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Linear Combinations of Frames and Frame Packets

O. Christensen

Abstract. We find coefficients cmn (m, n ∈ Z) such that for an arbitrary frame {fn}n∈Z the
set of vectors {φm}m∈Z = {Pn∈Z cmnfn}m∈Z will again be a frame. Appropriate coefficients
can always be chosen as function values cmn = g(n

β
−mα), where g belongs to a broad class of

functions generating a Gabor frame {EβmTαng}m,n∈Z for L2(R). We also prove a version of
the splitting trick, which allows to construct a large family of frames based on a single (wavelet
or Gabor) frame.
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1. Introduction

Let H be a Hilbert space with inner product 〈·, ·〉 linear in the first entry. An orthonor-
mal basis {fn} (or more generally, a frame) for H allows every f ∈ H to be written as
f =

∑
cnfn for certain coefficients cn. Here we study the following question: given a

frame {fn}, define a set of functions {φm} by taking appropriate linear combinations
of the elements fn. Under which conditions (on the coefficients in the linear combina-
tions) will {φm} also be a frame? We find a sufficient condition for {φm} to be a frame,
which is independent of the given frame {fn}. Suitable coefficients can be constructed
as function values of the ”Gabor atom” associated to a broad class of Gabor frames.
We also prove a version of the splitting trick, which allows us to construct a large family
of frames based on a single (wavelet or) Gabor frame. The fact that our coefficients
are independent of {fn} makes succesive applications of the splitting trick very easy,
because the same coefficients can be applied repeatedly.

In the rest of this introduction we collect some definitions and basic results that will
be used throughout the paper.

Definition 1.1.
(a) A countable family {fn}n∈I ⊆ H is a frame for H if there exist constants

A,B > 0 such that
A‖f‖2 ≤

∑

n∈I

|〈f, fn〉|2 ≤ B‖f‖2 (1)

for all f ∈ H. Numbers A and B that can be used in (1) are called frame bounds.
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(b) {fn}n∈I ⊆ H is a Riesz basis for H if span{fn}n∈I = H and there exists
constants A,B > 0 such that

A
∑

|cn|2 ≤
∥∥∥

∑
cnfn

∥∥∥
2

≤ B
∑

|cn|2 (2)

for all finite scalar sequences {cn}.
If {fn}n∈I is a frame (resp. Riesz basis) for span{fn}n∈I , we call {fn}n∈I a frame

sequence (resp. Riesz sequence). A Riesz sequence is a frame sequence, and the numbers
A and B in (2) are frame bounds.

If {fn}n∈I is a frame for H, we can define a bounded operator

T : `2(I) → H, T{cn}n∈I =
∑

n∈I

cnfn.

By composing T with its adjoint, we obtain an invertible operator TT ∗ on H, a fact
that leads to a representation of each f ∈ H as a (infinite) linear combination of the
frame elements (cf. [8]):

f =
∑

n∈I

〈f, (TT ∗)−1fn〉fn.

This formula makes it natural to think about frames as some kind of ”generalized basis”.
Most frames of practical use are coherent, i.e. they appear by letting an appropriate
family of operators act on a fixed function. We will consider the operators defined on
functions f ∈ L2(R) by

translation by α ∈ R : (Tαf)(x) = f(x− α)
modulation by β ∈ R : (Eβf)(x) = e2πiβxf(x).

We shall consider frames of the type

• {Tαnf}n∈Z for subspaces of L2(R)
• {EβmTαnf}m,n∈Z for L2(R) (Gabor frames).

The Fourier transform is defined by

f̂(γ) =
∫

R
f(x)e−2πiγxdx.

