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Free Boundary Problem
for a

One-Dimensional Transport Equation

C. Kuttler

Abstract. For a linear transport equation in one space dimension with speeds in a compact
interval and a general symmetric kernel for the change of velocity a problem with free boundary
(Stefan problem) is stated. The case of constant speed corresponds to a Stefan problem for the
damped wave equation (telegraph equation). Existence and uniqueness of the free boundary
is shown, and the connection to the classical Stefan problem (parabolic limit) is exhibited.
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1. Introduction

The classical Stefan problem for the heat equation describes the melting of ice in a chan-
nel represented by a one-dimensional interval of variable length. At the fixed boundary
a standard boundary condition prescribes the temperature or the heat flux, the free
boundary is implicitly given by a Dirichlet condition (melting temperature) and a sec-
ond condition connecting the displacement of the ice rim to the latent heat. The problem
has been generalized in various directions (two-phase problem, semilinear equation, gen-
eral boundary conditions) and there are many applications in science and technology.
Of course, the heat equation can be also interpreted as a diffusion equation.

Even if the differential equation is linear, the Stefan problem is highly nonlinear. A
standard approach to its solution is to transform the problem to an integral equation for
the unknown boundary and the unknown temperature distribution and then to apply
fixed point theorems. As a typical example we mention [3].

Although the diffusion equation (or Brownian motion) is the standard model for
motion in space, it is only the limiting case of a class of correlated random walks,
damped wave equations, and transport equations which are based on more detailed
descriptions of many particles, i.e. on individual particle speed, and do not show the
effect of infinitely fast propagation. These systems are hyperbolic in contrast to the
parabolic limiting case.
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Stefan problems for hyperbolic equations have been studied to some extent. Green-
berg [8] proves existence of a free boundary for a damped wave equation (or telegraph
equation) with a special boundary condition which describes in detail the underlying
physical phenomena. Friedman and Bei Hu [4] prove existence for the telegraph equa-
tion and a more general class of boundary conditions. This work shows clearly that
the hyperbolic problem requires novel techniques, e.g., the directions of characteristics
must be taken into account, the compactness properties are much weaker than in the
parabolic case.

Here a free boundary problem is formulated for a general linear transport equation in
one space dimension. The particle speeds are strictly positive and the kernel governing
change of velocities is symmetric. Particular attention is paid to the formulation of
boundary conditions. At the fixed boundary a partially reflecting condition is imposed.
Also at the free boundary particles are reflected whereby it is assumed that the motion
of the free boundary can be neglected, when the reflection of an individual particle is
considered. In other words, the speed of displacement of the free boundary is smaller
than the minimal particle speed. This assumption is incorporated into the reflection
law and into the law that connects the displacement to the number of arriving particles.

The free boundary value problem is transformed into an integral equation. For a
fixed boundary a solution of the initial boundary value problem is shown to exist and its
properties are investigated. This result is used as a tool to show existence for the free
boundary value problem (Section 4). Uniqueness is shown by a Gronwall argument in
Section 5. In Section 6 the limiting case of constant speed where the transport equation
becomes the Goldstein-Kac random walk (see [7, 9]) is studied in its own right. Finally,
in Section 7, it is shown that the formal parabolic limit of the hyperbolic free boundary
problem is a classical Stefan problem. The strategy of proof resembles the approach in
[4]. Due to the different interpretation of the variables as particle density (as opposed to
linear combinations of temperature and heat flux in [4]), the positivity plays a different
role and the boundary conditions are different.

