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Orthogonality and Completeness
of q-Fourier Type Systems

M. E. H. Ismail

Abstract. We establish orthogonality and completeness of the system of q-exponential func-
tions {Eq(· ; iωn)} using orthogonality and dual orthogonality of a q-analogue of Lommel poly-
nomials. We also set up a very general procedure by which one can produce similar orthogonal
systems using bilinear generating functions formed by products of two complete orthogonal
function systems.
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1. Introduction

This paper deals with q-Fourier series and their generalizations. One reason for writing
this paper is to make the material accessible to some one with little knowledge about
q-series. In many instances the technical use of transformations of basic hypergeometric
series exemplified in [6] is replaced by simple analytic arguments or more elementary
arguments making this paper easy to follow. The only identity we need is Euler’s
theorem (1.1) below and it will be used only to identify the constants in a specific
example.

Throughout this paper we will always assume |q| < 1. We follow the notation
in Gasper and Rahman [9] or in Andrews, Askey and Roy [2] for q-shifted factorials.
Euler’s theorem is

∞∑
n=0

q
n(n−1)

2 zn

(q; q)n
= (−z; q)∞. (1.1)

The q-exponential function alluded to in the abstract is

Eq(cos θ, cos φ; α)

=
(α2; q2)∞
(qα2; q2)∞

∞∑
n=0

(− ei(φ+θ)q
1−n

2 ,−ei(φ−θ)q
1−n

2 ; q
)
n

(αe−iφ)n

(q; q)n
q

n2
4 .

M.E.H. Ismail: Univ. of South Florida, Dept. Math., Tampa, Fla. 33620-5700 and City Univ.
of Hong Kong, Dept. Math., Tat Chee Av., Kowloon, Hong Kong; ismail@math.usf.edu
Research partially supported by NSF grant DMS 99-70865 and the Liu Bie Ju Center of
Mathematical Sciences

ISSN 0232-2064 / $ 2.50 c© Heldermann Verlag Berlin



762 M. E. H. Ismail

Note that θ herein is not necessarily real. In fact, by x = cos θ we mean e±iθ =
x ± √

x2 − 1 where the ± sign is chosen to make
√

x2 − 1 ≈ x as x → ∞. If we let
Eq(x; α) = Eq(x, 0; α), then Eq(0; α) = 1 and limq→1 Eq(x; (1 − q)α

2 ) = exp(αx). The
notation for Eq adopted here is different from the original notation in [14].

In their original paper [14] where Ismail and Zhang studied the Eq function they
also introduced q-analogues of the sine and cosine functions and used transformation
formulas to analytically continue them to entire functions. Bustoz and Suslov [6] derived
several interesting properties of Eq and the q-sine and q-cosine functions including the
important orthogonality property of the Eq functions. This paved the way towards a
comprehensive study of q-Fourier series, where q-analogues of some results in classical
Fourier series have been proved but many more are under investigation.

One purpose of this paper is to give a new proof of the orthogonality property of the
q-exponential functions. We also give a new and very short proof of their completeness
in a certain weighted L2 space. Furthermore, we show that the orthogonality and
completeness of the q-exponentials is just one instance of a very general structure which
remains to be explored.

Ismail and Zhang [14] established the q-plane wave expansion

Eq(x; iα
2 )

=
( 2

α )ν(q; q)∞
(−q α2

4 ; q2)∞(qν+1; q)∞

∞∑
n=0

(1− qn+ν)
(1− qν)

q
n2
4 inJ

(2)
ν+n(α; q) Cn(x; qν |q) (1.2)

where Cn(·; β|q) are the continuous q-ultraspherical polynomials [3, 9] and

J (2)
ν (z; q) =

(qν+1; q)∞
(q; q)∞

∞∑
n=0

(−1)n( z
2 )ν+2n

(q, qν+1; q)n
qn(ν+n) (1.3)

is one of Jackson’s three q-Bessel functions. We note that the series here converges
for all z and that the poles in qν of the series are removed by the zeros of the in-
finite product (qν+1; q)∞. This notation for q-Bessel functions is from our work [11]
and was adopted by Gasper and Rahman [9] but is different from Jackson’s original
notation. Formula (1.2) turned out to be very useful in deriving addition theorems for
q-exponential functions [13] and in mathematical physics [8].