With this definition of the Fourier transform, we obtain

(Tαf)∧(γ) = e−2πiγαf̂(γ). (3)

Given f ∈ L2(R) and a parameter α > 0, define

Fα(γ) =
∑

n∈Z

∣∣∣f̂
(γ + n

α

)∣∣∣
2

. (4)

We refer to [2, 4] for a proof of the statement below:

Lemma 1.2. Let f ∈ L2(R) and let α be a positive real number. Then:
(i) {Tαnf}n∈Z is a Riesz sequence with bounds A and B if and only if αA ≤

Fα(γ) ≤ αB for a.e. γ ∈ [0, 1].
(ii) {Tαnf}n∈Z is a frame sequence with bounds A and B if and only if αA ≤

Fα(γ) ≤ αB for a.e. γ ∈ [0, 1] \ {γ : Fα(γ) = 0}.
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2. Frames formed by linear combination

Let {fn}n∈I be a frame for H. Suppose that for each m in a countable index set J , a
set of coefficients {cmn}n∈I ⊆ `2(I) is given, and set

φm =
∑

n∈I

cmnfn. (5)

Assume at the moment that I = J = Z. Aldroubi [1] proved that if the matrix
{cmn}m,n∈Z defines a bounded operator on `2(Z), then {φm}m∈Z is a frame for H if
and only if there exists a constant γ > 0 such that

∑

m∈Z

∣∣∣∣
∑

n∈Z
〈f, fn〉cmn

∣∣∣∣
2

≥ γ2
∑

n∈Z
|〈f, fn〉|2 (6)

for all f ∈ H. In practice, it is difficult to check condition (6). Below we present a
sufficient condition for {φm} to be a frame which is easier to work with. It can be
applied for frames with an arbitrary countable index set, so for later reference we state
it in full generality.

Theorem 2.1. Suppose that {fn}n∈I is a Bessel sequence. If

c := inf
n∈I

[ ∑

m∈J

|cmn|2 −
∑

k 6=n

∣∣∣∣
∑

m∈J

cmncmk

∣∣∣∣
]

> 0

d := sup
n∈I

∑

k∈I

∣∣∣∣
∑

m∈J

cmncmk

∣∣∣∣ < ∞,

then {φm}m∈J defined by (5) satisfies

c
∑

n∈I

|〈f, fn〉|2 ≤
∑

m∈J

|〈f, φm〉|2 ≤ d
∑

n∈I

|〈f, fn〉|2 (7)

for all f ∈ H. In particular, if {fn}n∈I is a frame for H with bounds C and D, then
{φm}m∈J is a frame for H with bounds cC and dD.

Proof. Let f ∈ H. Then

∑
m

|〈φm, f〉|2 =
∑
m

∣∣∣∣
〈 ∑

n

cmnfn, f

〉∣∣∣∣
2

=
∑
m

∣∣∣∣
∑

n

cmn〈fn, f〉
∣∣∣∣
2

=
∑
m

∑
n

|cmn|2 · |〈fn, f〉|2 +
∑
m

∑
n

∑

k 6=n

cmncmk〈fn, f〉〈f, fk〉

=: (∗) + (∗∗).
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By Cauchy-Schwarz’ inequality we get

|(∗∗)| ≤
∑

n

∑

k 6=n

|〈fn, f〉〈f, fk〉| ·
∣∣∣∣
∑
m

cmncmk

∣∣∣∣

≤
(∑

n

∑

k 6=n

|〈fn, f〉|2 ·
∣∣∣∣
∑
m

cmncmk

∣∣∣∣
) 1

2
(∑

n

∑

k 6=n

|〈f, fk〉|2 ·
∣∣∣∣
∑
m

cmncmk

∣∣∣∣
) 1

2

.

The two terms in the last product are actually identical, since

∑
n

∑

k 6=n

|〈f, fk〉|2 ·
∣∣∣∣
∑
m

cmncmk

∣∣∣∣ =
∑

k

∑

n6=k

|〈f, fk〉|2 ·
∣∣∣∣
∑
m

cmncmk

∣∣∣∣

=
∑

n

∑

k 6=n

|〈fn, f〉|2 ·
∣∣∣∣
∑
m

cmncmk

∣∣∣∣.

