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Existence and Regularity Results
for Non-Negative Solutions of some

Semilinear Elliptic Variational Inequalities
via Mountain Pass Techniques

M. Girardi, L. Mastroeni and M. Matzeu

Abstract. The main result stated in the present paper is the existence of a non-negative
solution for a semilinear variational inequality through the use of some estimates for the
Mountain-Pass critical points obtained for the penalized equations associated with the varia-
tional inequality. The positivity of the solution is achieved through a regularity result and the
strong maximum principle.
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0. Introduction

Let us consider the semilinear variational inequality

(VI)





u ∈ H1
0 (Ω) :∫

Ω
∇u(x)∇(v(x)− u(x)) ≥ ∫

Ω
p(x, u(x))(v(x)− u(x)) ∀ v ∈ H1

0 (Ω)
u(x), v(x) ≤ ψ(x) on Ω

where Ω is an open bounded subset of RN , ψ ∈ H1(Ω) with ψ|∂Ω ≥ 0 and p satisfies
some general superlinearity growth conditions at zero and at infinity. For example, p
can be choosen as

p(x, u(x)) = p(u(x)) = |u(x)|β−2u(x) (β > 2), (∗)

that is p(x, t) = p(t) = P ′(t) for any x ∈ Ω and t ∈ R with P (t) = β−1|t|β . One notes
that with this choice of p the nonlinear differential operator A : H1

0 (Ω) → H−1(Ω) such
that variational inequality (VI) can be equivalently written as
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u ∈ H1
0 (Ω) :

〈A(u), v − u〉 ≥ 0 ∀ v ∈ H1
0 (Ω)

u(x), v(x) ≤ ψ(x) on Ω

does not satisfy any coerciveness property on H1
0 (Ω). So a non-trivial solution of vari-

ational inequality (VI) (note that u ≡ 0 obviously solves (VI) in the case ψ ≥ 0 on Ω)
cannot be found by the simple use of the well known Hartman-Stampacchia’s theorem
(see [5]) related to nonlinear variational inequalities involving monotone operators.

Actually, a paper by Szulkin [16] yields some conditions on a class of functions p
in order to guarantee a suitable coerciveness approach to variational inequality (VI),
which enables to state various existence of (possibly positive) solutions to (VI) and some
conditions characterizing the solvability of (VI). Actually, the function p given in (∗)
does not belong to the mentioned class, which contains on the contrary the opposite
function −p.

In the following, still Szulkin in [17] developes a general theory of minimax prin-
ciples for functionals which can be written as the sum of a regular functional plus a
proper convex lower semicontinuous functional that can be choosen, in particular, as
the indicator function of a closed convex set K, for example, as in (VI),

K =
{
v ∈ H1

0 (Ω) : v ≤ ψ on Ω
}
.

He exhibits, as an application of a general theorem, an existence result for a semilinear
variational inequality, in the case that

K =
{
v ∈ H1

0 (Ω) : v ≥ 0 on Ω
}

still considering the case that p has a superlinear growth at the origin and at infinity,
with a further oddness assumption, in such a way that p can be choosen as in (∗).

In order to apply an appropriate version of the Palais-Smale condition (adapted for
the mentional class of irregular functionals) the growth of p is supposed to be subcritical,
i.e. β in (∗) is assumed to be less than 2∗, where 2∗ is the Sobolev exponent given by
2∗ = 2N

N−2 for N ≥ 3.

In [7] Mancini and Musina considered the critical case β = 2∗ − 1 with the choice
of p(x, t) = p(t) = t|t|β−2 as in (∗) and

K =
{
v ∈ H1

0 (Ω) : v ≥ ψ on Ω
}
.

