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Lipschitz Continuity
of Polyhedral Skorokhod Maps

P. Krejč́ı and A. Vladimirov

Abstract. We show that a special stability condition of the associated system of oblique
projections (the so-called `-paracontractivity) guarantees that the corresponding polyhedral
Skorokhod problem in a Hilbert space X is solvable in the space of absolutely continuous
functions with values in X. If moreover the oblique projections are transversal, the solution
exists and is unique for each continuous input and the Skorokhod map is Lipschitz continuous
in both spaces C([0, T ]; X) and W 1,1(0, T ; X). Also, an explicit upper bound for the Lipschitz
constant is derived.
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0. Introduction

A class of models called Skorokhod problems is widely used in areas such as elastoplas-
ticity, queueing theory, iterative optimization methods, mathematical economics (see
references in [2, 4]). Here we consider a particular case of polyhedral Skorokhod prob-
lems which can be described as follows.

A characteristic polyhedral set Z is given in a Hilbert space X. For a given input
function u(t) defined in a time interval [0, T ] with values in X we look for an output x(t)
with values in Z such that the derivative u̇(t)− ẋ(t) (in an appropriate sense) belongs to
a given reflection cone R(x(t)) at the point x(t). If the reflection rules, for each input u
in a suitable function space and for each initial condition x0 ∈ Z, determines a unique
output x, then the mapping S : [x0, u] 7→ ξ := u − x is called the Skorokhod map. Its
analytical properties for different classes of inputs and in different metrics on the space
of inputs and outputs play a crucial role in applications. In particular, the Lipschitz
continuity of S in the metric of uniform convergence has been studied during the last
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20 years [2 - 4, 7, 10]. This is, partially, due to the fact that this property allows one to
consider the operator S in the set of all continuous inputs u(·) which is more natural
for the investigation of stability with respect to small perturbations.

The case when the reflection cone R(z) coincides with the outward normal cone to
Z at each point z ∈ Z, like for instance in stress-strain laws of elastoplasticity, where the
normality rule follows from the maximal dissipation condition, constitutes the impor-
tant class of polyhedral Skorokhod problems with normal reflection. The corresponding
Skorokhod map then represents the constitutive operator of the Prager linear kinematic
hardening model and is called multi-dimensional play operator. Its Lipschitz continuity
with respect to the sup-norm was first proved in [10] (see also [7] where this theorem is
reproduced), then (by a different method) in [3, 4]. Recently, in [8], a recurrent upper
bound for the Lipschitz constant has been found.

The general situation of oblique reflection arises in various models of human activity,
and below in Section 8 we show a typical example from queuing theory. Sufficient
conditions for the Lipschitz continuity were formulated in [3, 4] in terms of existence of
a special convex set B ∈ X with 0 ∈ IntB. Conditions of existence of solution can also
be found in [3, 4]; however, they are different from the sufficient conditions of Lipschitz
continuity and require additional assumptions on the reflection directions.

In all applications, the question of Lipschitz continuity of the input-output operator
is substantial for the stability of numerical computations. An explicit knowledge of the
Lipschitz constant is useful in particular for estimating the discretization error and the
efficiency of the algorithm.

The analysis of the Skorokhod problem in this paper is based on the concept of `-
paracontractivity introduced in [6]. This is a special stability property of the associated
projection system of linear operators of oblique projection on hyperplanes parallel to
the faces of Z along the reflection directions (see Section 3). We first prove that `-
paracontractivity alone is sufficient for the existence of an absolutely continuous output
x(t) for every absolutely continuous input u(t) and every initial condition. If, in addition,
the associated projection system is transversal, that is, no reflection direction at a point
z is orthogonal to all normal directions at z, then the Skorokhod map is of Lipschitz type
in the space W 1,1(0, T ;X) as well as in the space C([0, T ]; X) of continuous functions. If
moreover Z has non-empty interior, then, for every continuous function u, the function
ξ = S[x0, u] has bounded variation.

An important property of `-paracontracting sets of oblique projections is their ro-
bustness with respect to small shifts of reflection vectors for fixed normal directions. This
property implies the Lipschitz continuity of Skorokhod problems under the transversal-
ity constraint whenever the reflection vectors are close to normal ones. On the other
hand, it does not yield an explicit upper bound for the Lipschitz constant of a devi-
ated Skorokhod problem. We obtain independently such an upper bound by a modified
method of Lyapunov functions (cf. [8]).

The paper is organized as follows. In Section 1 we state the Skorokhod problem in
the space of continuous functions. Section 2 is devoted to a survey of basic properties
of oblique projections. In Section 3 we prove that the `-paracontractivity ensures the
existence of a solution for each initial condition. In Section 4 we establish a Lipschitz-
type estimate for the sup-norm. Section 5 contains the main result which consists in
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proving that `-paracontractivity and transversality imply the Lipschitz continuity of the
Skorokhod map in both spaces W 1,1(0, T ;X) and C([0, T ];X). In Section 6 we derive
an estimate for the total variation of the output, and an upper bound for the Lipschitz
constant is derived in Section 7. We conclude the paper with an example from queuing
theory in Section 8.

1. The Skorokhod problem

Let X be a Hilbert space endowed with a scalar product 〈·, ·〉 and with the norm
| · | = 〈·, ·〉 1

2 . We consider a polyhedral set Z ⊂ X defined in terms of a system n1, . . . , np

of unit outward normal vectors as the intersection of half-spaces Hj (j = 1, . . . , p) by
the formula

Z =
⋂

j∈J

Hj , Hj =
{
z ∈ X : 〈z, nj〉 ≤ βj for j ∈ J

}
, J = {1, . . . , p} (1.1)

where βj ≥ 0 are given real numbers. We associate with Z a system {r1, . . . , rp} of unit
vectors called reflection vectors. For z ∈ Z we denote by

J̃(z) =
{
j ∈ J : 〈z, nj〉 = βj

}
(1.2)

the set of indices corresponding to ‘active’ constraints at the point z. The set-valued
mapping J̃ : Z → 2J is upper semicontinuous in the sense that for all z ∈ Z there exists
ε > 0 such that

|z′ − z| < ε =⇒ J̃(z′) ⊂ J̃(z). (1.3)
Indeed, it suffices to put

ε = min
{
βj − 〈z, nj〉 : j ∈ J \ J̃(z)

}
.

For a function w : [0, T ] → Z and any subset A ⊂ [0, T ] we put

J̃A(w) =
⋃

t∈A

J̃(w(t)).

For any subset J ′ ⊂ J we denote by C(J ′) the convex cone generated by vectors rj with
indices from J ′, that is

C(J ′) =



y =

∑

j∈J′
αjrj

∣∣∣∣ αj ≥ 0 for j ∈ J ′





and for z ∈ Z we call the set
R(z) = C(J̃(z)) (1.4)

the reflection cone at the point z. Similarly, for a function w : [0, T ] → Z and any set
A ⊂ [0, T ] we define

RA(w) = C(J̃A(w)). (1.5)
As an immediate consequence of (1.3), we see that for every w ∈ C([0, T ];Z) and every
compact set A ⊂ [0, T ] there exists ε > 0 such that for each w̃ ∈ C([0, T ];Z) the
implication

|w − w̃|A < ε =⇒ RA(w̃) ⊂ RA(w) (1.6)
holds where for v ∈ C([0, T ];X) we put |v|A = maxt∈A |v(t)|.

We state the Skorokhod problem in the framework of continuous functions as follows:
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Definition 1.1. Let u ∈ C([0, T ];X) be a given function. A pair of functions
ξ, x ∈ C([0, T ];X) is said to be a solution to the Skorokhod problem with characteristic
Z given by (1.1) and with reflection vectors r1, . . . , rp, if

x(t) + ξ(t) = u(t)

x(t) ∈ Z

ξ(t2)− ξ(t1) ∈ R[t1,t2](x)

for every t ∈ [0, T ]

for every t ∈ [0, T ]

for every 0 ≤ t1 < t2 ≤ T





. (1.7)

The alternative formulation given in [3, 4] includes also discontinuous inputs and
outputs. The restriction to continuous functions enables us to make the geometrical
ideas more clear and the proofs more transparent. Due to (1.3), we see that whenever
the derivatives u̇(t), ẋ(t), ξ̇(t) exist for some t, the third condition in (1.7) yields

ξ̇(t) ∈ R(x(t)). (1.8)

In other words, the vector u̇(t) is decomposed into a tangential component ẋ(t) and a
reflection component ξ̇(t). The problem has been studied in detail in the case of normal
reflection, that is, nj = rj for every j ∈ J , and a survey of results can be found in [2]. In
fact, the Skorokhod problem can then be stated as an evolution variational inequality
in a Hilbert space which makes it accessible to classical analytical methods. Here, we
are particularly interested in the case of oblique reflection, where no a priori assumption
is made on the relationship between nj and rj .