In Section 2 we state few facts about the q-analogue of Lommel polynomials we
introduced in [11]. In Section 3 we use a special case of (1.2) and recognize orthogonality
of q-exponentials as nothing but the dual orthogonality for the q-analogue of Lommel
polynomials. In this section we also give a proof of the completeness of the q-exponential
functions Eq(·; αn) where {αn} is a certain sequence related to the zeros of J

(2)
1
2

. In
Section 4 we show how the system of q-exponential functions used in the so-called q-
Fourier series is just one example of a general class of functions which are orthogonal
and complete in certain weighted L2 spaces. The idea is to consider functions of the
form

F(x;xk) =
∞∑

n=0

ζn rn(xk) pn(x) (1.4)
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where {pn} is an complete orthonormal system and {rn} is a complete discrete orthonor-
mal system. Let the orthogonality relations of {pn} and {rn} be

∫ b

a

pm(x)pn(x)w(x) dx = δm,n

∞∑

k=1

ρ(xk) rm(xk)rn(xk) = δm,n





(1.5)

respectively. In (1.4) it is assumed that {ζn} is a sequence of points lying on the unit
circle. We also assume that the Hamburger moment problems associated with both the
pn’s and the rn’s are determinate, that is {pn} and {rn} are orthogonal with respect
to unique positive measures. In this generality we prove in Section 4 that {F(·;xk)}
is a complete orthogonal system in L2[a, b; w]. The interval [a, b] may or may not be
bounded. In the case of the functions E(·; α) the special values of α used make the q-
Bessel functions in (1.2) equal to certain multiples of q-Lommel polynomials evaluated
at the points supporting ρ masses. Note that this more general class of functions (1.4)
is reminiscent of the kernels in the theory of reproducing kernel spaces.

The continuous q-ultraspherical polynomials are generated (see [3]) by

C0(x; β|q) = 1

C1(x; β|q) = 2x 1−β
1−q

2x(1− βqn)Cn(x; β|q) = (1− qn+1) Cn+1(x;β|q) + (1− β2qn−1) Cn−1(x;β|q)





.

Their orthogonality relation is (see [3] and [9: Formula (7.4.15)])
∫ 1

−1

Cm(x;β|q) Cn(x; β|q)w(x; β|q) dx =
2π(β, qβ; q)∞
(q, β2; q)∞

(1− β)(β2; q)n

(1− βqn)(q; q)n
δm,n (1.6)

where the weight function is defined by

w(cos θ; β|q) =
(e2iθ, e−2iθ; q)∞

sin θ (βe2iθ, βe−2iθ; q)∞
(0 < θ < π).

2. Dual orthogonality and q-Lommel polynomials

Before introducing the q-Lommel polynomials we remind the reader of the concept of
dual orthogonality. Let {pn} be a system of discrete orthogonal polynomials and let
their orthogonality relation be

∞∑

k=0

w(xk)pm(xk)pn(xk) = 1
πn

δm,n.

It is known that such orthogonal polynomials may also satisfy the dual orthogonality
relation ∞∑

n=0

πnpn(xj)pn(xk) = 1
w(xk) δk,j .

We now give a precise statement and proof of this dual orthogonality relation.
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Theorem 2.1. Let {pn} be a sequence of orthonormal polynomials, with measure
of orthogonality µ, which satisfy a three term recurrence relation

xpn(x) = anpn+1(x) + bnpn(x) + an−1pn−1(x). (2.1)

Assume that the sequence {an} is bounded and that the corresponding moment problem
is determinate [1]. If the orthogonality measure µ has point masses at α and β (β may
be equal α), then

∞∑
n=0

pn(α) pn(β) = 1
µ({α}) δα,β .

Proof. For a determinate moment problem the series
∑∞

n=0 p2
n(x) converges if and

only if µ({x}) > 0, in which case the series converges to 1
µ({x}) (see [1, 15]). This settles

the case α = β. If α 6= β, the Christoffel-Darboux formula (see [17: Subsection 3.2])
implies

∞∑
n=0

pn(α) pn(β) = lim
m→∞

am
pm+1(α) pm(β)− pm+1(β) pm(α)

α− β

which implies the result since pn(x) → 0 as n →∞ and {an} is bounded

Theorem 2.1 is very likely to be known, but we have been unable to find it stated
explicitly in the standard sources. Essentially, the proof uses the orthogonality of eigen-
vectors of a symmetric operator corresponding to different eigenvalues und uses the
moment problem to find the normalization. Observe that if {pn} is a finite family of
orthogonal polynomials, then the dual orthogonality is the linear algebra fact that for
square matrices A, AAT = I implies AT A = I. The connection between orthogonality
and dual orthogonality for systems of finitely many polynomials is well-explained in
Atkinson [5] and is exploited in the construction of the orthogonality measure from a
three term recurrence relations of polynomials.

