find that

(pres)
(s

Since w € A,(€), then we have

() (LG
(U (L))

3=

ar-1) . (39)

< C4|B|'*

/\
q\
s}
/N
g~
N———
:
L»—A
o8
&
~__
A
q\»
[w}
=
<
S
m|g
QL
8
~__
|

w|Q

o 1 1 1N = r—1\ s (3.6)
<iont* ( (i o) (i [, () ) )
< CyloB|¥
= Cs/B|+ .

Substituting (3.6) into (3.5) we obtain

1 1
(/ \u]swo‘dx> < C4|B = </ ]u|twa?td9:)
B oB

Then (3.1) holds if 0 < a < 1.

For the case a = 1, by Lemma 2.3, there exist constants § > 1 and Cs > 0 such
that

[[]

1-p
5.8 < C5|B|7 w1z (3.7)
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for any cube or any ball B C R™. Choose k =
and Lemma 2.2 we have

(U, ‘u’swd‘%)% <(/, '“'kdx)% (/B(w)dx)_

1
= ||ullx,sllwlls 5 (3.8)

;_51. Then s < k and 8 = ;% By (3.7)

ip, 1
< Co| B[ 7 |lwll} gllullk,s

_1 1
= Cs|B|"*|lwl{ gllullk,s-
Selecting m = #}Ll) and repeating the same procedure as the case 0 < a < 1, we see

that (3.1) is also true for « = 1. This ends the proof of Theorem 3.1 Il

As application of Theorem 3.1, we choose the parameter = 1 in Theorem 3.1.
Then, we have the following version of the reverse Holder inequality.

Corollary 3.2. Letu € D'(,AY) (1=0,1,...,n) be an A-harmonic tensor in a
domain Q@ C R", 0 > 1. Assume that 0 < s,t < 0o and w € A (Q) for some r > 1.
Then there exists a constant C > 0, independent of u, such that

i ) < (i [ rwier)
— u|’w dx <C|— ul'wsdx
(1 [ B /5"

for all balls B with B C €.

Let « = s with 0 < s < 1 in Theorem 3.1. We obtain the following symmetric
version.

Corollary 3.3. Let u € D'(Q,AY) (1 =0,1,...,n) be an A-harmonic tensor in a
domain Q@ C R™, 0 > 1. Assume that 0 <t < o0, 0 < s <1 and w € A,(QQ) for some
r > 1. Then there exists a constant C' > 0, independent of u, such that

1 s 1 :
(@ /. '“'Swsdf”) <0 (@ /, '“'t“’tdx)

for all balls B with cB C €.
Let a = % with t > 1 in Theorem 3.1. Then we have the following

Corollary 3.4. Letu € D'(Q,AY) (1=0,1,...,n) be an A-harmonic tensor in a
domain Q CR", 0 > 1. Assume thatt > 1,0 < s < oo and w € A,.(§2) for some r > 1.
Then there exists a constant C' > 0, independent of u, such that

1 .1
(@/B'“’ wtdf"f)

for all balls B with cB C €.

1 1 t
<C (—/ U tuﬁdac)
B ),

n =

We prove the following global result.
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Theorem 3.5. Let u € D'(Q,A!) (1 =0,1,...,n) be an A-harmonic tensor in a
domain  C R™ with |Q| < co. Assume that 0 < s <t < oo and w € A,.(2) for some

r > 1. Then
(|Q|/|u| adx) < <|Q|/|u|twsdx> 59)

for any real number a with 0 < a < 1.

Proof. It is clear that (3.9) is true if s = t. Now we assume that s < ¢t. Using

an 11 t—
Lemma 2.2 with ¢+ =  + %, we have

(/Q|U|Swo‘dx>%: (/Q (uw‘z‘/?sdl‘)%
() (fpoere)
e ([

which is equivalent to (3.9). The proof of Theorem 3.5 is completed B

Remark. Theorem 3.5 can be proved by using Theorem 3.1 directly (see [11: Proof
of Theorem 2.3]). Here we have the stronger condition 0 < s <t < co. But the result
is also stronger: the constant C' in Theorem 3.1 now reduces to C' = 1. By choosing «
to be some special values in (3.9), we have some global results as we did for the local
case.