1.1 The one-dimensional transport equation. The state of a particle is described
by its position in space x ∈ R and its velocity γ ∈ R. The particle moves with a fixed
velocity, stops at a random time governed by a Poisson process with parameter µ and
then selects a new velocity from a given set of velocities according to some distribution
with density K. Given the previous velocity γ′, the probability density of the new
velocity is K(·, γ′). We assume that velocities range in the set Γ defined by

Γ =
{
γ ∈ R : γ0 ≤ |γ| ≤ γ1

}

where γ0 > 0 and γ1 < ∞. Hence very fast and very slow particles are excluded.
The domain in the space-time continuum is

Ω =
{
(t, x) : 0 ≤ t and 0 ≤ x ≤ s(t)

}

where x = 0 is the fixed and x = s(t) is the moving boundary. The function s starts
from s(0) = s0 > 0 and is positive as long as it exists. The particle density u = u(t, x)
is defined on Ω and satisfies the transport equation

ut + γ · ux = −µu + µ

∫

Γ

K(γ, γ′) u(t, x, γ′) dγ′ on Ω. (1)
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We assume that K is continuous in Γ2, K(γ, γ′) ≥ 0 for γ, γ′ ∈ Γ and
∫
Γ

K(γ, γ′) dγ = 1.
Furthermore, K is assumed symmetric, i.e. K(γ, γ′) = K(γ′, γ) for γ, γ′ ∈ Γ. Of course,
then also

∫
Γ

K(γ, γ′) dγ′ = 1. The initial condition has the form

u(0, x, γ) = u0(x, γ) (x ∈ [0, s0], γ ∈ Γ) (2)

such that u0 is at least continuous. Boundary conditions require special attention and
will be discussed in the next subsection.

1.2 Boundary conditions. In the following we use the sets Γ+ = Γ ∩ (0,∞) and
Γ− = Γ \ Γ+. Also, we write in short uγ(t, x) = u(t, x, γ). Boundary conditions can be
prescribed only for ingoing particles, i.e. at x = 0 we can give data u(t, 0, γ) for γ ∈ Γ+

and at x = s(t) for γ ∈ Γ−. For the moment assume that the free boundary is not
there, i.e. the solution is defined for all x ≥ 0 and uγ(t, ·) has compact support for each
γ and t.

The total mass U(t) =
∫∞
0

∫
Γ

u(t, x, γ) dγdx satisfies

0 =
dU(t)

dt

=
∫ ∞

0

∫

Γ

[
− γux(t, x, γ)− µu(t, x, γ) + µ

∫

Γ

K(γ, γ′)u(t, x, γ′) dγ′
]
dγdx

= −
∫

Γ

γ

∫ ∞

0

ux(t, x, γ) dxdγ

=
∫

Γ

γu(t, 0, γ) dγ.

In order to have total reflection at x = 0 and conservation of mass, the boundary
condition at x = 0 must satisfy

∫ γ1

γ0

γu(t, 0, γ) dγ = −
∫ −γ0

−γ1

u(t, 0, γ)γ dγ.

This requirement is satisfied by any boundary condition of the form

u(t, 0, γ) = 1
|γ|

∫ −γ0

−γ1

L(γ, γ′)u(t, 0, γ′)|γ′| dγ′ (γ ∈ Γ+)

where L is continuous in Γ+ × Γ−, L(γ, γ′) ≥ 0 and
∫ γ1

γ0
L(γ, γ′) dγ = 1. Indeed,

∫ γ1

γ0

γu(t, 0, γ) dγ = −
∫ γ1

γ0

∫ −γ0

−γ1

L(γ, γ′)u(t, 0, γ′)γ′ dγ′dγ

= −
∫ −γ0

−γ1

u(t, 0, γ′)γ′ dγ′.
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Now we assume that only a share r < 1 of the particles arriving at the left boundary
is reflected, and the remaining particles are absorbed. Furthermore, we add a source
term at x = 0. Then we have the boundary condition

u(t, 0, γ) = r
|γ|

∫ −γ0

−γ1

L(γ, γ′)u(t, 0, γ′)|γ′| dγ′ + f(t, γ) (γ ∈ Γ+) (3)

where f(t, γ) ≥ 0 for all γ ∈ Γ+.
The following propositions could also be shown for the limiting case r = 1 (total

reflection), but the assumption r < 1 is justified in view of the the parabolic limit (see
Section 7) and no further insight can be gained by treating the general case.