In [11] we proved that the q-Bessel functions satisfy the recurrence relation

qνJ
(2)
ν+1(z; q) =

2(1− qν)
z

J (2)
ν (z; q)− J

(2)
ν−1(z; q) (2.2)

and observed that this relation implies J
(2)
ν+m is expressed in terms of J

(2)
ν and J

(2)
ν−1 as

qmν+
m(m−1)

2 J
(2)
ν+m(z; q)

= hm,ν( 1
z ; q)J (2)

ν (z; q)− hm−1,ν+1( 1
z ; q)J (2)

ν−1(z; q)
(m ∈ N). (2.3)

The polynomials hn,ν(· ; q) are q-analogues of the Lommel polynomials [18]. They can
be generated by

2(1− qn+ν)xhn,ν(x; q) = hn+1,ν(x; q) + qn+ν−1hn−1,ν(x; q) (2.4)

for n > 0 and the initial conditions h0,ν(x; q) = 1 and h1,ν(x; q) = 2x(1− qν).
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In [11] we have proved that the zeros of z−νJ
(2)
ν (z; q), which are symmetric about

z = 0, are real and simple for ν > −1. Denote by {jν,k(q)} the sequence of positive
zeros of J

(2)
ν (·; q). In [11] we have established the Mittag-Leffler expansion

∞∑

k=1

Ak(ν + 1)
[

1
z − jν,k(q)

+
1

z + jν,k(q)

]
= −2

J
(2)
ν+1(z; q)

J
(2)
ν (z; q)

with coefficients An as in

d

dz
J (2)

ν (z; q)
∣∣∣
z=jν,n(q)

= −2
J

(2)
ν+1(jν,n(q); q)
An(ν + 1)

= 2q−ν J
(2)
ν−1(jν,n(q); q)
An(ν + 1)

. (2.5)

The second equality follows from (2.2). With these notations we have the orthogonality
relation (see [11])

∞∑

k=1

Ak(ν + 1)
j2
ν,k(q)

hn,ν+1( 1
jν,k(q) ; q)hm,ν+1( 1

jν,k(q) ; q)

+
∞∑

k=1

Ak(ν + 1)
j2
ν,k(q)

hn,ν+1(− 1
jν,k(q) ; q) hm,ν+1(− 1

jν,k(q) ; q) =
qνn+

n(n+1)
2

1− qn+ν+1
δm,n

(2.6)

for ν > −1. This indicates that the polynomials hn,ν(· ; q) are orthogonal with respect
to a purely discrete measure with compact support when ν > 0.

For future reference we record the dual orthogonality relation of the q-Lommel
polynomials. Let for a = ± 1

jν,k

∞∑
n=0

(1− qn+ν+1) q−nν−n(n+1)
2 hn,ν+1(a; q)hn,ν+1(b; q) =

j2
ν,k

Ak(ν + 1)
δa,b (2.7)

where 1
b is any zero of z−νJ

(2)
ν (z; q). Formula (2.7) follows from Theorem 2.1 because

the three term recurrence relation (2.4) identifies the coefficients in (2.1) as given by

bn = 0

2an = q
n+ν

2
[
(1− qn+ν)(1− qn+ν+1

]− 1
2

}
.

In the next part of this section we reconcile the standard notation used so far with
the notation used by Bustoz and Suslov [6] in the case ν = 1

2 in order to compare the
results. Note that (2.5) can be written in the form

d

dz

J
(2)
ν (z; q)

J
(2)
ν−1(z; q)

∣∣∣∣
z=jν,n(q)

=
2q−ν

An(ν + 1)
. (2.8)
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When ν = ± 1
2 , things simplify dramatically due to Euler’s theorem (1.1). From (1.3)

it follows that J
(2)
1
2

(z; q) is

(q
3
2 ; q)∞

(q; q)∞

(z

2

) 1
2
∞∑

n=0

(−1)nqn(n+ 1
2 )

(q, q
3
2 ; q)n

(z

2

)2n

=
(q

1
2 ; q)∞

i(q; q)∞

(
2
z

) 1
2 ∞∑

n=0

q
2n(2n+1)

4

(q
1
2 ; q

1
2 )2n+1

(
i
z

2

)2n+1

=
(q

1
2 ; q)∞

2i(q; q)∞

(
2
z

) 1
2 ∞∑

n=0

[
q

n(n−1)
4

(q
1
2 ; q

1
2 )n

(
i
z

2

)n

− q
n(n−1)

4

(q
1
2 ; q

1
2 )n

(
−i

z

2

)n
]

.