In another paper [8] the same authors also considered the choice of K of the kind

K =
{
v ∈ H1

0 (Ω) : v ≥ 0 on Ω and v ≤ ψ on C
}

where C is a closed subset of Ω with suitable properties. Actually, the main interest of
the results contained in [7, 8] is connected with other important questions in the frame-
work of semilinear elliptic problems, rather than the existence problem for variational
inequalities.
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In a quite different context, a paper of Passaseo [13] (see also a joint paper with
Marino [9]) is devoted to a deep investigation of the structure of possible solutions of
variational inequality (VI), but any existence result contained in [9, 13] requires, among
other assumptions, that the function p satisfies a global Lipschitz-continuity condition
with respect to the t-variable, which in case (*) is obviously satisfied only with the
choice β = 2 (which corresponds to the linear case).

The aim of the present paper is to consider a completely new approach with respect
to the above mentioned papers, which seems to be more natural and simpler. The
assumptions on p are those mentioned at the beginning of this introduction, where the
exponent growth β has to be subcritical (more precisely, it is assumed to belong to
the interval (2, min(3, 2∗)). Then the existence of a non-trivial non-negative solution
u = u+ of variational inequality (VI) is stated under some further hypotheses on ψ,
that is ψ ∈ H1

0 ∩ Lq (with q > 2∗ suitably connected with the superlinearity growth of
p), ψ(x) ≥ 0 and a technical assumption connecting ψ with the superquadratic growth
coefficients of P in the t-variable (see conditions (5) and (7) in Section 1). Here the fact
that u+ is non-trivial means not only u+ 6≡ 0, but even that u+ cannot be automatically
got as a solution of the equation associated with (VI), i.e. with obstacle ψ ≡ +∞ (see
Section 1). The method is based on the consideration of a family of penalized equations
associated with variational inequality (VI) in the usual way as in the linear case (see,
e.g., [3]): one obtains, for any penalized problem, a Mountain Pass solution. Then some
estimates from above and from below for these solutions allow, by a suitable passage to
the limit as the penalization parameter ε goes to 0+, to exhibite a non-negative solution
u = u+ 6≡ 0.

The second part of the present paper is devoted to state some regularity results
of any possible solution u to variational inequality (VI) as well as to guarantee the
strict positivity of u in the case that u is non-negative and sufficiently regular. More
precisely, by assuming some suitable further regularity conditions on ψ, we prove by a
boot-strap argument and the use of so-called Lewy-Stampacchia estimates for solutions
to variational inequalities (see [6, 12]) some regularity results for any solution u to (VI).
The most meaning of these results yields u as a solution of a complementarity system (in
a weak sense, which will be precised in Section 2). On the other hand, an appropriate use
of the strong maximum principle enables to state, under further regularity assumptions
on ψ, that any non-negative solution u is indeed a strictly positive solution of the
complementarity system.

We point out that the regularity and the strict positivity (possible) properties of the
solution u+ given by the existence result in the first part of the present paper could be
a starting point in order to interpret u+ as the Hamilton-Jacobi function of the control
problem associated with variational inequality (VI). Let us note that this is not obvious
at all, since one cannot guarantee the uniqueness of a non-trivial solution u of (VI).

Finally, let us recall that some other interesting results in the framework of semilin-
ear variational inequalities, even with some different types of constraints, were obtained
in [10, 11].
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1. Existence result of a non-negative non-trivial solution

Let us consider variational inequality (VI) where Ω is an open bounded subset of RN

with a sufficiently smooth boundary ∂Ω, H1
0 (Ω) is the usual Sobolev space on Ω obtained

as the closure of C∞0 (Ω) with respect to the norm ‖v‖ = (
∫
Ω
|∇v(x)|2)1/2, ψ belongs to

H1(Ω) with ψ|∂Ω ≥ 0, and p : Ω× R→ R satisfies the conditions (1)

p(x, ξ) is measurable in x ∈ Ω and continuous in ξ ∈ R (1)

|p(x, ξ)| ≤ a1 + a2|ξ|s
(
(x, ξ) ∈ Ω× R)

for some a1, a2 > 0

with 1 < s < N+2
N−2 = 2∗ − 1 if N ≥ 3 and 1 < s if N = 2 (2)

p(x, ξ) = o(|ξ|) as ξ → 0. (3)