We immediately see, however, that a necessary condition for the well-posedness of
the Skorokhod problem reads

〈rj , nj〉 > 0 (1.9)

whenever the j-th constraint is non-degenerate, that is, if there exists xj ∈ Z such that
J̃(xj) = {j}. Indeed, if 〈rj , nj〉 ≤ 0, then taking x(0) = xj and u̇(t) ≡ nj in [0, T ],
we conclude from the convexity of Z and from (1.6) that 〈x(t) − x(0), nj〉 ≤ 0 and
〈ξ(t)− ξ(0), nj〉 ≤ 0 for small t > 0, which is a contradiction.

Put
Y = span{n1, . . . , np; r1, . . . , rp}

and let Y ⊥ be the orthogonal complement of Y in X. For every functions u, x, ξ ∈
C([0, T ];X) satisfying (1.7) and an arbitrary w ∈ C(0, T ; Y ⊥), the functions ũ = u +
w, x̃ = x + w, ξ̃ = ξ also satisfy (1.7). We can therefore restrict our considerations to
the (finite-dimensional) space Y instead of X.

This motivates the following hypothesis which is assumed to be valid in all what
follows:

Hypothesis 1.2. X = span{n1, . . . , np; r1, . . . , rp} and (1.9) holds for every j ∈ J .

If the solution to the Skorokhod problem with a given initial condition x(0) = x0 ∈ Z
is unique, we define the Skorokhod map S : Z × C([0, T ]; X) → C([0, T ];X) by the
formula

S[x0, u] = ξ. (1.10)

By construction, the mapping S is causal and rate-independent, hence it belongs to the
class of hysteresis operators.
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2. Oblique projections

For j ∈ J , let Qj be the projection onto span{rj} orthogonal to nj , that is,

Qjx =
〈x, nj〉
〈rj , nj〉 rj for x ∈ X. (2.1)

The family Q of complementary projections {(I −Qj)| j ∈ J}, where I : X → X is the
identity mapping, is called the associated projection system of the Skorokhod problem.

Let us introduce the following basic definition (cf. [6]).

Definition 2.1. Let Hypothesis 1.2 hold. The system Q is said to be `-paracon-
tracting if there exists a norm in X denoted by ‖ · ‖ such that for every x ∈ X and every
j ∈ J we have

‖x‖ ≥ ‖(I −Qj)x‖+ |Qjx|. (2.2)

In the case of the Skorokhod problem with normal reflection, such a norm can be
constructed explicitly (see [1, 2, 9]).

The following result shows that the `-paracontracting property is robust with respect
to small shifts of the reflection vectors. In particular, it remains valid if the reflection
directions are sufficiently close to the normal ones.

Lemma 2.2. Let the system Q be `-paracontracting and let {r′1, . . . , r′p} be a set of
unit vectors such that for every j ∈ J we have

〈nj , r
′
j〉 > 0,

∣∣∣∣∣
rj

〈nj , rj〉 −
r′j

〈nj , r′j〉

∣∣∣∣∣ +

∥∥∥∥∥
rj

〈nj , rj〉 −
r′j

〈nj , r′j〉

∥∥∥∥∥ <
1

〈nj , r′j〉
.

Then the system Q′ of projections I −Q′
j, where the vectors rj are replaced with r′j, is

also an `-paracontracting system.

Proof. Put

δ = max
j∈J

{
〈nj , r

′
j〉

(∣∣∣∣
rj

〈nj , rj〉 −
r′j

〈nj , r′j〉

∣∣∣∣ +
∥∥∥∥

rj

〈nj , rj〉 −
r′j

〈nj , r′j〉

∥∥∥∥
)}

< 1.

For every j ∈ J and x ∈ X we then have

‖(I −Q′
j)x‖ ≤ ‖(I −Qj)x‖+ ‖(Q′j −Qj)x‖

≤ ‖x‖ − |Q′jx|+ |(Q′
j −Qj)x|+ ‖(Q′j −Qj)x‖

≤ ‖x‖ − |Q′jx|+ |〈x, nj〉|
(∣∣∣∣

rj

〈nj , rj〉 −
r′j

〈nj , r′j〉

∣∣∣∣ +
∥∥∥∥

rj

〈nj , rj〉 −
r′j

〈nj , r′j〉

∥∥∥∥
)

≤ ‖x‖ − |Q′jx|+ δ

∣∣∣∣
〈x, nj〉
〈nj , r′j〉

∣∣∣∣
= ‖x‖ − (1− δ)|Q′

jx|.
Dividing this inequality by 1 − δ, we see that the assertion holds with respect to the
norm ‖ · ‖′ = 1

1−δ‖ · ‖
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We have the following easy consequence of Definition 2.1.

Lemma 2.3. If Q is `-paracontracting, then

‖x‖ ≥ ‖(I − γQj)x‖+ γ|Qjx| (2.3)

for every j ∈ J , x ∈ X and 0 ≤ γ ≤ 1.

Proof. Multiplying (2.2) by γ and using the triangle inequality, we get

γ‖x‖ ≥ ‖γ(I −Qj)x‖+ γ|Qjx| ≥ ‖(I − γQj)x‖ − (1− γ)‖x‖+ γ|Qjx|

and (2.3) follows easily

Let us define nonlinear operators of oblique projection onto half-spaces Hj (j ∈ J)
as

πj(x) =
{

x if 〈x, nj〉 ≤ βj

(I −Qj)x + βjQjnj if 〈x, nj〉 > βj .
(2.4)

We will need the following two properties of the operators πj .

Proposition 2.4. Let Q be `-paracontracting. Then for each j ∈ J the following
inequalities hold:

(i) |πj(x)− x| ≤ ‖x− z‖ − ‖πj(x)− z‖ for all x ∈ X and all z ∈ Hj.

(ii)
∥∥πj(x1)−πj(x2)

∥∥ ≤ ‖x1−x2‖−
∣∣(x1−πj(x1))−(x2−πj(x2))

∣∣ for all x1, x2 ∈ X.

Proof. (i) Let us denote v = x− z and w = πj(x)− z. Then

w = (I − γQj)v where γ =

{
0 if 〈x, nj〉 ≤ βj
〈x,nj〉−βj

〈x,nj〉−〈z,nj〉 if 〈x, nj〉 > βj .

We have 0 ≤ γ ≤ 1 because 〈z, nj〉 ≤ βj . Hence the assertion follows from Lemma 2.3.

(ii) If 〈xi, nj〉 ≤ βj for one or both of x1 and x2, it suffices to use assertion (i).
Otherwise πj(x1)− πj(x2) = (I −Qj)(x1 − x2) and the statement follows directly from
(2.2)

We further define a mapping π : X → Z called quasiprojection such that for every
x ∈ X close to a point z ∈ Z the difference x − π(x) lies in the reflection cone of z (a
precise formulation will be given in Proposition 2.6 below).

We take a specific sequence {jk}k≥0 of indices from J , namely

jk = k [mod p] + 1 (k ∈ N0) (2.5)

and for a given x ∈ X we define recursively the sequence

y0 = x

yk+1 = πjk
(yk) (k ∈ N0)

}
. (2.6)
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By construction, yk+1 ∈ Hjk
for every k ∈ N0. Moreover, from Proposition 2.4 we get

∞∑

k=0

|yk+1 − yk| ≤ ‖x− z‖ (z ∈ Z).

Hence the sequence {yk} is convergent and we define the quasiprojection operator π :
X → X by

π(x) = lim
k→∞

yk for x ∈ X. (2.7)

From the construction π(x) ∈ Z follows.
We now list further properties of π.

Proposition 2.5. Let Q be `-paracontracting. Then for every x ∈ X we have

(i) ‖π(x)− z‖ ≤ ‖x− z‖ − |x− π(x)| for all z ∈ Z

(ii) ‖x− π(x)‖ ≤ 2minz∈Z ‖x− z‖
(iii) ‖π(x1)−π(x2)‖ ≤ ‖x1−x2‖−

∣∣(x1−π(x1))− (x2−π(x2))
∣∣ for all x1, x2 ∈ X.

Proof. (i) Let {yk} be the sequence (2.6). By Proposition 2.4/(i),

|yk+1 − yk| ≤ ‖yk − z‖ − ‖yk+1 − z‖ (2.8)

for every k. Summing up over k ∈ N0 we obtain the assertion.
(ii) Let z∗ ∈ Z be such that ‖x − z∗‖ = minz∈Z ‖x − z‖. From (2.8) we obtain

‖yk − z∗‖ ≤ ‖y0 − z∗‖, hence

‖x− yk‖ ≤ ‖x− z∗‖+ ‖yk − z∗‖ ≤ 2‖x− z∗‖

and assertion (ii) follows.

(iii) Let {y(i)
k } for i = 1, 2 be sequences (2.6) with initial conditions y

(i)
0 = xi. By

Proposition 2.4/(ii), for all k we have

‖y(1)
k+1 − y

(2)
k+1‖ ≤ ‖y(1)

k − y
(2)
k ‖ − |(y(1)

k − y
(1)
k+1)− (y(2)

k − y
(2)
k+1)|

and, analogously to assertion (i), a summation argument completes the proof

The following property of π plays a substantial role in our argument.