By Euler’s theorem (1.1) we get

J
(2)
1
2

(z; q) =
(q

1
2 ; q)∞

2i(q; q)∞

(
2
z

) 1
2 [(

−i
z

2
; q

1
2

)
∞
−

(
i
z

2
; q

1
2

)
∞

]
. (2.9)

Similarly,

J
(2)

− 1
2
(z; q) =

(q
1
2 ; q)∞

2(q; q)∞

(
2
z

) 1
2 [(

−i
z

2
; q

1
2

)
∞

+
(
i
z

2
; q

1
2

)
∞

]
. (2.10)

The observations (2.9) - (2.10) are due to Ismail and Stanton as acknowledged by Bustoz
and Suslov just before formulas (5.37) in [6]. Bustoz and Suslov [6] used the notation

ω0 = 0

ωn = 1
2j 1

2 ,n(q) (n ∈ N).

}

Thus
J

(2)
1
2

(z; q)

J
(2)

− 1
2
(z; q)

= i
1− g(z)
1 + g(z)

where g(z) =

(− i z
2 ; q

1
2
)
∞(

i z
2 ; q

1
2
)
∞

. (2.11)

Hence J
(2)
1
2

(z; q) = 0 if and only if g(z) = 1. Now (2.8) implies

q−
1
2

An( 3
2 )

=
g′(2ωn)

4i
= −i 1

4

d

dz
ln g(z)

∣∣∣
z=2ωn

. (2.12)



q-Fourier Systems 767

3. Orthogonality and completeness

We first establish orthogonality of the q-exponentials. Using (1.2), (1.6) and the com-
pleteness of the q-ultraspherical polynomials in L2[−1, 1; w(· ; β|q)] we find

∫ 1

−1

E(x; iα
2 ) Eq(x; iβ

2 )w(x; qν |q) dx

=
2π(αβ

4 )−ν(q; q)∞
(−q α2

4 ,−q β2

4 ; q2)∞(q2ν ; q)∞

×
∞∑

n=0

(1− qn+ν) q
n2
2

(q2ν ; q)n

(q; q)n
J

(2)
ν+n(α; q) J

(2)
ν+n(β; q).

(3.1)

If α and β are zeros of J
(2)
ν (· ; q), then the sum in (3.1) starts from n = 1. If α = 0 or

β = 0 but α 6= β, then the sum in (3.1) is obviously zero. If αβ 6= 0, we apply (2.3) to
reduce the sum in (3.1) to

J
(2)
ν−1(α; q)J

(2)
ν−1(β; q)q−2ν+ 1

2

×
∞∑

n=0

(1− qn+ν+1) q−2nν−n2
2

(q2ν ; q)n+1

(q; q)n+1
hn,ν+1( 1

α ; q) hn,ν+1( 1
β ; q).

We recognize the above sum as the sum in the dual orthogonality relation (2.7) if we
can get rid of the term (q2ν ;q)n+1

(q;q)n+1
. This forces the choice ν = 1

2 and now even the powers
of q match. In the notation of (2.11) we set α = 2ωm and β = 2ωn and obtain

∫ 1

−1

Eq(x; iωm) Eq(x; iωn)w(x; q
1
2 |q) dx =

8π|ωn|q− 1
2

An( 3
2 )

[J
(2)

− 1
2
(2|ωn|; q)

(−qω2
n; q2)∞

]2

δm,n (3.2)

for all m,n ∈ N0 with m2 + n2 6= 0. If m = n = 0, then Eq(x; iωm) = Eq(x; iωn) = 1

and (1.6) shows that the right-hand side of (3.2) becomes 2π(q
1
2 ,q

3
2 ;q)∞

(q,q;q)∞
. Observe that,

as q → 1−, jν,n(q)
1−q → jν,n and An(ν)

1−q → 2. Moreover, w(x; q
1
2 ) → 2 as q → 1−.

We now reduce the right-hand side of (3.2) to the form used in Bustoz and Suslov
[6]. Formulas (2.11) and (2.12) imply that the right-hand side of (3.2) is

2π(q
1
2 ; q)2∞(iωn,−iωn; q

1
2 )∞

i (q; q)2∞(−q2ω2
n; q2)2∞

d

dz
ln g(z)

∣∣∣
z=2ωn

.

The above expression is the same as (6.20) of [6] since

(iωn,−iωn; q
1
2 )∞ = (−ω2

n; q)∞ = (−ω2
n,−qω2

n; q2)∞.