4. The A, (f2)-weighted Caccioppoli-type estimate

We prove the following A, (Q2)-weighted Caccioppoli-type estimate with parameter « for
A-harmonic tensors.

Theorem 4.1. Let u € D'(Q,AY) (1 =0,1,...,n) be an A-harmonic tensor in a
domain Q0 C R™ and p > 1. Assume that 1 < s < 0 is a fixed exponent associated with
the A-harmonic equation and w € A, (Q2) for some r > 1. Then there exists a constant
C > 0, independent of u, such that

g C g
S,,,Q < )8, )
(/B |du|*w d:z;) = Tam(B) (/pB lu — c|*w d:z;) (4.1)

for all balls B with pB C ) and all closed forms c. Here a is any constant with
O<a<l.

Proof. First, we assume that 0 < a < 1. Choose ¢t = *~. Since % = % + t—ts,
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using Lemma 2.2 and Theorem C, we obtain

(i) ()
< (fraras) () (1.2

< |ldulle.5 (/ wdm) )
B

= Cydiam(B) " Ju — c|lt.oB (/ wda:)
B

for all balls B with B C Q and all closed forms ¢. Since ¢ is a closed form and wu is

o

S

an A-harmonic tensor, then u — ¢ is still an A-harmonic tensor. Taking m = m,
then m < s <t. By Theorem D we have
m—t m—t
lu—cllton < Co| Bl |lu = cllm,o25 = Co| Bl 7% |lu = cllm,pB (4.3)

where p = 02, Substituting (4.3) into (4.2) we get

(/ |du|8w°‘dw) ! < C’gdiam(B)*1|B|mm__tt||u — ¢||m,pB </ wdm) . (4.4)
B B

o |Q

Using Lemma 2.2 with % = % + 2% we obtain
= el = ([ = ca)
pB
1
= (/ (Ju— c[w%w_%)md:c> (4.5)
pB

a(r—1)

< (fy o) ([,G)7%) ©

for all balls B with pB C 2 and all closed forms c¢. Substituting (4.5) into (4.4) we
obtain

1
(/ |du\swad:v)
B

< Cydiam(B) | B| " ||lw

. (4.6)

B (/ lu — C|Sw°‘da7) -
ﬁva pB
Now w € A, () yields

= (L) (LG7) )
- (w9 (i o) (o [, 7) ) 7

< Cy|B|*¥.

LB||w

o 1
Lo

[w
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Combining (4.7) and (4.6) we find that

3 Cs 3
S,,,Q < |8, 4.
(/B|du\ w dx) = Tam(B) (/pB lu — c|*w dx) (4.8)

for all balls B with pB C Q and all closed forms c. We have proved that (4.1) is true if
O0<a<l.

For the case a = 1, by Lemma 2.3 there exist constants 3 > 1 and Cg > 0 such that

1-s
lwlls.z < Cs|BI ™7 |lwll1,z (4.9)

for any cube or any ball B C R". Choose t = ﬁsfl. Then 1 < s<tand (= ﬁ Since

by Lemma 2.2, Theorem C and (4.9) we have

(/B|du\swd3:)% = (/B(]du|w%)sda:)%
<(fawar) ([

1
< Crlldulle,Bllwlls 5

1 _ 1 t—s
s_t+st’

1
< C’gdiam(B)fl ||U - CHt,UBHwHE,B

. _ 1-8 1
< Codiam(B)'|B| 7 ||wl|; gllu —cllt.on

= Cydiam(B) Y| B| % ||w||; pllu —c

t,oB

which is similar to (4.2). Now, choosing m = % and repeating the same procedure as

the case 0 < o < 1, we can also obtain (4.1) if & = 1. This ends the proof of Theorem
4.11

Note that the parameter o in Theorem 4.1 is any real number with 0 < o < 1.
Therefore, we can have different versions of the Caccioppoli-type inequality by choosing
a to be different values. For example, setting t = 1 — « in Theorem 4.1 we obtain the
following result.