Thus

(∗∗) ≤
∑

n

∑

k 6=n

|〈fn, f〉|2 ·
∣∣∣∣
∑
m

cmncmk

∣∣∣∣

and, by the calculation at the beginning of the proof,

∑
m

|〈φm, f〉|2 ≥
∑
m

∑
n

|cmn|2 · |〈fn, f〉|2 −
∑

n

∑

k 6=n

|〈fn, f〉|2 ·
∣∣∣∣
∑
m

cmncmk

∣∣∣∣

=
∑

n

|〈fn, f〉|2 ·
[ ∑

m

|cmn|2 −
∑

k 6=n

∣∣∣∣
∑
m

cmncmk

∣∣∣∣
]

≥ c
∑

n

|〈fn, f〉|2.

The upper frame condition is proved similarly

Note that the condition in Theorem 2.1 is independent of {fn}. In order to give a
geometric interpretation of the condition, suppose that {fn} and {φm} are indexed by
Z. Think about the sequence {cmn}m,n∈Z as a matrix, where m is the row index and n
the column index:

{cmn}m,n∈Z =




· · · · ·
· c−1−1 c−10 c−11 ·
· c0−1 c00 c01 ·
· c1−1 c10 c11 ·
· · · · ·


 .

For n fixed, the sum
∑

m∈Z |cmn|2 is equal to the scalar product in `2(Z) of the n’th
column with itself, while

∑
k 6=n |

∑
m∈Z cmncmk| is the sum of the absolute values of

the scalar products between the n’th column and all other columns k. In particular, in
order for Theorem 2.1 to apply no column can consist solely of zeros (zero-rows might
exist, but they are not interesting, since they correspond to a φm defined to be zero).
The remark clearly holds for arbitrarily indexed sets.



Linear Combinations 809

Example 2.2. Let {en}∞n=1 be an orthonormal basis. For a given number α ≥ 0,
define

φm = em + αem+1 (m ∈ N).

In the notation above (with Z replaced by N) we have

{cmn}m,n∈N =




c11 c12 c13 · ·
c21 c22 c23 · ·
c31 c32 c33 · ·
· · · · ·
· · · · ·


 =




1 α 0 0 ·
0 1 α 0 ·
0 0 1 α ·
0 0 0 1 ·
· · · · ·


 .

It is an easy consequence of Theorem 2.1 that {φm}∞m=1 is a frame if α < 1. This is
actually the optimal conclusion: {φm}∞m=1 is not a frame if α ≥ 1.

It is easy to describe a general class of coefficients that can be used in Theorem 2.1.
We use a general sufficient condition for {EβmTαng}m,n∈Z to be a frame for L2(R) (cf.
[3] or [9]):

Lemma 2.3. Let g ∈ L2(R), α, β > 0 and suppose that there exist numbers
A,B > 0 such that for all x ∈ R

∑

m∈Z
|g(x−mα)|2 −

∑

k 6=0

∣∣∣∣
∑

m∈Z
g(x−mα)g(x−mα− k

β )
∣∣∣∣ ≥ A (8)

∑

k∈Z

∣∣∣∣
∑

m∈Z
g(x−mα)g(x−mα− k

β )
∣∣∣∣ ≤ B. (9)

Then {EβmTαng}m,n∈Z is a frame for L2(R) with bounds A
β and B

β .

Lemma 2.3 actually holds if (8) - (9) are satisfied for almost all x ∈ R, but for our
application below it is essential to assume the conditions satisfied for all x.

Theorem 2.4. Let {fn}n∈Z be a frame with bounds C and D. Let {EβmTαng}m,n∈Z
be a frame satisfying (8)− (9), and define

φm =
∑

n∈Z
cmnfn, where cmn = g(n

β −mα).

Then {φm}m∈Z is a frame with bounds AC and BD.

Proof. Let n ∈ Z. Using condition (8) on x = n
β gives

∑

m∈Z

∣∣∣g
(n

β
−mα

)∣∣∣
2

−
∑

k 6=0

∣∣∣∣
∑

m∈Z
g
(n

β
−mα

)
g
(n

β
−mα− k

β

)∣∣∣∣ ≥ A.