Moreover, putting

P (x, ξ) =
∫ ξ

0

p(x, t) dt (x ∈ R)

we assume:
There exists r > 0 such that, for |ξ| ≥ r,

0 < (s + 1) P (x, ξ) ≤ ξ p(x, ξ) (x ∈ Ω)

}
. (4)

Note that condition (4) easily yields

P (x, ξ) ≥ a3|ξ|s+1 − a4 (x ∈ Ω, ξ ∈ R) for some a3, a4 > 0. (5)

In the case ψ(x) ≥ 0 on Ω it is easy to check that u0 ≡ 0 is a trivial solution
of variational inequality (VI). Actually, under this assumption, one can get another
solution u− 6≡ 0, which is itself in some sense trivial as it can be obtained as a non-zero
solution of the equation

(E) −∆u−(x) = p(x, u−(x)) (u− ∈ H1
0 (Ω)).

Indeed, (1) - (5) enable to find a solution u− of equation (E), which is negative on Ω,
coinciding with a critical point of Mountain Pass type of the functional

I−(v) = 1
2

∫

Ω

|∇v(x)|2 −
∫

Ω

P−(x, v(x)) (v ∈ H1
0 (Ω))

with

P−(x, ξ) =
∫ ξ

0

P−(x, t) dt and p−(x, t) =
{

0 if t > 0
p(x, t) if t ≤ 0

(see, e.g., [14: p. 11]). Therefore, as ψ ≥ 0 on Ω, u− is actually a solution of variational
inequality (VI).

(1) For N = 1 all the statements reported here about equation (E) below still hold without
assumption (2). Moreover, assumption (4) can be weakened, replacing |ξ| ≥ r > 0 with
ξ ≤ −r < 0.
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Thus the interesting problem, also in view of some possible applications to control
theory, is to get a non-negative non-zero solution u+ of variational inequality (VI). Note
that the truncature argument introduced above, but replacing p− with

p+(x, t) =
{

0 if t < 0
p(x, t) if t ≥ 0,

always yields a positive solution ũ+ of equation (E), but ũ+ is in general not a solution
of variational inequality (VI), since one cannot state the inequality ũ+ ≤ ψ.

Actually, by suitably reinforcing the assumptions on ψ, one can get a non-negative
non-zero solution u+ of variational inequality (VI), even replacing condition (4) with
the following weaker condition:

There exists r > 0 such that, for ξ ≥ r,

0 < (s + 1) P (x, ξ) ≤ ξ p(x, ξ) (x ∈ Ω)

}
. (4′)

This condition implies

P (x, ξ) ≥ a′3(ξ)
s+1 − a′4 (for a.e. x ∈ Ω, ξ > 0) for some a′3, a

′
4 > 0 (5′)

(analogously to the case considered in order to get the negative solution u− of equation
(E), see footnote (1)). Indeed, one can state the following

Theorem 1. Under assumptions (1)− (3) and (4′), let further

0 ≤ ψ ∈ H1
0 (Ω) ∩ L( 2∗

s )′(Ω) (6)∫

Ω

|∇v̄|2 ≤ 2
(
a3

∫

Ω

(v̄)s+1 − a4

)
for some 0 ≤ v̄ ∈ H1

0 (Ω), 0 ≤ v̄(x) ≤ ψ(x) (7)

s < 2 in (2). (8)

Then there exists a non-negative solution u = u+ 6≡ 0 of variational inequality (VI).

Remark 1. Note that (7) is a really restrictive condition on ψ. For example, it
implies

∫
Ω
(ψ(x))s+1 ≥ a4

a3
which can be seen as a condition connecting ψ with the

growth coefficient p. On the other side, there are infinite many obstacles ψ satisfying
(7). More precisely, if one fixes any non-negative function 0 6= v0 ∈ H1

0 (Ω), one can
choose ψ = λv0 as an obstacle with λ > 0 sufficiently large, and condition (7) is satisfied
by taking v̄ ≡ ψ, due to the fact that s + 1 > 2.

Remark 2. Note that (8) is automatically satisfied in the case N ≥ 6, as an obvious
consequence of condition (2).