Corollary 4.2. Let u € D'(,Al) (1 =0,1,...,n) be an A-harmonic tensor in a
domain Q0 C R™ and p > 1. Assume that 1 < s < o0 is a fixed exponent associated with
the A-harmonic equation and w € A, (QQ) for some r > 1. Then there exists a constant
C > 0, independent of u, such that

. |
s, ,—t < L8, t
</B |du|*w du) = Gam(B) (/pB lu — c|*w du) (4.10)

for all balls B with pB C Q and all closed forms c. Here t is any real number with
0<t<1anddy=w(x)de.

Choosing o = % in Theorem 4.1 we have the following result.
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Corollary 4.3. Letu € D'(,AY) (1=0,1,...,n) be an A-harmonic tensor in a
domain Q0 C R™ and p > 1. Assume that 1 < s < o0 is a fixed exponent associated with

the A-harmonic equation and w € A, (Q2) for some r > 1. Then there exists a constant
C > 0, independent of u, such that

Y C R
S - < - - _ S - .
</B |du|*w dx) < Tam(B) (/pB lu — c|*w dx) (4.11)

for all balls B with pB C Q2 and all closed forms c.

[

If we choose a = % in Theorem 4.1, then 0 < a < 1 since 1 < s < oo. Thus,
Theorem 4.1 reduces to the following symmetric version.

Corollary 4.4. Let u € D'(Q,AY) (1 =0,1,...,n) be an A-harmonic tensor in a
domain Q0 C R™ and p > 1. Assume that 1 < s < 0 is a fixed exponent associated with
the A-harmonic equation and w € A, (Q2) for some r > 1. Then there exists a constant
C > 0, independent of u, such that

1

1 s C 1 s
S s < - - . S s .
(/B |du|*w da:) < Tm(B) (/pB lu — c|*w dcc) (4.12)

for all balls B with pB C Q2 and all closed forms c.

o [

If we choose @ =1 in Theorem 4.1, we have the following result.

Corollary 4.5. Let u € D'(Q,AY) (1=0,1,...,n) be an A-harmonic tensor in a
domain Q0 C R™ and p > 1. Assume that 1 < s < o0 is a fixed exponent associated with
the A-harmonic equation and w € A, (Q) for some r > 1. Then there exists a constant
C > 0, independent of u, such that

ldulls, 5w < Cdiam(B) ™ |lu — ¢|ls,p5,w (4.13)

(/B |du|8d“)% : ﬁ(m (/pB ’“—C\sdu)% (4.14)

for all balls B with pB C Q) and all closed forms c.

or

Finally, we prove the following global A,.(2)-weighted Caccioppoli-type estimate for
A-harmonic tensors.

Theorem 4.6. Let u € D'(Q,AY) (I =0,1,...,n) be an A-harmonic tensor in a
bounded domain 2 C R™ which has a finite open coverV = {B1, Ba, ..., By} consistimg
of open balls. Assume that 1 < s < o0 is a fixed exponent associated with the A-
harmonic equation and w € A,(U"*B;) for some r > 1. Then there ezists a constant
C > 0, independent of u, such that

(/ |dul*w O‘da:>l§d1am (/ lu — c|*w O‘d:z:) (4.15)
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for all closed forms ¢ and any constant o with 0 < a < 1.

Proof. LetV ={Bj, Bs,...,B,,} be an open cover of the bounded domain Q C R"

and d; = diam(B;) >0 (i=1,2,...,m). Assume that d = min{d,y,ds,...,d,,}. Since
) is bounded, then there exists a constant C'; > 0 such that

e
N 4.1
= dam(Q) (4.16)

Using (4.16) and Theorem 4.1, we have

(/ |du|swo‘dx) ! < </ |dul®w O‘dx)
Q Bev
i (. )
< Z _— lu — c|*w*dx
o diam(B) \ /5
< Z s (/ lu — c|swo‘dx) !
Bey
dlam </ lu — c|*w dm)
BeV
dlam </ lu — d:v) :

Hence (4.15) follows. The proof of Theorem 4.6 has been completed B

Remark. Choosing a to be some special values in (4.15), we shall have some cor-

responding global results.
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