The outcome is that (3.2) becomes
∫ 1

−1

Eq(x; iωm) Eq(x; iωn)w(x; q
1
2 |q) dx

=
2π(q

1
2 ; q)2∞(−ω2

n; q2)∞
(q, q; q)∞(−qω2

n; q2)∞

( ∞∑

k=0

q
k
2

1 + ω2
nqk

)
δm,n

(3.3)

for all m and n. The case m = n = 0 where ω0 = 0 is also covered by (3.3) since the
right-hand sides of (3.3) and (1.6) are equal when m = n = 0.
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Remark. It is clear from the argument presented here that the family of functions

( 2
α

)ν ∞∑
n=0

(1− q
n+1

2 ) ζnq
n2
4 J

(2)
ν+n(α; q)Cn(x; q

1
2 |q)

will also satisfy (3.3) when |ζn| = 1 for all n. Of course, the Eq correspond to the case
ζn = in. This makes it important to write the orthogonality relations as in (3.3) and
not as in [6] where Eq(x; iωn) is written as Eq(x;−iωn), which is certainly true for the
case ζn = in considered in [6]. This situation will occur again in Section 4.

We now come to the completeness of the q-exponentials.

Theorem 3.1. The system {Eq(x; iωn)}n∈N0 is complete in L2[−1, 1;w(· ; q 1
2 |q)].

Proof. For f ∈ L2[−1, 1; w(· ; q 1
2 |q)] define fk and φk by

fk =
∫ 1

−1

f(x) Eq(x; iwk)w(x; q
1
2 |q) dx

φk =
∫ 1

−1

f(x)Ck(x; q
1
2 |q) w(x; q

1
2 |q) dx.





(3.4)

Now assume that fk = 0 (k ∈ N0). Since the weight function w(· ; q 1
2 |q) is continuous

and bounded in [−1, 1] and positive on (−1, 1), then f is also in L[−1, 1; w(· ; q 1
2 |q)].

The fact ω0 = 0 makes Eq(x; ω0) = C0(x; q
1
2 |q) = 1 and (3.4) gives f0 = φ0 and

we get φ0 = 0. It is known that the set of polynomials {Cn(· ; q 1
2 |q)} is complete in

L2[−1, 1;w(· ; q 1
2 |q)]. For k > 0, Parseval’s theorem and (1.2) give

0 =
∞∑

n=0

(1− qn+ 1
2 )q

n2
4 (−i)nJ

(2)

n+ 1
2
(2ωk; q) φn

= −J
(2)

− 1
2
(2ωk; q)

∞∑
n=1

(1− qn+ 1
2 )q

n2
4 (−i)nq−

n2
2 hn−1, 3

2
( 1
2ωk

; q)φn

where we used (2.3). Taking into account hn,ν(−x; q) = (−1)nhn,ν(x; q) we establish

0 =
∞∑

n=0

φn+1(1− qn+ 3
2 )(∓i)nq

−n(n+2)
4 hn, 3

2
(± 1

2ωk
; q).

As we saw in (2.7) the q-Lommel polynomials are orthogonal on a compact set. Hence
the corresponding Hamburger moment problem is determinate [1, 15] and the set of
polynomials is complete in l2[µ], where µ is the measure with respect to which they are
orthogonal. Here µ is purely discrete and has masses at ± 1

2ωm
for m > 0. Moreover,

the orthonormal polynomials at a point x belong to l2 if and only if µ({x}) > 0. From
(2.6) we see that q−

n(n+2)
4 hn, 3

2
(x; q) ∈ l2 for all x = ± 1

2ωn
(n > 0). Furthermore,

f ∈ L2[−1, 1; w(· ; q 1
2 |q)] and (1.6) imply {φk} ∈ l2. Therefore the partial sums of the

series ∞∑
n=0

φn+1 (1− qn+ 3
2 )(−i)nq−

n(n+2)
4 hn, 3

2
(x; q)
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converge in l2[µ] to a function u ∈ l2[µ]. But this function u vanishes at all points
supporting positive masses, so it must be zero µ-a.e. which implies φn = 0 for n > 0.
Thus we have already established that φn = 0 for all n ≥ 0. The completeness of the
continuous q-ultraspherical polynomials in L2[−1, 1;w(· ; q 1

2 |q)] guarantees that f = 0
almost every where on [−1, 1] and the proof is complete

4. A generalization

At a first glance it seems that one can generalize the results in Section 3 in a straight
forward way by introducing functions of type (1.4). As noted in the introduction, {pn}
is a complete orthonormal system and {rn} is a complete discrete orthonormal system,
and their orthogonality relations are given in (1.5). In (1.4) it was assumed that {ζn}
is a sequence of points on the unit circle. The definition (1.4) will work but it is not
clear how to define F(· ; α) when α does not support a discrete mass for the rn’s. In
fact, the series

∑∞
n=0 ζn rn(α) pn(x) will diverge if α is not a ρ-mass point. The reason

is that {rn(α)} ∈ l2 if and only if α is a mass point for the measure of orthogonality
of the rn’s, hence rn(α) is small where the masses lie but is large at the rest of the
complex plane. By reexamining (1.2) we now realize that the presence of the q-Bessel
functions achieved this goal of interpolating through the mass points and the key is the
recurrence relations (2.2) and (2.3). Luckily for us, analogues of (2.2) and (2.3) have
been developed in some generality in our paper with Rahman and Zhang [12]. Before
mentioning details of this interpolating property we show how to expand polynomials
in the system {F(· ; α)}.