We limit ourselves to deal with the case N ≥ 3, since the cases N = 1, 2 can be
studied in a very similar way, even by simpler arguments.

The method of finding the solution u+ relies on the consideration of a family of
penalized equations associated in a standard way with variational inequality (VI) (see,
e.g., [3]). Indeed, one can prove that any penalized equation possesses a strictly positive
solution of Mountain Pass type, and that a sequence choosen in this family actually
converges to a non-negative solution u+ 6≡ 0 of (VI), by suitably using some estimates
from below and from above for the H1

0 -norm of the penalized solutions. Neverthless,
one cannot state in general the strict positivity of u+ on the whole set Ω.
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2. Proof of Theorem 1

First of all, let us introduce the penalized problem associated with variational inequality
(VI), that is, for any ε > 0 the weak equation

(E)ε

{
uε ∈ H1

0 (Ω) :∫
Ω
∇uε∇v + 1

ε

∫
Ω
(uε − ψ)+v =

∫
Ω

p(x, uε(x))v(x) ∀ v ∈ H1
0 (Ω)

where g+ denotes the positive part of the function g. Let us note that the last integral
is well defined for v in H1

0 (Ω) as a consequence of condition (2) and the continuous
embedding of H1

0 (Ω) into L
2N

N−2 .
Actually, in order to look for non-negative solutions of problem (E)ε it is convenient

to modify it with the following one:

(E)ε





uε ∈ H1
0 (Ω) :∫

Ω
∇ūε∇v + 1

ε

∫
Ω
(ūε − ψ)+v =

∫
Ω

p+(x, ūε(x))v(x) ∀ v ∈ H1
0 (Ω)

p+(x, ξ) = p(x, ξ) if ξ ≥ 0 and p+(x, ξ) = 0 if ξ < 0

whose solutions coincide with the critical points of the functional

Iε(v) = 1
2

∫

Ω

|∇v|2 + 1
ε

∫

Ω

( ∫ v(x)

0

(t− ψ(x))+dt

)
dx−

∫

Ω

P+(x, v(x))

on H1
0 (Ω) with

P+(x, ξ) =
∫ ξ

0

p+(x, t) dt (x ∈ Ω, ξ ∈ R).

Indeed, one can easily check that Iε belongs to C1(H1
0 (Ω)) and that 〈I ′ε(ū′ε), v〉 as pairing

between H1
0 (Ω) and its dual space coincides with the difference between the first and

the second member in problem (E)ε.
At this point the proof of Theorem 1 starts from the check that Iε verifies all the

hypotheses of the Mountain Pass theorem by Ambrosetti and Rabinowitz [2]. Let us
proceed, from now on, by steps.

Step 1. The functional Iε verifies for any ε > 0 the conditions

Iε(0) = 0 (9)

and, for some α > 0 and r > 0,

Iε(v) ≥ α (v ∈ H1
0 (Ω), ‖v‖ = r). (10)

Proof. Property (9) is trivial. As for (10), let us note that the positivity of ψ on
Ω yields

∫

Ω

( ∫ v(x)

0

(t− ψ(x))+dt

)
dx =

∫
x∈Ω

v(x)≥ψ(x)

( ∫ v(x)

ψ(x)

(t− ψ(x) dt

)
dx ≥ 0.

Thus
Iε(v) ≥ 1

2

∫

Ω

|∇v|2 −
∫

Ω

P+(x, v(x)) dx. (11)

Then (10) follows from (11), (3), (4′) and the continuous embedding of H1
0 (Ω) into

Ls+1(Ω) (see also [14: p. 10/Proof of (I1)])
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Remark 3. Note that the numbers α > 0 and r > 0 in (10) do not depend on ε,
but this will not be used in the proof of Theorem 1.