Proposition 2.6. Let Q be `-paracontracting. Let z ∈ Z be given and let ε > 0 be
such that the implication

‖x− z‖ < ε =⇒ 〈x, nj〉 < βj ∀ j ∈ J \ J̃(z)

holds for every x ∈ X. Then

x− π(x) ∈ R(z) ∀x ∈ X with ‖x− z‖ < ε (2.9)

where R(z) is the reflection cone defined by (1.4).
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Proof. Let {yk} be sequence (2.6). By (2.9), ‖yk − z‖ ≤ ‖x − z‖ < ε for every k,
hence

〈yk, nj〉 < βj ∀ j ∈ J \ J̃(z). (2.10)

On the other hand,

x− π(x) =
∞∑

k=0

(yk − yk+1) =
∑

k∈K

Qjk
(yk − βjk

njk
) =

∑

k∈K

〈yk, njk
〉 − βjk

〈rjk
, njk

〉 rjk
(2.11)

where K = {k : 〈yk, njk
〉 > βjk

}. Therefore, by (2.10), jk ∈ J̃(z) for every k ∈ K, and
from (2.11) we conclude that there exist coefficients αj ≥ 0 such that

x− π(x) =
∑

j∈J̃(z)

αjrj (2.12)

which we wanted to prove

3. Skorokhod problem in W 1,1(0, T ; X)

We first solve the Skorokhod problem for absolutely continuous input functions u. Keep-
ing the notation from Section 2, we construct a solution by time-discrete approximation.

With any given input sequence (finite or infinite) {u0, u1, . . .} and initial condition
x0 ∈ Z we associate output sequences {x0, x1, . . .} and {ξ0, ξ1, . . .} by the recurrent
formulas

xi+1 = π(xi + ui+1 − ui)

ξi = ui − xi

}
(i ∈ N0) (3.1)

where π is the quasiprojection operator (2.7). For every i ≥ 1 we have in particular
xi ∈ Z and

ξi − ξi−1 =
(
xi−1 + ui − ui−1

)− π
(
xi−1 + ui − ui−1

)
, (3.2)

hence Proposition 2.5 yields

|ξi − ξi−1| ≤ ‖xi−1 + ui − ui−1 − z‖ − ‖xi − z‖ (z ∈ Z). (3.3)

Let two input sequences {u(j)
i } (j = 1, 2) be given. We denote by {x(j)

i }, {ξ(j)
i } the cor-

responding output sequences and by {ūi}, {x̄i}, {ξ̄i} the differences ūi = u
(2)
i −u

(1)
i , x̄i =

x
(2)
i − x

(1)
i , ξ̄i = ξ

(2)
i − ξ

(1)
i . From Proposition 2.5/(iii) we then obtain

|ξ̄i − ξ̄i−1| ≤ ‖x̄i−1 + ūi − ūi−1‖ − ‖x̄i‖. (3.4)

The existence result can be stated as follows.
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Theorem 3.1. Let Q be an `-paracontracting system, and let u ∈ W 1,1(0, T ;X)
and x0 ∈ Z be given. Then there exist functions x, ξ ∈ W 1,1(0, T ;X) satisfying the
conditions of Definition 1.1 and x(0) = x0.

Proof. For a given n ∈ N, we divide the interval [0, T ] into an equidistant partition

0 = t
(n)
0 < t

(n)
1 < . . . < t(n)

n = T, t
(n)
i =

i

n
T (i = 0, . . . , n)

and put, keeping n fixed for the moment,

ui = u(t(n)
i ) (i = 0, . . . , n). (3.5)

Let an initial condition x0 be given. We define xi for i = 1, . . . , n by formula (3.1), and
for t ∈ [t(n)

i−1, t
(n)
i ) we put

u(n)(t) = ui−1 + n
T (t− t

(n)
i−1)(ui − ui−1)

x(n)(t) = xi−1 + n
T (t− t

(n)
i−1)(xi − xi−1)

}
. (3.6)

As a consequence of (3.3) where we put z = xi−1, for every i = 1, . . . , n the inequality

‖xi − xi−1‖ ≤ ‖ui − ui−1‖ (3.7)

holds. The sequence {x(n)} is thus equibounded in C([0, T ]; X) and {ẋ(n)} is equi-
integrable in L1(0, T ;X), x(n)(t) ∈ Z for every t ∈ [0, T ]. There exists therefore
x ∈ W 1,1(0, T ;X) such that x(t) ∈ Z for every t ∈ [0, T ] and x(0) = x0, and a subse-
quence of {x(n)} (still indexed by (n)) such that x(n) → x uniformly in C([0, T ]; X) and
ẋ(n) → ẋ in L1(0, T ; X) weakly as n →∞.

It remains to prove that the function ξ(t) = u(t) − x(t) satisfies for a.e. t ∈ (0, T )
the condition

ξ̇(t) ∈ R(x(t)). (3.8)

Let t ∈ (0, T ) be a Lebesgue point of both u and x, and let ε > 0 be chosen according
to (1.3) in such a way that the implication

‖x(t)− x̂‖ < ε =⇒ 〈x̂, nj〉 < βj ∀ j ∈ J \ J̃(x(t)) (3.9)

holds for every x̂ ∈ X. We fix n0 ∈ N and δ > 0 such that

maxτ∈[0,T ]‖x(n)(τ)− x(τ)‖ < 1
3ε for n ≥ n0 (3.10)

‖x(t)− x(τ)‖ < 1
3ε for τ ∈ (t− δ, t + δ) (3.11)

‖u(σ)− u(τ)‖ < 1
3ε for σ, τ ∈ (t− δ, t + δ). (3.12)

Let now n ≥ n0 and i ∈ {1, . . . , n} be such that t
(n)
i−1, t

(n)
i ∈ (t − δ, t + δ), and for

τ ∈ (t− δ, t + δ) put ξ(n)(τ) = u(n)(τ)− x(n)(τ). Then
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ξ(n)(t(n)
i )− ξ(n)(t(n)

i−1) =
(
xi−1 + ui − ui−1

)− π
(
xi−1 + ui − ui−1

)
.

According to (3.10) - (3.12), the point x̂ = xi−1 + ui − ui−1 satisfies the inequality

‖x̂− x(t)‖ ≤ ‖x(n)(t(n)
i−1)− x(t)‖+ ‖u(t(n)

i )− u(t(n)
i−1)‖ < ε

and from (3.9) and Proposition 2.6

ξ(n)(t(n)
i )− ξ(n)(t(n)

i−1) ∈ R(x(t))

follows. Since the functions ξ(n) are piecewise linear, for large n we have

ξ(n)(t2)− ξ(n)(t1) ∈ R(x(t))

for every t− δ < t1 ≤ t ≤ t2 < t+ δ, and passing to the limit we obtain (3.8). The proof
is complete

Remark 3.2. If u1, u2 ∈ W 1,1(0, T ;X) are two input functions, then from (3.4) it
follows for the piecewise linear approximations that for t ∈ (t(n)

i−1, t
(n)
i ) we have

∣∣ξ̇(n)
2 (t)− ξ̇

(n)
1 (t)

∣∣ +
n

T

(
x̄

(n)
i − x̄

(n)
i−1

) ≤
∥∥u̇

(n)
2 (t)− u̇

(n)
1 (t)

∥∥ (3.13)

where x̄
(n)
i =

∥∥x
(n)
2 (t(n)

i )− x
(n)
1 (t(n)

i )
∥∥.

Let 0 < a < b < T be arbitrarily chosen. For n sufficiently large we find indices
1 < j < k < n such that t

(n)
j−2 < a ≤ t

(n)
j−1 and t

(n)
k ≤ b < t

(n)
k+1. Integrating (3.13) we

obtain
∫ b

a

∣∣ξ̇(n)
2 (t)− ξ̇

(n)
1 (t)

∣∣dt +
(
ckx̄

(n)
k+1 + (1− ck)x̄(n)

k

)− (
dj x̄

(n)
j−2 + (1− dj)x̄

(n)
j−1

)

≤
∫ b

a

∥∥u̇
(n)
2 (t)− u̇

(n)
1 (t)

∥∥dt

(3.14)

where ck = (b−t
(n)
k

)n

T and dj =
(t

(n)
j−1−a)n

T . The sequences {u(n)
1 }, {u(n)

2 } converge strongly
in W 1,1(0, T ; X) and {ξ̇(n)

1 }, {ξ̇(n)
2 } converge weakly in L1(0, T ;X). Passing to the limit

as n →∞ in (3.14) we thus obtain

∫ b

a

∣∣ξ̇2(t)− ξ̇1(t)
∣∣ dt ≤ lim inf

n→∞

∫ b

a

∣∣ξ̇(n)
2 (t)− ξ̇

(n)
1 (t)

∣∣ dt (3.15)

≤ ‖x2(a)− x1(a)‖ − ‖x2(b)− x1(b)‖+
∫ b

a

‖u̇2(t)− u̇1(t)‖ dt.