By the change of variable k → n− k,

∑

m∈Z

∣∣∣g
(n

β
−mα

)∣∣∣
2

−
∑

k 6=n

∣∣∣∣
∑

m∈Z
g
(n

β
−mα

)
g
(k

β
−mα

)∣∣∣∣ ≥ A.
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Similarly,
∑

k∈Z

∣∣∣∣
∑

m∈Z
g
(n

β
−mα

)
g
(k

β
−mα

)∣∣∣∣ ≤ B

for all n ∈ Z. It follows that the coefficients cmn = g(n
β −mα) satisfy the conditions in

Theorem 2.1 with c = A and d = B. Thus {φm}m∈Z is a frame with bounds AC and
BD

For frames of translates the general condition in Theorem 2.1 simplifies:

Corollary 2.5. Suppose that {Tαnf}n∈Z is a frame for V = span{Tαnf}n∈Z with
bounds A and B. Given a set of coefficients {cn} ∈ `2(Z), set φ =

∑
n∈Z cnTαnf . If

c :=
∑

m∈Z
|cm|2 −

∑

k 6=0

∣∣∣∣
∑

m∈Z
cmcm+k

∣∣∣∣ > 0

d :=
∑

k∈Z

∣∣∣∣
∑

m∈Z
cmcm+k

∣∣∣∣ < ∞,

then {Tαmφ}m∈Z is a frame for V with bounds cA and dB.

Proof. We have

Tαmφ =
∑

n∈Z
cnTα(n+m)f =

∑

n∈Z
cn−mTαnf.

We now use Theorem 2.1 with cmn = cn−m. Given n ∈ Z,
∑

m∈Z
|cmn|2 −

∑

k 6=n

∣∣∣∣
∑

m∈Z
cmncmk

∣∣∣∣ =
∑

m∈Z
|cn−m|2 −

∑

k 6=n

∣∣∣∣
∑

m∈Z
cn−mck−m

∣∣∣∣

=
∑

m∈Z
|cm|2 −

∑

k 6=0

∣∣∣∣
∑

m∈Z
cmck+m

∣∣∣∣

which is independent of n. The upper condition follows similarly

3. The splitting trick

The splitting trick (introduced by Daubechies [7]) was originally used to construct a
large family of wavelet bases (called a wavelet packet) starting with a single basis.
Later similar techniques have been applied to wavelet frames [5]. Here we show that
the results in the previous sections lead to versions of the splitting trick that are very
easy to apply.

Given a sequence {cn}n∈Z ⊆ `2(Z), we define the associated two-scale symbol as the
function

m(γ) = 1√
2

∑

n∈Z
cne−2πiγn (γ ∈ R).

Note that m ∈ L2(0, 1) and that m has period 1.
The basic idea in the splitting trick is to split a frame {Tαnf}n∈Z with translation

parameter α into the union of two families with translation parameter 2α. We start
with some lemmas.
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Lemma 3.1. Suppose that {Tαnf}n∈Z is a Riesz sequence with bounds A and B.
Given a sequence {cn}n∈Z ∈ `2(Z), let m denote the associated two-scale symbol and
suppose that there exist constants a, b > 0 such that

a ≤ |m(γ)|2 + |m(γ + 1
2 )|2 ≤ b (10)

for a.e. γ ∈ [0, 1]. Set φ =
∑

n∈Z cnTαnf . Then {T2αmφ}m∈Z is a Riesz sequence with
bounds aA and bB.

Proof. In order to apply Lemma 1.2, let Φ2α(γ) =
∑

n∈Z |φ̂(γ+n
2α )|2. Splitting the

sum into two and applying (3), we get

Φ2α(γ) =
∑

n∈Z

∣∣∣φ̂
( γ

2α
+

n

α

)∣∣∣
2

+
∑

n∈Z

∣∣∣φ̂
( γ

2α
+

1
2α

+
n

α

)∣∣∣
2

= 2
∑

n∈Z

∣∣∣m
(γ

2
+ n

)∣∣∣
2∣∣∣f̂

( γ

2α
+

n

α

)∣∣∣
2

+ 2
∑

n∈Z

∣∣∣m
(γ

2
+

1
2

+ n
)∣∣∣

2∣∣∣f̂
( γ

2α
+

1
2α

+
n

α

)∣∣∣
2

= 2
∣∣∣m

(γ

2

)∣∣∣
2 ∑

n∈Z

∣∣∣f̂
( γ

2α
+

n

α

)∣∣∣
2

+ 2
∣∣∣m

(γ

2
+

1
2

)∣∣∣
2 ∑

n∈Z

∣∣∣f̂
( γ

2α
+

1
2α

+
n

α

)∣∣∣
2

.