Step 2. The element 0 6= v̄ ∈ H1
0 (Ω) in (7) satisfies the property

Iε(v̄) ≤ 0 (12)

for all ε > 0

Proof. This is an obvious consequence of the facts that, as v̄ ≤ ψ, one has 1
ε

∫
Ω
(v̄−

ψ)+ = 0 and that

Iε(v̄) ≤ 1
2

∫

Ω

|∇v̄|2 −
(

a3

∫

Ω

v̄s+1 − a4

)
≤ 0

by (7) and (5′)

Step 3. For any ε > 0, the functional Iε satisfies the Palais-Smale condition, i.e.

(PS)





For any sequence {vn} such that {Iε(vn)}n is bounded
and I ′ε(vn) → 0 in the dual space of H1

0 (Ω)
there exists a subsequence of {vn} strongly converging in H1

0 (Ω).

Proof. The arguments are quite similar to those given in [15: Chapter II/Proof
of Theorem 6.2] as the function pε(x, ξ) = p+(x, ξ) − 1

ε (ξ − ψ(x))+ obviously satisfies
conditions of type (1) - (2) as p(x, ξ), and that Pε(x, ξ) =

∫ ξ

0
pε(x, t) dt satisfies the

analogous relation of condition (4′) (with p+ and P+ replaced by pε and Pε, respectively),
with the same choices of s and r

Step 4. For any ε > 0 there exists a solution ūε of problem (E)ε such that

Iε(ūε) = inf
γ∈Γ

max
t∈[0,1]

Iε(γ(t)) (13)

where
Γ =

{
γ ∈ C0([0, 1]; H1

0 (Ω)) : γ(0) = 0 and γ(1) = v̄
}

. (14)

Moreover,
Iε(ūε) ≥ α. (15)

Proof. The assertion is a consequence of Steps 1 - 3 and the Mountain Pass theorem
by Ambrosetti and Rabinowitz [2]

Step 5. One can find ūε as a non-negative and non-trivial solution of problem (E)ε.

Proof. Let us choose v(x) = (ūε)−(x) = max{−ūε(x), 0} in problem (E)ε. By the
non-negativity of ψ on Ω one easily gets

∫

Ω

(ūε − ψ)+(ūε)− = 0 (16)

as well as, by the definition of p+,
∫

Ω

p+(x, ūε(x))(ūε)−(x) = 0. (17)

Then (Eε) (with v = (ūε)−) and (16) - (17) yield (ūε)− ≡ 0. Thus ūε is a non-negative
not identically zero solution of problem (E)ε
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Step 6. There exists a number c1 > 0 such that ‖ūε‖ ≥ c1 for all ε > 0.

Proof. By definition of a solution of problem (E)ε it follows in particular

∫

Ω

|∇ūε|2 + 1
ε

∫

Ω

(ūε − ψ(x))+ūε(x) =
∫

Ω

p(x, ūε(x))ūε(x). (18)

Thus, by the positivity of ūε

∫

Ω

|∇ūε|2 ≤
∫

Ω

p(x, ūε(x))ūε(x). (19)

On the other hand, as a consequence of conditions (2) - (3), for any δ > 0 there exists
a c(δ) > 0 such that

|ξ p(x, ξ)| ≤ δ|ξ|2 + c(δ)|ξ|s+1 (for a.e. x ∈ Ω, ξ ∈ R)

which yields, using (19), the arbitrarity of δ and the continuous embedding of H1
0 into

L2, the relation ∫

Ω

|∇ūε|2 ≤ const
∫

Ω

|ūε|s+1.

Thus the assertion easily follows from the continuous embedding of H1
0 into Ls+1 and

the assumption s + 1 > 2

Step 7. There exists a number c2 > 0 such that Iε(ūε) ≤ c2 for all ε > 0.

Proof. By (15) - (16) one gets

Iε(ūε) ≤ max
t∈[0,1]

Iε(tv̄). (20)

Actually, as v̄ ≤ ψ one has

∫

Ω

( ∫ tv̄(x)

0

(s− ψ(x)+ds

)
dx = 0 (t ∈ [0, 1]). (21)

Then (20) - (21) yield

Iε(ūε) ≤ max
t∈[0,1]

(
t2

2

∫

Ω

|∇v̄|2 −
∫

Ω

P (x, tv̄(x))
)

.