Since a and b have been arbitrary, we can write the above inequality in differential form

|ξ̇2(t)− ξ̇1(t)|+ d

dt
‖x2(t)− x1(t)‖ ≤ ‖u̇2(t)− u̇1(t)‖ a.e. (3.16)
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which is the same as in the normal reflection case (see [1]).

We cannot conclude for the moment that the solution to the Skorokhod problem
is unique in W 1,1(0, T ; X) (see Example 3.3 below); we only made sure that solutions
which can be constructed as discrete limits are unique. The uniqueness and Lipschitz
continuity in W 1,1(0, T ; X) will be obtained under an additional assumption below in
Theorem 5.8.

Example 3.3. Let {e1, e2} be an orthonormal basis in X = R2. We consider the
set Z = {x ∈ X : 〈x, e1〉 = 0}. This corresponds to the choice n1 = −n2 = e1 and
β1 = β2 = 0 in (1.1). We choose the reflection vectors r1 = e2+e1√

2
and r2 = e2−e1√

2
. Then

the system Q is `-paracontracting with the norm

‖x‖ = (1 +
√

2)|〈x, e1〉|+ |〈x, e2〉|.

For the input function u(t) ≡ 0, all functions of the form ξ(t) = λ(t)e2 and x(t) =
−λ(t)e2 with a non-decreasing function λ such that λ(0) = 0 are solutions of the Sko-
rokhod problem (1.7) with initial condition x(0) = 0. However, the time discretization
method converges to the trivial solution ξ = x ≡ 0.

4. Uniqueness and Lipschitz continuity in C([0, T ]; X)

Sufficient conditions for Lipschitz continuity of the Skorokhod map with respect to the
norm | · |[0,T ] of uniform convergence were given in [3, 4] in terms of existence of a
special bounded set B ⊂ X (condition (B) in Theorem 4.1 below, with the additional
requirement 0 ∈ Int(B)). We now study this problem in more detail and summarize our
results in Theorem 4.9 at the end of this section.

We first derive some geometrical properties of the associated projection system.

Theorem 4.1. Let Hypothesis 1.2 hold, let Qj (j ∈ J) be the projections defined
by (2.1) and let B ⊂ X be a closed convex set with 0 ∈ B. Then the following two
conditions are equivalent:

(A) For all x ∈ B and all j ∈ J , w := (I−Qj)x±Qjnj ∈ B where I is the identity
operator.

(B) For all x ∈ B, all y ∈ NB(x) and all j ∈ J , |〈x, nj〉| < 1 implies 〈y, rj〉 = 0
where NB(x) denotes the outward normal cone to B at the point x.

Notation 4.2. In the sequel, by a Q-invariant set we understand any convex closed
set B containing the origin and satisfying condition (A).

Proof of Theorem 4.1.
(A) ⇒ (B): By definition, for every x ∈ B and every y ∈ NB(x), 〈y, x− w〉 ≥ 0 for

all w ∈ B. Assuming condition (A), we may put w = (I −Qj)x±Qjnj and obtain

0 ≤ 〈y,Qj(x∓ nj)〉 = 〈y, rj〉 〈x, nj〉 ∓ 1
〈nj , rj〉 .
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If |〈x, nj〉| < 1 for some j ∈ J , the above inequality immediately yields 〈y, rj〉 = 0 and
(B) follows.

(B) ⇒ (A): Let x ∈ B and j ∈ J be given and let A be the rectangle A =
[0, 1]× [−1, 1]. For (α, β) ∈ A put

xα,β = α(I −Qj)x + βQjnj .

Let G = {(α, β) ∈ A : xα,β ∈ B} be the set of ‘good’ indices. The set G is obviously
non-empty (since (0, 0) ∈ G) and closed (since B is closed). The proof will be complete
if we check that G = A.

With the convex closed set B we can associate the projection pair (PB , QB) defined
as follows. For a given x ∈ X, define w = QBx and y = PBx = x−QBx by the formula

w ∈ B, |y| = min
{|x− z| : z ∈ B

}
. (4.1)

As a consequence of the definition, the point y = PBx belongs to the outward normal
cone NB(w). Let (ᾱ, β̄) ∈ G be given such that 0 ≤ ᾱ < 1 and −1 < β̄ < 1. We choose
arbitrary (α, β) ∈ A such that

|β|+ |α− ᾱ| |(I −Qj)x|+ |β − β̄|
〈rj , nj〉 < 1 (4.2)

and put wα,β = QBxα,β and yα,β = PBxα,β . Then

|〈wα,β , nj〉| ≤ |〈xα,β , nj〉|+ |〈yα,β , nj〉|
≤ |β|+ |yα,β |
≤ |β|+ |xα,β − xᾱ,β̄ |

≤ |β|+ |α− ᾱ||(I −Qj)x|+ |β − β̄|
〈rj , nj〉 .

From (4.2) |〈wα,β , nj〉| < 1 follows, and Condition (B) yields

〈yα,β , rj〉 = 0. (4.3)

On the other hand, by definition of the outward normal cone, 〈yα,β , wα,β − w〉 ≥ 0 for
all w ∈ B. We can choose in particular w = αx, and from (4.3) we obtain

0 ≤ 〈yα,β , wα,β − αx〉 = 〈yα,β , wα,β − xα,β〉 = −|yα,β |2.
We conclude that xα,β ∈ B, hence the set G is relatively open in A. Therefore G = A,
and Theorem 4.1 is proved

We now give some useful consequences of Theorem 4.1.

Corollary 4.3. Let Hypothesis 1.2 hold and let B be Q-invariant. Then

〈z, nj〉〈y, rj〉 ≥ 0

for all z ∈ B, y ∈ NB(z) and j ∈ J .

Proof. Let j ∈ J, z ∈ B and y ∈ NB(z) be given. We have 〈y, z−w〉 ≥ 0 for every
w ∈ B. Using Theorem 4.1 we obtain the assertion by putting w = (I −Qj)z
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The following result is immediate and we leave the proof to the reader.

Corollary 4.4. Let B be a Q-invariant set. Then the sets %B = {%x : x ∈ B}
are Q-invariant for every % ∈ R with |%| ≥ 1. Moreover, if B1 and B2 are Q-invariant,
then B∗ = conv(B1 ∪ B2) and B∗ = B1 ∩ B2 are Q-invariant. In particular, to every
Q-invariant set B there exists a symmetric Q-invariant set Bsym = B ∩ (−B).

We now give an explicit description of the minimalQ-invariant set. The construction
is illustrated on Figure 2 in Section 8.

Corollary 4.5. Let Λ denote the set of all finite sequences λ = (j0, . . . , jm−1) (m ∈
N) such that jk ∈ J for k = 0, . . . , m− 1. Let sλ = (x0, . . . , xm) be the sequence

x0 = 0

xk+1 = (I −Qjk
)xk ±Qjk

njk
(k = 0, . . . , m− 1)

}
(4.4)

and put xω
λ = xm. Further, let Bω be the set Bω = conv{xω

λ : λ ∈ Λ}. Then:

(i) Bω is a symmetric Q-invariant set.
(ii) Every Q-invariant set B contains Bω.

Proof. To prove assertion (i) it suffices to check that Bω satisfies (A). By definition
of Bω, (I −Qj)xω

λ ±Qjnj ∈ Bω for every j ∈ J and every λ ∈ Λ. In a similar way, for
every convex combination

x =
n∑

i=1

αix
ω
λi
∈ Bω with

n∑

i=1

αi = 1 and αi ≥ 0

we have

(I −Qj)x±Qjnj =
n∑

i=1

αi

(
(I −Qj)xω

λi
±Qjnj

) ∈ Bω

and the closedness of Bω yields assertion (i).
Assertion (ii) is an immediate consequence of Theorem 4.1: if B is a Q-invariant set,

then by induction xω
λ ∈ B for every λ ∈ Λ. Since B is convex and closed, the assertion

follows

Remark 4.6. A sequence sλ of form (4.4) is called an 1-trajectory associated to
λ ∈ Λ. We will see below in Theorem 5.8 that the Lipschitz constant of the Skorokhod
map is related to the diameter of the set B from Theorem 4.1. According to Corollary
4.5, Bω is the minimal set with the desired property. An upper bound for all possible
1-trajectories will therefore yield an upper bound for the Lipschitz constant.

In particular, we have to ask whether Bω is bounded. We first state a necessary
condition in terms of the vectors nj and rj . For each J ′ ⊂ J we define the spaces

RJ′ = span{rj : j ∈ J ′}
NJ′ = span{nj : j ∈ J ′}

}
. (4.5)
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Lemma 4.7. For every J ′ ⊂ J we have

RJ ′ ∩N⊥
J′ ⊂ Bω ⊂ RJ

where RJ′ and NJ′ are defined by (4.5) and N⊥
J′ denotes the orthogonal complement to

NJ ′ .