In order to derive boundary conditions at the moving boundary, we select an ar-
bitrary, but fixed time t. Obviously, all particles u(t, s(t), γ) with γ ∈ Γ− are ingoing
and u(t, s(t), γ) with γ ∈ Γ+ are outgoing. We assume total reflection of the particles
arriving at the free boundary x = s(t) from the left. Let again uγ(t, ·) have a compact
support in R for t ≥ 0, γ ∈ Γ. Let U(t) =

∫ s(t)

−∞
∫
Γ

u(t, x, γ) dγdx. Again we ask for
conservation of mass:

0 =
dU(t)

dt

=
∫

Γ

u(t, s(t), γ) dγ ṡ(t)

+
∫ s(t)

−∞

∫

Γ

[
− γux(t, x, γ)− µu(t, x, γ) + µ

∫

Γ

K(γ, γ′)u(t, x, γ′) dγ′
]
dγdx

=
∫

γ

u(t, s(t), γ)(ṡ(t)− γ) dγ.

Keeping the difference ṡ − γ in all conditions and equations leads to extremely com-
plicated expressions and arguments in proofs. Therefore we make the assumption that
the speed ṡ of the moving boundary is very small compared to the minimal particle
speed, hence to any particle speed, and that the difference ṡ−γ can be replaced by −γ.
This simplification seems justified from a practical point of view (small fast particles
fly against a heavy movable wall) but it makes us sacrifice conservation of mass. The
resulting equation 0 =

∫
Γ

u(t, s(t), γ)(−γ) dγ can be rearranged to give

∫ −γ0

−γ1

u(t, s(t), γ)(−γ) dγ = −
∫ γ1

γ0

u(t, s(t), γ)(−γ) dγ. (4)

As before this condition is satisfied by boundary conditions

u(t, s(t), γ) = 1
|γ|

∫ γ1

γ0

R(γ, γ′)u(t, s(t), γ′)|γ′| dγ′ (γ ∈ Γ−) (5)

with continuous R(γ, γ′) ≥ 0 and
∫ −γ0

−γ1
R(γ, γ′) dγ = 1. The reflection law (5) does not

depend on ṡ at all.
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Again, the assumption that a share (1−κ) of particles arriving at the free boundary
is absorbed can be taken into account by multiplying the right-hand side of (5) by κ.

We define Rmax = supγ∈Γ−,γ′∈Γ+{R(γ, γ′)}. For the reflection operators L(γ, γ′)
and R(γ, γ′) there are reciprocity conditions which guarantee the existence of a solution:

r

∫ −γ0

−γ1

L(γ, γ′)|γ′| dγ′ ≤ r̂|γ| (γ ∈ Γ+) (6)

κ

∫ γ1

γ0

R(γ, γ′)|γ′| dγ′ ≤ κ̂|γ| (γ ∈ Γ−) (7)

where t ∈ [0, T ] and κ̂, r̂ < 1. These conditions say that particles do not become too
slow while being reflected at the boundary. The normalization of R and the reciprocity
condition (7) are not mutually exclusive. The function

R(γ, γ′) = 2
γ2
1−γ2

0
|γ|

satisfies both conditions with κ̂ = κ < 1. Similarly, one can show consistency of the
normalization and reciprocity condition at the left boundary.