Thus by condition (5′) one gets

Iε(ūε) ≤ const
(

max
t∈[0,1]

(t2 − ts+1)
)

+ const (22)

and the assertion is proved as the left member in (21) is a constant number independent
on ε
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Step 8. There exists a number c3 > 0 such that ‖ūε‖ ≤ c3 for all ε > 0.

Proof. By Step 7 one gets for any ε > 0

1
2

∫

Ω

|∇ūε|2 + 1
ε

∫

Ω

( ∫ ūε(x)

0

(s− ψ(x))+ds

)
dx ≤ c2 +

∫

Ω

P (x, ūε(x)) dx.

So, by condition (4′),

1
2

∫

Ω

|∇ūε|2 + 1
ε

∫

Ω

( ∫ ūε(x)

0

(s− ψ(x))+ds

)
dx ≤ const + 1

s+1

∫

Ω

p(x, ūε(x))ūε(x) dx.

Thus, as ūε solves problem (E)ε one gets
(

1
2 − 1

s+1

) ∫

Ω

|∇ūε|2

≤ const + 1
(s+1)ε

∫

Ω

(ūε(x)− ψ(x))+ūε(x)− 1
ε

∫

Ω

( ∫ ūε(x)

0

(s− ψ(x))+ds

)
dx.

(23)

Thus, putting Ωε =
{
x ∈ Ω : ūε(x) ≥ ψ(x)

}
one deduces from (23)

(
1
2 − 1

s+1

) ∫

Ω

|∇ūε|2 ≤ const + 1
ε

{
1

s+1

∫

Ωε

(ūε − ψ)ūε − 1
2

∫

Ωε

(ūε − ψ)2
}

.

So, as s + 1 > 2, ∫

Ω

|∇ūε|2 ≤ const + 1
2ε

∫

Ωε

(ūε − ψ)ψ. (24)

At this point, taking v = ψ in problem (E)ε (recall that ψ belongs to H1
0 (Ω)), one gets

1
ε

∫

Ωε

(ūε − ψ)ψ = − 1
2

∫

Ω

∇ūε∇ψ +
∫

Ω

p(x, ūε(x))ψ(x). (25)

Using (2), one deduces from (24) - (25) and the fact that ψ belongs to Lq(Ω) with q
given by (6) ∫

Ω

|∇ūε|2 ≤ const
(

1 +
( ∫

Ω

|ūε|2
∗
) s

2∗
)

and, by the continuous embedding of H1
0 (Ω) into L2∗(Ω), ‖ūε‖2 ≤ const(1 + ‖ūε‖s)

which gives the boundedness of {uε} in H1
0 (Ω) as (8) holds

Step 9. There exists a number c4 > 0 such that

‖(ūε − ψ)+‖L2(Ω) ≤ c4

√
ε. (26)

Proof. Since ūε solves problem (E)ε one gets

1
ε

∫

Ω

(ūε(x)− ψ(x))+ūε(x) =
∫

Ω

|∇ūε|2 −
∫

Ω

p(x, ūε(x))ūε(x).

Thus, by the positivity of ψ

1
ε

∫

Ω

(
(ūε(x)− ψ(x))+

)2 = 1
ε

∫

Ω

(ūε − ψ)+(ūε − ψ)

≤
∫

Ω

|∇ūε|2 −
∫

Ω

p(x, ūε(x))ūε(x).
(27)

At this point the assertion follows from condition (2) and Step 8
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Step 10. There exists a sequence εn → 0+ such that {ūεn
}n weakly converges in

H1
0 (Ω) to some 0 ≤ ū 6≡ 0.

Proof. First of all, by Step 8, a sequence {ūεn
}n with εn → 0+ weakly converges in

H1
0 (Ω) to some ū, which is non-negative by the positivity of any ūεn

. Moreover, by the
Rellich-Kondrachov theorem (ensured by the condition s + 1 < 2N

N−2 ), {ūεn
} strongly

converges to ū in Ls+1(Ω). One claims that ū is not identically zero. Indeed, ū ≡ 0
would imply an absurdum deduced by Step 6 and the passage to the limit as n → +∞
in relation (18) with ε = εn

Step 11. As conclusion, the element u+ = ū given by Step 10 is a non-negative
non-zero solution of variational inequality (VI).