Proof. The fact that Bω ⊂ RJ is obvious. Let J ′ ⊂ J and x ∈ RJ′ ∩ N⊥
J ′ be

arbitrarily chosen and assume x 6= 0. We find real numbers ai (i ∈ J ′) such that
x =

∑
i∈J′ airi and put bi = 〈ni, ri〉ai and c =

∑
i∈J′ |bi|. Then the point

1
c

x =
∑

i∈J′

1
c

biQini

belongs to Bω by definition. Moreover, if kx ∈ Bω for some k ∈ R, then by Theorem
4.1 and Corollary 4.5

(I −Qj)kx± sign(bj)Qjnj ∈ Bω ∀ j ∈ J ′.

By hypothesis, Qjx = 0 for every j ∈ J ′, and the convexity of Bω yields

∑

j∈J′

1
c
|bj |

(
(I −Qj) kx± sign(bj)Qjnj

)
=

∑

j∈J ′

1
c
|bj |

(
kx± sign(bj)Qjnj

)

=
(
k ± 1

c

)
x ∈ Bω

hence Bω contains the whole line span{x}
Corollary 4.8. Let Bω be bounded. Then

RJ ′ ∩N⊥
J′ = {0} (4.6)

for all J ′ ⊂ J .

In the sequel, condition (4.6) will be referred to as the transversality condition. It
is obviously satisfied in the case of normal reflection and, obviously as well, it is not
robust with respect to small changes of reflection vectors. This is indeed a drawback,
but we show below in Corollary 5.3 that in combination with `-paracontractivity the
transversality condition is equivalent to the condition

dimNJ ′ = dimRJ ′ ∀J ′ ⊂ J (4.7)

which is simply a linear constraint to the robustness of the `-paracontractivity.

For the reader’s convenience, we give here the proof of the following Lipschitz esti-
mate which basically follows the lines of [3: Theorem 2.2]. We however do not assume
explicitly here that the set B has non-empty interior.
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Theorem 4.9. Let Hypothesis 1.2 hold and let there exist a symmetric Q-invariant
set B. Let mB : X → R+ ∪ {+∞} be the Minkowski functional of the set B, that is,

mB(x) = inf
{

s > 0 :
1
s

x ∈ B
}

(x ∈ X).

Let u1, u2 ∈ C([0, T ]; X) be two input functions for which there exist respective solutions
(ξ1, x1), (ξ2, x2) to the Skorokhod problem. For t ∈ [0, T ] put

ξ̄(t) = ξ1(t)− ξ2(t)

x̄(t) = x1(t)− x2(t)

ū(t) = u1(t)− u2(t).
Then for every t ∈ [0, T ] we have

mB(ξ̄(t)) ≤ max
{
mB(ξ̄(0)), |ū|[0,t]

}
. (4.8)

Proof. Put XB = {x ∈ X : mB(x) < ∞}. Then XB is a subspace of X, and since
±Qjnj ∈ Bω for every j ∈ J , we obtain from Corollary 4.5 that RJ ⊂ XB .

The statement is empty if ξ̄(0) 6∈ XB . Let us assume therefore that ξ̄(0) ∈ XB , and
for t ∈ [0, T ] put γ(t) = |ū|[0,t]. For every t ∈ [0, T ] we have by definition

ξ̄(t)− ξ̄(0) ∈ R[0,t](x1)−R[0,t](x2) ⊂ XB ,

hence we can restrict our considerations to the reduced Minkowski functional
m̃B = mB |XB

.

For t ∈ [0, T ] put ψ(t) = m̃B(ξ̄(t)) and assume the assertion of Theorem 4.9 does not
hold. We can find t0 ∈ (0, T ) such that γ0 := ψ(t0) > γ(t0) and ψ(t) < ψ(t0) for
t ∈ [0, t0). Put z = ξ̄(t0)/γ0. Then z ∈ B and, for every y ∈ ∂m̃B(z) where ∂m̃B is the
subdifferential of m̃B , by definition

〈y, z − z̃〉 ≥ m̃B(z)− m̃B(z̃) ∀ z̃ ∈ XB . (4.9)
In particular, y ∈ NB(z), and putting z̃ = ξ̄(t0 − h)/γ0 in (4.9) for small positive h we
obtain 〈

y, ξ̄(t0)− ξ̄(t0 − h)
〉 ≥ γ0

(
ψ(t0)− ψ(t0 − h)

)
> 0. (4.10)

By (1.3) choose h sufficiently small such that

J̃(x1(t)) ⊂ J̃(x1(t0))

J̃(x2(t)) ⊂ J̃(x2(t0))

}
(t ∈ [t0 − h, t0]). (4.11)

By (1.7), we have
ξ1(t0)− ξ1(t0 − h) ∈ C(J̃(x1(t0)))

ξ2(t0)− ξ2(t0 − h) ∈ C(J̃(x2(t0))).

We thus infer from (4.10) that there exists either some j ∈ J̃(x1(t0)) such that 〈y, rj〉 >

0, or some i ∈ J̃(x2(t0)) such that 〈y, ri〉 < 0. Both cases are symmetric, let us assume
therefore 〈y, rj〉 > 0 for some j ∈ J̃(x1(t0)). Then Corollary 4.3 yields 〈z, nj〉 ≥ 0. On
the other hand, by definition of J̃(x1(t0)) we have 〈x̄(t0), nj〉 ≥ 0. We conclude with

0 ≤ 〈z, nj〉 =
1
γ0
〈ū(t0), nj〉 − 1

γ0
〈x̄(t0), nj〉 ≤ 1

γ0
〈ū(t0), nj〉 ≤ γ(t0)

γ0
< 1.

This violates property (B) from Theorem 4.1, which is indeed a contradiction. Theorem
4.9 is proved
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For practical purposes, formula (4.8) is more convenient to work with if the set B has
non-empty interior. The following straightforward argument shows that this condition
represents no restriction.

Proposition 4.10. Let B be a Q-invariant set and let B1(0) denote the unit ball
in X. Then B′ = 2B + B1(0) is also a Q-invariant set.

Proof. Let x′ ∈ B′ and y ∈ NB′(x′) be given such that |〈x′, nj〉| < 1 for some
j ∈ J . There exist x ∈ B and h ∈ B1(0) such that x′ = 2x + h. By definition of the
normal cone, 〈y, x′ − (2 b + h)〉 ≥ 0 for every b ∈ B, hence y ∈ NB(x). On the other
hand, |〈x, nj〉| = 1

2 |〈x′ − h, nj〉| < 1. Since B is Q-invariant we obtain 〈y, rj〉 = 0 and
the proof is complete

Corollary 4.11. If there exists a bounded Q-invariant set, then there exists a
bounded Q-invariant set with non-empty interior.

Theorem 4.9 implies uniqueness of solutions and a Lipschitz continuous depen-
dence with respect to the sup-norm provided the set B is bounded. Existence (in
W 1,1(0, T ;X)) and uniqueness (in C([0, T ];X)) thus have been proved under different
hypotheses. In the next Section 5 we show (Theorem 5.5) that the `-paracontractivity
together with transversality of the system Q ensures the existence of a bounded Q-
invariant set. This will enable us to characterize a class of Skorokhod problems for
which existence, uniqueness and Lipschitz continuous dependence hold.

5. Paracontractivity and invariant sets

Keeping the notation from Corollary 4.5, we assume that Q is an `-paracontracting
system, and that x ∈ X and λ ∈ Λ, λ = (j0, . . . , jm−1) are given. Let us consider the
sequence

x0 = x

xk+1 = (I −Qjk
)xk (k = 0, 1, . . . , m− 1)

}
. (5.1)

We define the mapping ωλ : X → X by

ωλ(x) = xm. (5.2)

By definition of `-paracontractivity,

|xk+1 − xk| ≤ ‖xk‖ − ‖xk+1‖ (k = 0, 1, . . . , m− 1), (5.3)

hence
|x− ωλ(x)| ≤ ‖x‖ − ‖ωλ(x)‖. (5.4)

We now introduce some further notation. For J ′ ⊂ J put

ΛJ ′ =

{
λ ∈ Λ : λ = (j0, . . . , jm−1) with

m−1⋃

k=0

{jk} = J ′
}

. (5.5)

We start with two auxiliary results.
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Lemma 5.1. Let Q be an `-paracontracting system, and let J ′ ⊂ J and λ ∈ ΛJ′ be
given. Then ωλ(x) = x if and only if x ∈ N⊥

J ′ .

Proof. We have indeed ωλ(x) = x for x ∈ N⊥
J ′ . Conversely, let ωλ(x) = x for some

x ∈ X and λ ∈ ΛJ ′ , λ = (j0, . . . , jm−1). From (5.3) we infer x = x1 = . . . = xm−1 and
Qjx = 0 for all j ∈ J ′, hence x ∈ N⊥

J ′

Lemma 5.2. Let Q be an `-paracontracting system. Then R⊥J′ ∩ NJ ′ = {0} for
every J ′ ⊂ J .