By Lemma 1.2(i) we have αA ≤ ∑
n∈Z |f̂(γ+n

α )|2 ≤ αB for a.e. γ ∈ [0, 1]. Thus, for
a.e. γ the calculation above gives 2aαA ≤ Φ2α(γ) ≤ 2bαB. Now the conclusion follows
from Lemma 1.2(i)

Lemma 3.1 does not extend to frame sequences, i.e. if {Tαnf}n∈Z is only assumed
to be a frame sequence, condition (10) does not imply that {T2αmφ}m∈Z is a frame
sequence:

Example 3.2. Define f ∈ L2(R) by f̂ = χ[0, 1
4 ]. Then for γ ∈ [0, 1]

∑

n∈Z
|f̂(γ + n)|2 = χ[0, 1

4 ](γ)

implying by Lemma 1.2 that {Tnf}n∈Z is a frame sequence with bounds A = B = 1.
Also, for γ ∈ [0, 1],

∑

n∈Z

∣∣∣f̂
(γ

2
+ n

)∣∣∣
2

=
∣∣∣f̂

(γ

2

)∣∣∣
2

= χ[0, 1
2 ](γ)

while
∑

n∈Z |f̂(γ
2 + 1

2 + n)|2 = 0. Now choose {cn}n∈Z ∈ `2(Z) such that the associated
two-scale symbol is given by

m(γ) =

{
γ for γ ∈ [0, 1

2 )√
1− (γ − 1

2 )2 for γ ∈ [ 12 , 1].
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It is easy to check that for γ ∈ [0, 1) we have |m(γ)|2 + |m(γ + 1
2 )|2 = 1. As in Lemma

3.1, let φ =
∑

n∈Z cnTnf . By the calculation in the proof of Lemma 3.1, for γ ∈ [0, 1
2 )

we have

Φ2(γ) =
∑

n∈Z

∣∣∣φ̂
(γ + n

2

)∣∣∣
2

= 2
∣∣∣m

(γ

2

)∣∣∣
2 ∑

n∈Z

∣∣∣f̂
(γ

2
+ n

)∣∣∣
2

+ 2
∣∣∣m

(γ

2
+

1
2

)∣∣∣
2 ∑

n∈Z

∣∣∣f̂
(γ

2
+

1
2

+ n
)∣∣∣

2

= 2
∣∣∣m

(γ

2

)∣∣∣
2

=
γ2

2
.

Since Φ2 is not bounded away from zero, we conclude by Lemma 1.2(ii) that {T2mφ}m∈Z
is not a frame sequence

However, a different condition on m(γ) leads to a version of Lemma 3.1 which can
be used for frame sequences:

Lemma 3.3. Suppose that {Tαnf}n∈Z is a frame sequence with bounds A and B.
Given a sequence {cn}n∈Z ∈ `2(Z), suppose that the associated two-scale symbol m
satisfies 0 < a ≤ |m(γ)|2 ≤ b for a.e. γ ∈ [0, 1] and set φ =

∑
n∈Z cnTαnf . Then

{T2αmφ}m∈Z is a frame sequence with bounds aA and 2bB.