Let f be a polynomial. We now expand f(x) as
∑m

k=0 fkpk(x). From the definition
of the Fourier coefficients write

pk(x) =
∞∑

j=0

F (x, xj) rk(xj)ρ(xj), rn(xj) =
∫ b

a

F (x, xj)pn(x)w(x) dx.

Thus we find

f(x) =
m∑

k=0

fkpk(x)

=
m∑

k=0

fk

∞∑

j=0

F (x, xj)rk(xj)ρ(xj)

=
∞∑

j=0

F (x, xj)ρ(xj)
m∑

k=0

fkrk(xj)

=
∞∑

j=0

F (x, xj)ρ(xj)
m∑

k=0

fk

∫ b

a

F (x, xj)pk(x)w(x) dx.

Thus we have proved

f(x) =
∞∑

j=0

F (x, xj)ρ(xj)
∫ b

a

F (x, xj)f(x)w(x) dx.
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The above analysis was done for the Fourier-ultraspherical case in an early version of
[13] dated and circulated in July/August 1998. It was also pointed out that a q-analogue
is similar.

We now proceed with the details of this interpolating property.

Theorem 4.1 (see [12]). Let J (· ; ν) satisfy

CνJ (x; ν + 1) =
Bν

x
J (x; ν)− J (x; ν − 1) (4.1)

and let {fn,ν} be a sequence of polynomials recursively defined by

f0,ν(x) = 1

f1,ν(x) = xBν

fn+1,ν(x) = [xBn+ν ]fn,ν(x)− Cn+ν−1fn−1,ν(x)





. (4.2)

Then

CνCν+1 · · ·Cν+n−1J (x; ν + n) = J (x; ν)fn,ν

(
1
x

)− J (x; ν − 1)fn−1,ν+1

(
1
x

)
. (4.3)

The reader will immediately realize that (4.3) is (2.3) in this general setting. The
version in [12] contains an arbitrary number of parameters and allows for another term
independent of x in the coefficient of J (x; ν) in (4.1) but Theorem 4.1 is sufficient for
our needs here.

We need one more result due to H. M. Schwartz [16].

Theorem 4.2 (see [16]). Let {sn,ν} be a family of monic polynomials generated by

s0,ν(x) = 1

s1,ν(x) = x + βν

sn+1,ν(x) = [x− βn+ν ]sn,ν(x) + Cn+νsn−1,ν(x) (n > 0)





. (4.4)

If both series
∑∞

n=0 |βn+ν − a| and
∑∞

n=1 |Cn+ν | converge, then xnsn,ν(a + 1
x ) converge

uniformly on compact subsets of the complex plane to an entire function.

From the general theory of orthogonal polynomials it is known that when the pos-
itivity condition Bn+νBn+ν+1Cn+ν > 0 (n ≥ 0) holds, then the polynomials fn,ν are
orthogonal with respect to a positive measure. Moreover, the monic polynomials will
be

{ fn,ν

Bν ···Bν+n−1

}
.

Theorem 4.3. Assuming the positivity condition Bn+νBn+ν+1Cn+ν > 0 (n ≥ 0)
and that the series

∑∞
n=0

Cn+ν

Bn+νBn+ν+1
converges, then

lim
n→∞

zν+nfn,ν+1( 1
z )

Bν+1 · · ·Bν+n
= H(z; ν) (4.5)
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exists and is uniform on compact subsets of the complex z-plane and z−νH(z; ν) is an
entire function. Moreover, the polynomials fn,ν are orthogonal with respect to a compact
supported discrete measure ρν whose Stieltjes transform is given by

∫ b

a

dρν(t)
z − t

=
H( 1

z ; ν)
H( 1

z ; ν − 1)

(
z 6∈ supp{ρν}

)
. (4.6)

Furthermore, ρν is normalized by
∫ b

a
dρν(t) = 1 and fn,ν satisfy the orthogonality rela-

tion

∫ b

a

fm,ν(x)fn,ν(x) dρν(x) = λn(ν) δm,n, λn(ν) = Bν

Bn+ν
Cν · · ·Cν+n−1. (4.7)