Proof. For arbitrary z ∈ R⊥J ′ ∩NJ′ and λ ∈ ΛJ′ we define recursively the sequence

z0 = z

zn = ωλ(zn−1) (n ∈ N)

}
.

By (5.4), |zn−zn+1| ≤ ‖zn‖−‖zn+1‖, hence {zn} is a convergent sequence, zn → z∗. On
the other hand, for every j ∈ J ′ and x ∈ X we have 〈Qjx, z〉 = 0, hence 〈zn, z〉 = |z|2 for
every n ∈ N. Passing to the limit as n → ∞ we obtain z∗ = ωλ(z∗) and 〈z∗, z〉 = |z|2,
hence by Lemma 5.1 z∗ ∈ N⊥

J ′ and z = 0

As an immediate consequence of Lemma 5.2 we get

Corollary 5.3. Let Q be an `-paracontracting system. Then the following condi-
tions are equivalent:

(i) Transversality condition (4.6) holds.
(ii) Condition (4.7) holds.
(iii) R⊥J ′ ⊕NJ ′ = RJ ′ ⊕N⊥

J ′ = X for every J ′ ⊂ J .

The next statement is the key point of this section and illustrates the meaning of
paracontractivity. We see that for every J ′ ⊂ J and λ ∈ ΛJ′ the mapping ωλ leaves
invariant both complementary subspaces RJ ′ and N⊥

J′ , and that it reduces to the identity
on N⊥

J′ and to a contraction on RJ ′ with respect to the norm ‖ · ‖.
Proposition 5.4. Let Q be an `-paracontracting system and let transversality con-

dition (4.6) hold. Then for every J ′ ⊂ J there exists δJ′ ∈ [0, 1) such that

ωλ(x) ∈ RJ′ , ‖ωλ(x)‖ ≤ δJ′‖x‖.

for all x ∈ RJ′ and all λ ∈ ΛJ′ .

Proof. Let J ′ ⊂ J be given. The fact that ωλ(x) ∈ RJ ′ for x ∈ RJ′ and λ ∈ ΛJ′ is
obvious. Put

δJ′ = sup
{
‖ωλ(x)‖ : λ ∈ ΛJ′ and x ∈ RJ′ with ‖x‖ = 1

}
.

By (5.4) we have δJ′ ≤ 1. Assume δJ′ = 1. Then there exists a sequence {xn}n∈N in
RJ ′ with ‖xn‖ = 1 and a sequence {λn}n∈N in ΛJ ′ such that

‖ωλn(xn)‖ ≥ 1− 1
n

(n ∈ N). (5.6)
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We may assume xn → x with ‖x‖ = 1. Let us fix an arbitrary j ∈ J ′. For each n ∈ N,
the sequence λn = (j(n)

0 , . . . , j
(n)
mn−1) contains j, say j = j

(n)
kn

for some kn ≤ mn−1. Put

λ′n = (j(n)
0 , . . . , j

(n)
kn−1) and zn = ωλ′n(xn). Then, by (5.3),

‖ωλn
(xn)‖ ≤ ‖(I −Qj)zn‖ (5.7)
‖zn‖ ≤ ‖xn‖ = 1 (5.8)

for every n ∈ N, hence

‖zn‖ − |Qj zn| ≥ ‖(I −Qj)zn‖ ≥ 1− 1
n

(n ∈ N). (5.9)

Therefore limn→∞ ‖zn‖ = 1 and limn→∞ |Qj zn| = 0, and (5.3) entails

|xn − zn| ≤ ‖xn‖ − ‖zn‖ (n ∈ N). (5.10)

We conclude that limn→∞ zn = x and Qjx = 0 for all j ∈ J ′, which contradicts
transversality condition (4.6)

The main result of this section can be stated as follows.

Theorem 5.5. Let Q be an `-paracontracting system and let transversality condi-
tion (4.6) hold. Then the minimal Q-invariant set Bω from Corollary 4.5 is contained
in the ball centered at 0 of radius K with respect to the norm ‖ · ‖, where

K ≤ C

δ

(( 1
1− δ

)p

− 1
)

(5.11)

with C = max{ ‖rj‖
〈nj ,rj〉 : j ∈ J} and any δ ∈ (0, 1) with δ ≥ max{δJ ′ : J ′ ⊂ J}.

We postpone the proof of Theorem 5.5 and prove first an auxiliary statement.

Proposition 5.6. Let the assumptions of Theorem 5.5 hold, and let J ′ ⊂ J and
λ ∈ ΛJ′ be given, card J ′ = q ∈ J and λ = (j0, . . . , jm−1). Let n̂jk

= ±njk
be arbitrarily

chosen for each k = 0, . . . ,m− 1 and let us define the sequence

zk = (I −Qjm−1) · · · (I −Qjk
)Qjk−1 n̂jk−1 (k = 1, . . . ,m− 1)

zm = Qjm−1 n̂jm−1

}
. (5.12)

Then ∥∥∥∥
m∑

k=1

zk

∥∥∥∥ ≤
C

δ

(( 1
1− δ

)q

− 1
)
. (5.13)

The proof of Proposition 5.6 is based on the following induction step.
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Lemma 5.7. Let the assertion of Proposition 5.6 hold for some q < p, and let
J ′ ⊂ J and λ ∈ ΛJ ′ be given, card J ′ = q + 1 and λ = (j0, . . . , jm−1), such that
λ′ = (j1, . . . , jm−1) 6∈ ΛJ′ . Let zk be defined by (5.12). Then

∥∥∥∥
m∑

k=1

zk

∥∥∥∥ ≤ C
(
1 +

1
δ

(( 1
1− δ

)q

− 1
))

. (5.14)

Proof. By induction hypothesis, we have

∥∥∥∥
m∑

k=2

zk

∥∥∥∥ ≤
C

δ

(( 1
1− δ

)q

− 1
)

(5.15)

while
‖z1‖ ≤ ‖Qj0 n̂j0‖ ≤ C, (5.16)

and formula (5.14) follows easily

Proof of Proposition 5.6. For q = 1 we have zk = 0 for k < m, hence

∥∥∥∥
m∑

k=1

zk

∥∥∥∥ = ‖zm‖ ≤ C (5.17)

and (5.13) holds. Assume now that the assertion holds for some q ≥ 1, q < p and fix
some J ′ ⊂ J , card J ′ = q + 1, and λ ∈ ΛJ′ , λ = (j0, . . . , jm−1). We define the numbers
d(0), d(1), . . . , d(`) recurrently according to the following recipe:

d(0) = m

d(1) = max
{
k < m : (jk, . . . , jm−1) ∈ ΛJ′

}

...

d(n + 1) = max
{
k < d(n) : (jk, . . . , jd(n)−1) ∈ ΛJ′

}





until (j0, . . . , jd(`)−1) 6∈ ΛJ ′ . For n = 0, . . . , ` and k = 1, . . . , d(n)− 1 put

ζn
k = (I −Qjd(n)−1) · · · (I −Qjk

)Qjk−1 n̂jk−1

ζn
d(n) = Qjd(n)−1 n̂jd(n)−1

}
. (5.18)

Then for d(n + 1) + 1 ≤ k ≤ d(n) we have

zk = (I −Qjm−1) · · · (I −Qjd(n))ζ
n
k . (5.19)

The inequality
∥∥∥∥

d(n)∑

k=d(n+1)+1

ζn
k

∥∥∥∥ ≤ C
(
1 +

1
δ

(( 1
1− δ

)q

− 1
))

, (5.20)
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where we put d(` + 1) = 0, is valid for n = 0, . . . , `− 1 according to Lemma 5.7 and for
n = ` according to the induction hypothesis. Proposition 5.4 now yields for n = 0, . . . , `

∥∥∥∥
d(n)∑

k=d(n+1)+1

zk

∥∥∥∥ =
∥∥∥∥(I −Qjm−1) · · · (I −Qjd(n))

d(n)∑

k=d(n+1)+1

ζn
k

∥∥∥∥

≤ Cδn
(
1 +

1
δ

(( 1
1− δ

)q

− 1
))

.

(5.21)

Summing up the above inequalities over n = 0, . . . , ` we obtain

∥∥∥∥
m∑

k=1

zk

∥∥∥∥ ≤
C

1− δ

(
1 +

1
δ

(( 1
1− δ

)q

− 1
))

=
C

δ

(( 1
1− δ

)q+1

− 1
)

(5.22)

and the induction step is complete. Proposition 5.6 is proved

We are now ready to conclude this section by proving Theorem 5.5.