Proof. The definition of φ implies φ̂(γ) =
√

2 m(γα)f̂(γ). Therefore, with notation
(4),

Φ2α(γ) =
∑

n∈Z

∣∣∣φ̂
(γ + n

2α

)∣∣∣
2

=
∑

n∈Z

∣∣∣φ̂
(γ + 2n

2α

)∣∣∣
2

+
∑

n∈Z

∣∣∣φ̂
(γ + 2n + 1

2α

)∣∣∣
2

=
∑

n∈Z

∣∣∣φ̂
( γ

2α
+

n

α

)∣∣∣
2

+
∑

n∈Z

∣∣∣φ̂
( γ

2α
+

1
2α

+
n

α

)∣∣∣
2

= 2 ·
∑

n∈Z

∣∣∣m
(γ

2
+ n

)∣∣∣
2

·
∣∣∣f̂

( γ

2α
+

n

α

)∣∣∣
2

+ 2 ·
∑

n∈Z

∣∣∣m
(γ

2
+

1
2

+ n
)∣∣∣

2

·
∣∣∣f̂

( γ

2α
+

1
2α

+
n

α

)∣∣∣
2

= 2 ·
∣∣∣m

(γ

2

)∣∣∣
2 ∑

n∈Z

∣∣∣f̂
( γ

2α
+

n

α

)∣∣∣
2

+ 2 ·
∣∣∣m

(γ

2
+

1
2

)∣∣∣
2 ∑

n∈Z

∣∣∣f̂
( γ

2α
+

1
2α

+
n

α

)∣∣∣
2

.

With Fα(γ) =
∑

n∈Z |f̂(γ+n
α )|2 we have αA ≤ Fα(γ) ≤ Bα except on the zero set for
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Fα. Thus Φ2α(γ) ≤ 4bBα a.e. Set now

N =
{
γ : Φ2α(γ) = 0

}

=
{

γ :
∑

n∈Z

∣∣∣f̂
( γ+1

2 + n

α

)∣∣∣
2

= 0 and
∑

n∈Z

∣∣∣f̂
( γ

2 + n

α

)∣∣∣
2

= 0
}

.

For a.e. γ /∈ N we have Φ2α(γ) ≥ 2aAα = 2αaA. Thus {T2αmφ}m∈Z is a frame sequence
with bounds aA and 2bB

We now present a version of the ”splitting trick”.

Theorem 3.4. Suppose {Tαnf}n∈Z is a frame for V = span{Tαnf}n∈Z with bounds
A and B. Let {cn}, {dn} ∈ `2(Z) and assume that

a := min

( ∑

m∈Z
|c2m|2 −

∑

k 6=0

∣∣∣∣
∑

m∈Z
c2mc2m+k

∣∣∣∣

+
∑

m∈Z
|d2m|2 −

∑

k 6=0

∣∣∣∣
∑

m∈Z
d2md2m+k

∣∣∣∣,

∑

m∈Z
|c2m+1|2 −

∑

k 6=0

∣∣∣∣
∑

m∈Z
c2m+1c2m+1+k

∣∣∣∣

+
∑

m∈Z
|d2m+1|2 −

∑

k 6=0

∣∣∣∣
∑

m∈Z
d2m+1d2m+1+k

∣∣∣∣
)

> 0

b := max

( ∑

k∈Z

∣∣∣∣
∑

m∈Z
c2mc2m+k

∣∣∣∣ +
∑

k∈Z

∣∣∣∣
∑

m∈Z
d2md2m+k

∣∣∣∣,

∑

k∈Z

∣∣∣∣
∑

m∈Z
c2m+1c2m+1+k

∣∣∣∣ +
∑

k∈Z

∣∣∣∣
∑

m∈Z
d2m+1d2m+1+k

∣∣∣∣
)

< ∞.

Further, set φ1 =
∑

n∈Z cnTαnf and φ2 =
∑

n∈Z dnTαnf . Then, for all g ∈ V ,

a
∑

n∈Z
|〈g, Tαnf〉|2 ≤

2∑

i=1

∑

m∈Z
|〈g, T2αmφi〉|2 ≤ b

∑

n∈Z
|〈g, Tαnf〉|2. (11)

In particular, if {Tαnf}n∈Z is a frame for V with bounds A and B, then {T2αmφ1}m∈Z∪
{T2αmφ2}m∈Z is a frame for V with bounds aA and bB.