Proof. One has to prove only that ū solves variational inequality (VI). Actually,
the argument is very similar to that given in [3: p. 196/Subsection 1.4] for the linear
case, but we prefer to report the details here.

First of all, at least a subsequence of {uεn}n also denoted by {uεn}n verifies the two
convergences

ūεn → ū strongly in Lp(Ω) for any p ∈ [2, 2∗) (28)
(ūεn − ψ)+ → 0 in L2(Ω) (29)

(the first was already pointed out in the proof of Step 10, the second is an obvious
consequence of Step 9). Actually, both convergences yield

(ū− ψ)+ = 0, i.e. ū(x) ≤ ψ(x) for a.e. x ∈ Ω (30)

so that ∫

Ω

∇ūεn∇v −
∫

Ω

p(x, ūεn(x))(v(x)− ūεn(x)) ≥
∫

Ω

|∇ūεn |2 (31)

for all v ∈ H1
0 (Ω) with v ≤ ψ. At this point (28) implies in particular the convergence

ūεn → ū strongly in L
s 2∗
2∗−1 which yields by (2) the convergence p(·, ūεn

(·)) → p(·, ū(·))
strongly in L

2∗
2∗−1 . Then, as ūεn → ū weakly in L2∗ , one gets

∫

Ω

p(x, ūεn(x))(v(x)− ūεn(x)) →
∫

Ω

p(x, ū(x))(v(x)− ū(x)) (32)

for all v ∈ H1
0 (Ω). On the other hand, the weak L2-convergence ∇ūεn → ∇ū implies

lim
n→∞

∫

Ω

|∇ūεn |2 ≥
∫

Ω

|∇ū|2. (33)

Finally, (30) - (33) easily yield ū as a solution of problem (VI)
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3. Regularity and strict positivity of solutions

As for the regularity results of any solution u of problem (VI), they can be obtained as
consequences of the so-called Lewy-Stampacchia estimates for solutions of variational
inequalities. At this purpose, let us recall that any solution u of a variational inequality
of the kind





u ∈ H1
0 (Ω) :∫

Ω
∇u∇(v − u) ≥ 〈g, v − u〉 ∀ v ∈ H1

0 (Ω)
u, v ≤ ψ

where g ∈ H−1(Ω) (the dual space of H1
0 (Ω)), 〈·, ·〉 denotes the pairing between H1

0 and
H−1, and a pair of dual order estimates of the type

(LS) g ∧ (−∆ψ) ≤ −∆u ≤ g

is assumed in the case that g and −∆ψ are supposed to belong to the dual order of
H1

0 (Ω) (that is the closed subspace of H−1(Ω) given by the differences of non-negative
elements in H−1(Ω)). (2) Actually, estimates of the kind of (LS), introduced in [6]
for elliptic variational inequalities, were afterwards proved in a very general context for
abstract variational inequalities with unilateral constraints in [12].

Indeed, some suitable further regularity assumptions on ψ enable to use appropriate
(LS)-estimates in order to obtain various regularity results for the solutions of problem
(VI). We have choosen to present here two main results of this kind. The first one yields
the Hölder continuity and is expressed by the following

Theorem 2. Let p be Hölder continuous on Ω × R and let (2) be satisfied with
s < 1 + 4

N−2 if N ≥ 3. Furthermore, let ψ ∈ C2,α(Ω) for some α ∈ (0, 1). Then any
solution u of problem (VI) solves the complementarity system

(C)





u ∈ C0,α′(Ω) for some α′ ∈ (0, 1)
u(x) ≤ ψ(x) for all x ∈ Ω
−∆u(x) ≤ p(x, u(x)) for a.e. x ∈ Ω
−∆u(x) = p(x, u(x)) for all x ∈ Ω such that u(x) < ψ(x)
u(x) = 0 for all x ∈ ∂Ω.