Proof of Theorem 5.5. Let λ ∈ Λ, λ = (j0, . . . , jm−1) be arbitrary, and let sλ be
the corresponding 1-trajectory defined by (4.4). Then

x1 = Qj0 n̂j0

xk =
k−1∑

i=1

(I −Qjk−1) · · · (I −Qji)Qji−1 n̂ji−1 (k = 2, . . . , m− 1)





(5.23)

for some n̂ji = ±nji (i = 0, . . . ,m− 1). Using Proposition 5.6 we obtain

sup
λ∈Λ

‖xω
λ‖ ≤

C

δ

(( 1
1− δ

)p

− 1
)
, (5.24)

hence inequality (5.11) holds

Theorem 5.8. Let the associated projection system Q be `-paracontracting and
transversal. Then the Skorokhod map S is well defined and of Lipschitz type both as a
map from Z×W 1,1(0, T ;X) to W 1,1(0, T ; X) and from Z×C([0, T ];X) to C([0, T ]; X).

Proof. Theorem 3.1 guarantees that the Skorokhod problem admits a solution for
every u ∈ W 1,1(0, T ; X) and every initial condition. By Theorem 5.5, the set Bω is
bounded. There exists therefore M > 0 such that Bω is contained in a ball centered at
0 with radius M . Using the fact that the space W 1,1(0, T ; X) is dense in C([0, T ];X), we
obtain the existence and Lipschitz continuity in C([0, T ];X) immediately from Theorem
4.9, from the upper semicontinuity property (1.6) and from the inequality mBω (x) ≥ |x|

M

for every x ∈ X. The Lipschitz continuity in Z×W 1,1(0, T ; X) → W 1,1(0, T ;X) follows
immediately from Remark 3.2
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6. A bounded variation result

Similarly as in the normal reflection case, one might expect that, if the set B in Theorem
4.9 is bounded and Z has non-empty interior, the extension of the Skorokhod map onto
C([0, T ];X) has a regularizing effect, namely that for inputs u ∈ C([0, T ];X) the outputs
ξ belong to C([0, T ];X) ∩BV (0, T ; X).

Assume that there exists z0 ∈ Z and % > 0 such that the whole ball B%(z0) is
contained in Z. We prove the following result (which subsequently immediately implies
the desired BV -estimate).

Proposition 6.1. Let the associated projection system Q be `-paracontracting and
transversal. Let u ∈ C([0, T ]; X) be given and let ξ, x ∈ C([0, T ];X) be the corresponding
solution to the Skorokhod problem for a given initial condition x0 ∈ Z. Let δ > 0 be
such that the implication

|t2 − t1| < δ =⇒ |u(t2)− u(t1)| < %

2

holds for every t1, t2 ∈ [0, T ]. Then for every 0 ≤ s < t ≤ T such that |t − s| < δ we
have

Var[s,t]ξ ≤ ‖x(·)− z0‖[0,t]

where ‖ · ‖[0,t] denotes the sup-norm with respect to the norm ‖ · ‖ over the interval [0, t].

Proof. We approximate the function u uniformly by functions from W 1,1(0, T ; X),
and for each of these approximating functions we apply the discretization procedure
from Section 3. By diagonalization we obtain, according to Theorem 5.8 and to the
construction in the proof of Theorem 3.1, discrete sequences {ui}, {xi}, {ξi} satisfying
(3.1) such such that the piecewise linear interpolates {u(n)}, {x(n)}, {ξ(n)} given by (3.6)
converge uniformly to u, x, ξ, respectively.

Let ε > 0 be arbitrarily given. We find n0 sufficiently large such that for n > n0 we
have |u(n)− u|[0,T ] < %

4 and ‖x(n)− x‖[0,T ] < ε, and there exist t
(n)
j−1 ≤ s < t ≤ t

(n)
k such

that t
(n)
k − t

(n)
j−1 < δ. For i = j, . . . , k we have by hypothesis

|ui − uj−1| ≤ 2 |u(n) − u|[0,T ] +
%

2
≤ %,

hence zi = z0 + ui − uj−1 ∈ Z for every i = j, . . . , k. Inequality (3.3) for z = zi yields

|ξi − ξi−1| ≤ ‖xi−1 − ui−1 + uj−1 − z0‖ − ‖xi − ui + uj−1 − z0‖

for all i = j, . . . , k. Summing up the above inequalities we obtain

Var[s,t]ξ
(n) ≤

k∑

i=j

|ξi − ξi−1| ≤ ‖xj − z0‖ ≤ ε + ‖x(·)− z0‖[0,t].

Passing to the limit as n →∞ and using the fact that ε has been chosen arbitrarily, we
complete the proof
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7. An upper bound for the invariant sets

According to Lemma 2.2, the `-paracontracting property is robust with respect to small
changes of vectors ri if the vectors ni do not change. This allows us to extend the
Lipschitz continuity results from the normal reflection case to the case of Skorokhod
problems with reflection vectors ri that are close to the normals ni under the transver-
sality constraint. This argument, however, does not provide an efficient estimate of the
corresponding Lipschitz constant. In this section, we show an algorithm which gives at
least an upper bound.

Put N = dimNJ and for k = 1, . . . , N denote

Lk =
{

J ′ ⊂ J : card J ′ = k and {ni}i∈J′ linearly independent
}

(7.1)

εk = min
{∣∣∣∣

∑

i∈J′
αini

∣∣∣∣ :
∑

i∈J ′
α2

i = 1 (J ′ ∈ Lk)
}

. (7.2)

Note that 0 < εN ≤ εN−1 ≤ . . . ≤ ε1 ≤ 1.

We make the following

Hypothesis 7.1. For every j ∈ J , |nj − rj | ≤ εN

2
√

N
and (4.7) holds.

The above hypothesis implies in particular |nj−rj |2 ≤ 1
4 for every j, hence 〈nj , rj〉 ≥

7
8 > 0.

Notation 7.2. For an arbitrary subspace X ′ ⊂ X we denote by PX′ the orthogonal
projection onto X ′. In particular, PX = I is the identity operator. We further denote
by Dk (0 ≤ k ≤ N) the system of all k-dimensional subspaces of RJ generated by the
vectors r1, . . . , rp, that is

D0 =
{{0}}

Dk =
{

X ′ ⊂ RJ : X ′ = span{ri1 , . . . , rim} (ij ∈ J for j = 1, . . . , m), dimX ′ = k
}

(k = 1, . . . , N − 1)

DN = {RJ}.
We need in the sequel the following elementary properties of projections.

Lemma 7.3. Let X ′ ⊂ X ′′ ⊂ X be subspaces of X. Then:

(i) PX′′PX′ = PX′PX′′ = PX′ .

(ii) |〈z, v〉| ≤ |PX′z| ≤ |z| for all z ∈ X and all v ∈ X ′ with |v| ≤ 1.

According to Hypothesis 7.1, every system {ri}i∈J ′ for J ′ ∈ Lk is linearly indepen-
dent and we may put

δk = min

{∣∣∣∣∣
∑

i∈J′
αiri

∣∣∣∣∣ :
∑

i∈J′
α2

i = 1 (J ′ ∈ Lk)

}
(7.3)
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and have again 0 < δN ≤ δN−1 ≤ . . . ≤ δ1 ≤ 1. Moreover, from Hypothesis 7.1 it
follows that

1
2
εk ≤ δk ≤ 3

2
εk (k = 1, . . . , N). (7.4)

Indeed, we have for J ′ ∈ Lk

∑

i∈J′
|αi| |ri − ni| ≤ εN

2
√

N

∑

i∈J′
|αi| ≤ εN

2

√
k

N

and inequalities (7.4) follow.
We first prove an auxiliary estimate.

Lemma 7.4. Let k ∈ {0, 1, . . . , N − 1}, X ′ ∈ Dk, v ∈ X ′ and rj 6∈ X ′ be given
such that |v| = 1. Put

η0 = 0

ηk = 1− 1
2

(
1 +

1
k

)
δ2
k+1 (k = 1, . . . , N − 1)



 . (7.5)

Then
|〈rj , v〉| ≤ ηk. (7.6)

Proof. The case k = 0 is trivial. For k ≥ 1 we find J ′ ∈ Lk and real numbers
αi (i ∈ J ′) such that span{ri : i ∈ J ′} = X ′ and v =

∑
i∈J ′ αiri. We have indeed

J ′′ := J ′ ∪ {j} ∈ Lk+1 (note that Hypothesis 7.1 has been used here), and

1 + |v|2 − 2〈rj , v〉 = |rj − v|2 ≥ δ2
k+1

(
1 +

∑

i∈J′
α2

i

)
≥

(
1 +

1
k

)
δ2
k+1

1 + |v|2 + 2〈rj , v〉 = |rj + v|2 ≥ δ2
k+1

(
1 +

∑

i∈J′
α2

i

)
≥

(
1 +

1
k

)
δ2
k+1





(7.7)

and the assertion follows

Let η0, . . . , ηN−1 be defined as in Lemma 7.4. For arbitrary s ≥ 0 and k = 0, . . . , N
we define the sequence Mk(s) by the recurrent formula

M0(s) = 0

M2
k (s) = M2

k−1(s) +
1

1− η2
k−1

(
1 + s + ηk−1Mk−1(s)

)2



 . (7.8)

Note that for all s > 0 and k = 1, . . . , N

(Mk(s)
s

)2

=
(Mk−1(s)

s

)2

+
1

1− η2
k−1

(1
s

+ 1 + ηk−1
Mk−1(s)

s

)2

, (7.9)

hence each of the functions s 7→ Mk(s)
s (k = 1, . . . , N) is decreasing in (0,∞) and

lim
s→∞

Mk(s)
s

= Mk(0) (k = 1, . . . , N). (7.10)
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For every s ≥ 0 define a functional Vs : X → R+ by the formula

Vs(z) = max
{

M2
k (s) + |(PRJ

− PX′)z|2 : X ′ ∈ Dk (k = 0, . . . , N − 1)
}

. (7.11)

Obviously, Vs is convex and the set

Bs =
{
z ∈ RJ : Vs(z) ≤ M2

N (s)
}

(7.12)

is convex and closed for every s ≥ 0.
Our main goal is to prove the following

Theorem 7.5. Let Hypothesis 7.1 hold. Assume moreover that

σ := max
j∈J

|nj − rj | < 1
MN (0)

(7.13)

and let s ≥ 0 satisfy the equation

s

MN (s)
= σ. (7.14)

Then the set B = Bs defined by (7.12) satisfies condition (B).