Proof. The first part follows from Theorem 4.2. To prove the second part first
recall that the numerator polynomials associated with (4.2), f∗n,ν satisfy (4.2) with the
initial conditions f∗0,ν = 0 and f∗1,ν = Bν (see [4]). Therefore f∗n,ν = Bνfn−1,ν+1. From

Markov’s theorem (see [4, 17]), f∗n,ν(x)

fn,ν(x) tends to the left-hand side of (4.6) uniformly
on compact subsets of the complex x-plane not intersecting the support of ρν . This
and (4.5) establish (4.6). To see that the measure ρν is purely discrete just note that
the right-hand side of (4.6) is meromorphic. Then invoke the Perron-Stieltjes inversion
formula for the Stieltjes transform. Orthogonality relations (4.7) follow from standard
difference equation identities (see [4])

It must be noted that Schwartz knew that the continued J-fraction whose denomi-
nators are {fn,ν} converges to the right-hand side of (4.6) under conditions weaker than
the positivity condition. We required the positivity condition since we are interested in
the case when the polynomials fn,ν are orthogonal. Dickinson, Pollack and Wannier [7]
proved Theorem 4.3 when Cν = 1.

What is left is to relate H(·, ν) to a solution of (4.1). To do so first note that fn,ν

and fn±1,ν∓1 are solutions to the second order difference equation (4.2), hence they
must be linear dependent, that is fn,ν(x) is A(x)fn+1,ν−1(x) + B(x)fn−1,ν+1(x). By
matching the initial conditions we find

xBν−1fn,ν(x) = fn+1,ν−1(x) + Cν−1fn−1,ν+1(x). (4.8)

Replace x by 1
x , multiply by xn+ν−1

Bν ···Bn+ν−1
and then let n →∞. After applying (4.5), the

result after ν → ν + 1 is

1
x

BνBν+1H(x; ν) = BνBν+1H(x; ν − 1) + CνH(x; ν + 1). (4.9)

Let g be a function such that

g(ν + 1) = Bνg(ν). (4.10)

From (4.9) and (4.10) it follows that H(x;ν)
g(ν+1) satisfies (4.1).
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Definition. Define J (· ; ν) to be the function H(· ;ν)
g(ν+1) constructed above.

The functional relations (4.8) - (4.10) are in [7, 10] when Cν = 1. The sentence
before Theorem 4.3 (4.2) and Theorem 4.3 show that

z−νH(z; ν) =
∞∑

n=0

(−1)nan(ν)z2n

where
a0(ν) = 1

an(ν) = an(ν − 1) +
an−1(ν + 1)

BνBν+1
(n ≥ 1)



 .

Furthermore, an ≥ 0. At this stage we make the additional assumption

lim
ν→∞

z−νH(z; ν) = 1. (4.11)

This assumption is satisfied in the cases of Bessel and q-Bessel functions. We do not
have precise necessary and sufficient conditions on the coefficients Cν and Bν which
imply (4.11).

Theorem 4.4. Under the assumptions of Theorem 4.3 and (4.11), z−νJ (z; ν) is
an even function with only real and simple zeros and does not vanish at z = 0. The
zeros of z1−νJ (z; ν − 1) and z−νJ (z; ν) interlace. Let

0 < xν,1 < . . . < xν,n < . . . (4.12)

be the positive zeros of z−νJ (z; ν). Then the measure ρν of (4.6) satisfies ρν({x}) > 0
for x 6= 0 if and only if x = ± 1

xν,n
(n ∈ N). Moreover, ρν({0}) is M0(ν), where

1
M0(ν)

=
∞∑

n=1

Bn+ν

Bν

n−1∏

k=0

Cν+2k

Cν+2k+1
.

In Theorem 4.4, 1
M0(ν) is a sum of positive terms, and if the series diverges, then ρν

does not have a mass at x = 0, but x = 0 always belongs to the support of ρν . Theorem
4.4 in the case Cν = 1 was proved in [7] where the case of mass at zero was incorrect.
This was corrected later by Goldberg in [10]. Both [7, 10] further assume that ν in (4.1)
- (4.3) is a non-negative integer.