Proof. The proof is obvious for N = 1, 2. So let us put N ≥ 3. By the previous
arguments the pair of inequalities of type (LS) yields, as ∆ψ is Hölder continuous, u is
a weak solution in H1

0 (Ω) of an equation of the type

−∆u(x) = g(x) ∈ L
2∗
s (Ω).

Actually, −∆u belongs by (LS) to an order interval with extrema given by p(x, u(x))∧
(−∆ψ(x)) and p(x, u(x)), both belonging to L

2∗
s (Ω). Then (−∆u) itself belongs to

L
2∗
s (Ω).

(2) Any element v′ ∈ H−1(Ω) is said to be non-negative if 〈v′, v〉 ≥ 0 for all 0 ≤ v ∈ H1
0 (Ω).
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Therefore, by the classical results of Agmon, Douglis and Nirenberg [1], u belongs
to H2, 2∗

s . Then the embedding theorems by Sobolev and Morrey enable, by a boot-
strap argument, to state that the α′-Hölder continuity of u on Ω for some α′ ∈ (0, 1) is
equivalent to the statement that for some k0 ∈ N

(N − 2)sk0 < 4
k0−1∑

j=0

sj . (34)

On the other side, this is obviously equivalent to the relation N − 2 < 4
s−1 , i.e. s <

1 + 4
N−2 . Therefore, one concludes that u itself is α′-Hölder continuous. This property,

using standard arguments in the theory of variational inequalities, yields the equivalence
of variational inequality (VI) with all the relations appearing in system (C)

Remark 4. Let us point out that condition (8) in the existence result of u+ (see
Theorem 1) guarantees, under further regularity assumptions on p and ψ, that u+

verifies system (C) in the case N ≤ 4.

Theorem 3. Let all the assumptions of Theorem 2 be satisfied and let ψ ∈ H2,p(Ω)
for some p ≥ 2. Then any solution u of (VI) belongs to H2,p(Ω).

Proof. The argument is similar to that given in the first part of the proof of
Theorem 2. At first one finds some k0 ∈ N such that (34) holds. At this point one takes
into account that if v1 ∈ Lq1 and v2 ∈ Lq2 , then v1 ∧ v2 ∈ Lq with q = min(q1, q2). So,
choosing k ≥ max(k0, p) (note that (34) holds for k > k0, too) one deduces that u is
the solution of an equation of the type −∆u(x) = h(x) ∈ Lp(Ω). Therefore, still by the
classical results of Agmon, Douglis and Nirenberg, one gets the thesis

As for the strict positivity of solutions, one can get the following result as a conse-
quence of Theorem 2.

Theorem 4. Let all the assumptions of Theorem 2 be satisfied, let p(x, ξ) ≥ 0 for
all x ∈ Ω and ξ ≥ 0, and let ψ(x) > 0 for any x ∈ Ω. Then any non-negative solution
u of inequality (VI) is strictly positive on Ω.

Proof. By Theorem 2, it follows that either one has

u(x) = ψ(x) (35)

or
−∆u(x) = p(x, u(x)) ∀x ∈ Ωψ = {x ∈ Ω : u(x) < ψ(x)}. (36)

For all x ∈ Ω such that (35) holds, u is strictly positive as ψ(x) > 0 for all x ∈ Ω. For
all x ∈ Ω such that (36) holds one can use some analogous arguments as in [4: Corollary
2.23] in order to state that the strong maximum principle applied to the problem

(Pψ)
{−∆u(x) = p(x, u(x)) = p+(x, u(x))

u(x) = ψ(x) (x ∈ ∂Ωψ)

(recall the definition of p+(x, t) given in Section 1 and note that u is a classical solution
of problem (Pψ)) still gives the strict positivity of u on Ωψ. So u is strictly positive on
the whole set Ω
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Remark 5. By Remark 4, Theorem 4 guarantees the strict positivity of the solution
u+ given by Theorem 1 under the further regularity assumptions on p and ψ given in
Theorem 2 and in the case N ≤ 4.
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