Indeed, from (7.10) it follows that condition (7.14) is meaningful and the value of s
is uniquely determined. Moreover, for every z ∈ X we have

Vs(z) ≥ M2
0 (s) + |(PRJ − P{0})z|2 = |PRJ z|2, (7.15)

hence by (7.12)
|z| ≤ MN (s) (z ∈ B). (7.16)

In particular, the set B in Theorem 7.5 is contained in the ball centered at the origin
with radius MN (s).

The proof of Theorem 7.5 is based on the following lemma.

Lemma 7.6. Let the hypotheses of Theorem 7.5 hold. Further, assume that for
some z ∈ B and X ′ ∈ Dk (k ∈ {0, . . . , N−1}) we have M2

k (s)+ |(I−PX′)z|2 = M2
N (s),

and that there exists i ∈ J such that |〈z, ni〉| < 1. Then ri ∈ X ′.

Proof. Assume ri 6∈ X ′ and put X ′′ = X ′⊕ span{ri}. We find v ∈ X ′ with |v| = 1
and real numbers a, b such that

PX′′z = ari + bv. (7.17)

Putting η = 〈ri, v〉 ∈ [−ηk, ηk] we have

|PX′′z|2 = a2 + b2 + 2abη (7.18)
|PX′z| ≥ |〈PX′′z, v〉| = |aη + b| (7.19)
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and, by hypothesis,

|a + bη| = |〈PX′′z, ri〉| = |〈z, ri〉| ≤ |〈z, ni〉|+ |z| |ni − ri| < 1 + σ|z|. (7.20)

According to (7.14), we conclude from (7.20) and (7.16) that

|a + bη| < 1 + s. (7.21)

The assumption z ∈ B moreover yields

M2
k+1(s) + |(I − PX′′)z|2 ≤ M2

k (s) + |(I − PX′)z|2 (7.22)

(note that for k = N − 1 we have (I − PX′′)z = 0), and we obtain

M2
k+1(s)−M2

k (s) ≤ |PX′′z|2 − |PX′z|2 (7.23)

where
M2

k+1(s)−M2
k (s) =

1
1− η2

k

(
1 + s + ηkMk(s)

)2 (7.24)

and
|PX′′z|2 = (aη + b)2 + a2(1− η2)

= (aη + b)2 +
1

1− η2

(
a + bη − η(aη + b)

)2

< |PX′z|2 +
1

1− η2

(
1 + s + |η| |PX′z|)2

≤ |PX′z|2 +
1

1− η2
k

(
1 + s + ηk|PX′z|)2

.

(7.25)

Combining (7.23) - (7.25) we obtain

Mk(s) < |PX′z|, (7.26)

hence
M2

k (s) + |(I − PX′)z|2 < |z|2 ≤ M2
N (s) (7.27)

which is a contradiction. Lemma 7.6 is proved

We now pass to the proof of Theorem 7.5.

Proof of Theorem 7.5. Assume z ∈ B is given and |〈z, ni〉| < 1 for some i ∈ J .
For µ0 > 0 and µ ∈ [−µ0, µ0] put zµ = z + µ ri. Then zµ ∈ RJ and for every X ′ ∈
Dk (k = 1, . . . , N −1) we either have M2

k (s)+ |(I−PX′)z|2 = M2
N (s), hence by Lemma

7.6 M2
k (s) + |(I − PX′)zµ|2 = M2

N (s), or M2
k (s) + |(I − PX′)z|2 < M2

N (s), hence µ0 > 0
can be chosen in such a way that zµ ∈ B for every µ ∈ [−µ0, µ0]. For every y ∈ NB(z)
and every µ ∈ [−µ0, µ0] then 〈y, z − zµ〉 ≥ 0, hence 〈y, ri〉 = 0 and Theorem 7.5 is
proved
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8. Example

We illustrate our theory on an example motivated by a problem from queuing theory.
Let us consider a service point, where two kinds of customers are served: the ordinary
ones and the privileged ones. The waiting room has maximal capacity K > 0, and the
counters O for ordinary and P for privileged customers have maximal capacities co and
cp, respectively.

The incoming customer flow can be described by a time-dependent vector v(t) =(
vo(t)
vp(t)

)
where vo(t) and vp(t) represent the number of ordinary and privileged customers,

respectively, arrived during the time interval [0, t]. We denote by η(t) =
(

ηo(t)
ηp(t)

)
the

respective number of customers who have left the service point during the interval [0, t],
and x(t) = v(t) − η(t) =

(
xo(t)
xp(t)

)
is the queue at time t. The waiting room is then

described by the condition

x(t) ∈ Z :=
{(

xo

xp

)
: xo, xp ≥ 0 and xo + xp ≤ K

}
(8.1)

for every t ∈ [0, T ] (see Figure 1).

Figure 1: The Skorokhod diagram

We consider the following service rules:
A. All customers are served at their respective counters.
B. Both counters work at their maximal capacity.
C. If there is an unused capacity at the counter O, it can also be used by privileged

customers.
D. If the capacity of the waiting room is exceeded, for each refused privileged

customer there must be % refused ordinary customers for some % > 0.
This can be formalized in the following way:
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(i) xo > 0, xp > 0, xo + xp < K =⇒ η̇o = co, η̇p = cp.
(ii) xo > 0, xp = 0, xo + xp < K =⇒ η̇o = co, η̇p = min{cp, v̇p}.
(iii) xo = 0, xp > 0, xo + xp < K =⇒ η̇o = min{co, v̇o}, η̇p = cp + co − η̇o.
(iv) xo > 0, xp > 0, xo + xp = K =⇒ η̇o − co = %(η̇p − cp).

We normalize the problem by putting

u(t) = v(t)− t
(

co

cp

)
, ξ(t) = η(t)− t

(
co

cp

)
. (8.2)

Hence we are in the situation of (1.7) - (1.8) with normal and reflection vectors

n1 =
(−1

0

)
, r1 =

1√
2

(−1
1

)
, n2 = r2 =

( 0
−1

)

n3 =
1√
2

( 1
1

)
, r3 =

1√
%2 + 1

(
%
1

) (8.3)

(see Figure 1). The projections Qj have the form

Q1

(
xo

xp

)
=

(
xo

−xo

)
, Q2

(
xo

xp

)
=

( 0
xp

)
, Q3

(
xo

xp

)
=

1
% + 1

(xo + xp)
(

%
1

)
. (8.4)

Using the identity

(I −Q3)
(

xo

xp

)
=

(
(1− ε)xo − εxp − ( %

%+1 − ε)(xo + xp)
(1− ε(1 + ε))xp − (1 + ε)εxo − ( 1

%+1 − ε(1 + ε))(xo + xp)

)

and the triangle inequality we easily check that the system Q is `-paracontracting with
respect to the norm

∥∥∥
(

xo

xp

)∥∥∥ = C
(
(1 + ε)|xo|+ |xp|+ (1− ε)|xo + xp|

)

whenever ε < %
%+1 , ε(1 + ε) < 1

%+1 and 2Cε2 ≥ 1. The transversality is indeed obvious.
The construction of the set Bω from Corollary 4.5 is shown on Figure 2.

Figure 2: Construction of the set Bω
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In the limit case % = +∞ the system is not `-paracontracting any more, as

(I −Q1)(I −Q2)(I −Q3)
( 0

xp

)
=

( 0
−xp

)

for every xp ∈ R which would contradict inequality (5.3). Similarly, for % = 0 we have
r3 = −r2, hence R⊥{2,3}∩N{2,3} 6= {0} in contradiction with Lemma 5.2. In other words,
difficulties arise if only ordinary customers or only privileged customers are refused in
the case of exceeded capacity.

References

[1] Desch, W. and J. Turi: The stop operator related to a convex polyhedron. J. Diff. Equ.
157 (1999), 329 – 347.
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