Proof. Observe that

T2αmφ1 =
∑

n∈Z
cnTα(2m+n)f =

∑

n∈Z
cn−2mTαnf.
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Similarly, T2αmφ2 =
∑

n∈Z dn−2mTαnf . Set cmn = cn−2m and dmn = dn−2m, and
consider the blockmatrix

C =
( {cmn}m,n∈Z
{dmn}m,n∈Z

)

=
( {cn−2m}m,n∈Z
{dn−2m}m,n∈Z

)

=




· · · · · · · · · ·
· · c0 c1 c2 c3 c4 c5 · ·
· · c−2 c−1 c0 c1 c2 c3 · ·
· · c−4 c−3 c−2 c−1 c0 c1 · ·
· · · · · · · · · ·
· · · · · · · · · ·
· · d0 d1 d2 d3 d4 d5 · ·
· · d−2 d−1 d0 d1 d2 d3 · ·
· · d−4 d−3 d−2 d−1 d0 d1 · ·
· · · · · · · · · ·




.

Due to the special structure of the matrix, the conditions in Theorem 2.1 will be identical
for all even values of n – and for all odd values. This gives the condition stated in
Theorem 3.4

The advantage of Theorem 3.4 is that the set of coefficients {cn} and {dn} are
independent of {Tαnf}n∈Z. That is, if we want to apply the splitting trick repeatedly,
the same coefficients can be used again.

If the matrix C from the proof of Theorem 3.4 is orthogonal, then a = b = 1.
That is, the splitting preserves the frame bounds. In applications of Theorem 3.4 it is
desirable that {T2αmφ1}m∈Z and {T2αmφ2}m∈Z are frame sequences by themselfes. A
sufficient condition on the set of coefficients {cn} and {dn} can be found in Lemma 3.3
(or Lemma 3.1 if {Tαnf}n∈Z is a Riesz sequence).

The splitting trick is traditionally used to construct an infinite family of frames
based on a single wavelet. We illustrate the principle with Gabor frames.

Example 3.5. Assume that {EβmTαng}m,n∈Z is a frame for L2(R); this is clearly
the case if and only if {TαnEβmg}m,n∈Z is a frame for L2(R). Denote the frame bounds
by A and B. By defining gm = Eβmg, the later frame can be written {Tαngm}m,n∈Z.
For each m ∈ Z, {Tαngm}n∈Z is a Bessel sequence. Choose coefficients {cn}n∈Z and
{dn}n∈Z as in Theorem 3.4 and define for each m ∈ Z the functions

φ1
m =

∑

n∈Z
cnTαngm and φ2

m =
∑

n∈Z
dnTαngm.

By (11), {T2αnφ1
m}m,n∈Z ∪ {T2αnφ2

m}m,n∈Z is a frame for L2(R) with bounds aA and
bB.

Instead of applying the splitting trick for each value of m, we can also decide only
to apply the splitting trick to some of the functions gm, say, for m in an index set I,
and keep the rest. In this case we obtain a frame of the form

{T2αnφ1
m}n∈Z,m∈I ∪ {T2αnφ2

m}n∈Z,m∈I ∪ {EβmTαng}n∈Z,m∈Z\I .
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All choices together gives an infinite library of frames with frame bounds min(1, a)A
and max(1, b)B.

We can also apply several succesive splittings, i.e. repeat the splitting on φ1
m, φ2

m,
etc. If we apply at most L succesive splittings, we obtain a frame for L2(R) with bounds
min(1, a)LA and max(1, b)LB.

Thus, a single Gabor frame allows to construct a whole library of Gabor frames.
The advantage of Theorem 3.4 is that the same coefficients {cn} and {dn} can be applied
to each splitting.

It is interesting to compare Example 3.5 with the known fact that {EβmTαng}m,n∈Z
can only be a frame for L2(R) if αβ ≤ 1. Let {EβmTαng}m,n∈Z be a Gabor frame
with αβ = 1. By defining g1 =

∑
n∈Z cnTαng and g2 =

∑
n∈Z dnTαng, the functions

φ1
m and φ2

m in (12) can be written φi
m = Eβmgi (i = 1, 2). That is, the family

{T2αnEβmgi}m,n∈Z,i=1,2 is a frame for L2(R), for which the product of the translation
and the modulation parameters is two. The price for this to be possible is that we need
two generators g1 and g2 instead of one.
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