Proof of Theorem 4.4. From (4.6) we see that ρν has a mass at x if and only if
x is a pole or an essential singularity of the right-hand side. Because H(· ; ν) satisfies a
three-term recurrence relation, if two consecutive H’s have a common zero, then all the
function will have a common zero, which in view of (4.11) is a contradiction. Because
the support of ρν is bounded, it is compact and the Hamburger moment problem has
a unique solution. In this case the theory of the Hamburger moment problem [1, 15]

asserts that x = 0 supports a positive ρν-mass if and only if the series
∑∞

n=0

f2
n,ν(0)

λn(ν)

converges in which case the mass will be the reciprocal of the sum of the series. Now
(4.2) shows that fn,ν(0) = 0 for n odd and |f2n,ν(0)| is

∏n
k=1 |Cν+2k−2|
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Definition. Assume that {pn} is a family of orthonormal polynomials satisfying
(1.5) and that the corresponding moment problem is determined. A generalized expo-
nential function F(· ; α) is

F(x; α) = α−ν
∞∑

n=0

ζn

√
λn(ν) Bn+ν

Bν
J (α; n + ν) pn(x) (4.13)

where |ζn| = 1 for all n, provided the series converges.

We have not been able to derive a large ν asymptotics to prove convergence of the
series in (4.13) under general assumptions on the sequences βν and Cν . This is not
needed for orthogonality or completeness.

Before establishing the orthogonality and completeness of the F ’s we need to identify
the measure ρν . As before we let xν,n be the positive zeros of J (· ; ν). Let BνAn(ν)

2x2
ν−1,n

be

the mass of ρν at ± 1
xν−1,n

. Then

2
M0(ν + 1)

Bν+1
z − 2

J (z; ν + 1)
J (z; ν)

=
∞∑

k=1

Ak(ν + 1)
[

1
z + xν,k

+
1

z − xν,k

]
. (4.14)

Note that this is the equation between (2.4) and (2.5) extended to a general setting. To
prove (4.14) use (4.10) to rewrite (4.6), with (z, ν) replaced by ( 1

z , ν + 1), in the form

M0(ν + 1) z +
∞∑

k=1

Ak(ν + 1)Bν+1

2xν,k

[
z

xν,k − z
+

z

xν,k + z

]
=

Bν+1J (z; ν + 1)
J (z; ν)

which implies (4.14).
A consequence of (4.1) and (4.14) is

d

dz
J (z; ν)

∣∣
z=xν,n

= −2
J (xν,n; ν + 1)
An(ν + 1)

= 2
J (xν,n; ν − 1)
CνAn(ν + 1)

which corresponds to (2.5) in the q-Lommel case. With this notation the dual orthogo-
nality relation of (4.7) is

∞∑
n=0

Bν+1

2λn(ν + 1)
fn,ν+1(

1
xν,k

) fn,ν+1(
1

xν,j
) =

x2
ν,j

Aj(ν + 1)
δj,k. (4.15)

Theorem 4.5. Let xν,0 = 0 and xν,n be as in (4.12) and assume thatM0(ν+1) = 0.
In addition to the assumptions in Theorem 4.3 let the system {pn} be orthonormal on
[a, b] with respect to a weight function w and assume that the system {pn} is complete
in L2[a, b;w]. Then {F(· ; xν,n)} is a complete orthogonal system in L2[a, b;w] and its
orthogonality relation is given by

∫ b

a

F(x; xν,m)F(x; xν,n)w(x) dx =
2J 2(xν,n; ν − 1) δm,n

(xν,n)2ν−2 BνCνAn(ν + 1)
. (4.16)

Proof. Use Parseval’s theorem to see that the left-hand side of (4.16) is a single
sum, then apply (4.3) and (4.9) to recognize the sum as the sum in the dual orthogonality
relation (4.15). The dual orthogonality holds since an = Cν+n−1

Bν+nBν+n+1
, hence an → 0

as n → ∞. Simple calculations establish (4.16), hence the orthogonality follows. The
proof of the completeness is exactly the same as our proof of Theorem 3.1 and will be
omitted
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Let us consider the example of q-Lommel polynomials. In this case Bν = 2(1− qν)
and Cν = qν . Also,

pn(x) =

√
(1− qn+ν)(q; q)n

(1− qν)(q2ν ; q)n
Cn(x; qν |q)

λn(ν) =
(1− qν)

(1− qn+ν)
qνn+

n(n−1)
2





.

Thus

F(x;α) = α−ν
∞∑

n=0

ζnqn(2ν+n−1)/4 (1− qn+ν)
(1− qν)

√
(q; q)n

(q2ν ; q)n
J

(2)
ν+n(α; q)Cn(x; qν |q). (4.17)

This formula makes it evident that if we want a complete system of orthogonal functions
with respect to w(· ; qν |q), we must use the F in it. Unlike expansion (1.2) where Eq

does not depend on ν, the F in (4.17) depends on ν.
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