We further require conditions on the initial data and the source function

u0(x, γ) > 0 (x ∈ [0, s0], γ ∈ Γ) (8)
f(t, γ) ≥ 0 (t > 0, γ ∈ Γ+) (9)
u0 ∈ C([0, s0]× Γ), u0(·, γ) ∈ C0,1[0, s0] (γ ∈ Γ) (10)
f ∈ C([0,∞)× Γ), f(·, γ) ∈ C0,1[0,∞) (γ ∈ Γ+) (11)

and compatibility conditions

u0(0, γ) = r
|γ|

∫ −γ0

−γ1

L(γ, γ′)u0(0, γ′)|γ′| dγ′ + f(0, γ) (γ ∈ Γ+) (12)

u0(s0, γ) = κ
|γ|

∫ γ1

γ0

R(γ, γ′)u0(s0, γ
′)|γ′| dγ′ (γ ∈ Γ−). (13)

1.3 Condition on the free boundary. Here we define a suitable Stefan condition
connecting the movement of the free boundary to the particle flux. According to the
boundary condition (5) the share κ of the particles arriving at the boundary is reflected
and the share (1 − κ) is absorbed. We are guided by the idea that non-reflected par-
ticles push the boundary forward, independent of the velocity distribution of reflected
particles. A simple law describing such behavior is

ṡ(t) =
(1− κ)

∫ γ1

γ0
γ′u(t, s(t), γ′) dγ′

1 + (1− κ)
∫ γ1

γ0
u(t, s(t), γ′) dγ′

. (14)

Obviously, this equation guarantees ṡ(t) ≤ γ1. We choose (14) for the following reasons:
The right-hand side is positive, monotone and bounded in u and is the simplest function
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with this property. The law respects the condition ṡ ≤ γ1. It reduces to the classical
Stefan condition in the parabolic limit (see Section 7). The proofs can be extended to
laws having these properties.

1.4 Derivation of the integral equations. With respect to a fixed velocity γ ∈ Γ,
the domain

Ω =
{
(t, x) : 0 ≤ t and 0 ≤ x ≤ s(t)

}

is divided into three disjoint subdomains Iγ , IIγ , IIIγ related to a fixed particle velocity
γ ∈ Γ, depending on initial or boundary data. A point (t, x) ∈ Ω belongs to

– domain Iγ , if its characteristic curve starts at a point of the initial manifold
(0, x), 0 ≤ x ≤ s0

– domain IIγ , if its characteristic curve starts at a point (t, 0) (t > 0) on the left
boundary x = 0

– domain IIIγ if its characteristic curve starts at a point (t, s(t)) (t > 0) on the
free boundary.

Obviously, the different domains have the form shown in Figure 1.

Figure 1: Subdomains for the integral equation

We set u0,γ = u0(·, γ) for γ ∈ Γ and fγ = f(·, γ) for γ ∈ Γ+. Using the method
of characteristics and the variation of constants formula system (1) - (5) can be carried
into the form of an integral equation for which we get different expressions depending
on the subdomain:

Domain Iγ :

u(t, x, γ) = u0(x− γt, γ)e−µt

+ µ

∫ t

0

e−µ(t−η)

∫

Γ

K(γ, γ′)u
(
η, x− γt + γη, γ′

)
dγ′dη.

(15)

Domain IIγ :

u(t, x, γ) =
[

r
|γ|

∫ −γ0

−γ1

L(γ, γ′)u
(
t− x

γ , 0, γ′
)|γ′| dγ′ + fγ

(
t− x

γ

)]
e−

µx
γ

+ µ

∫ t

t− x
γ

e−µ(t−ρ)

∫

Γ

K(γ, γ′)u
(
ρ, γ

(
ρ− t + x

γ

)
, γ′

)
dγ′dρ

(16)
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Domain IIIγ : The starting point of the characteristic at the right boundary depends
continuously on t, x and γ. If ‖ṡ‖ < γ0 (using the supremum norm), then, using the
implicit function theorem, the time coordinate can be expressed as a function Ψ =
Ψγ(t, x) which is obviously a solution of the equation s(Ψγ(t, x)) + γ(t−Ψγ(t, x)) = x.
Then we get the integral equation

u(t, x, γ) =
[

κ
|γ|

∫ γ1

γ0

R(γ, γ′)u(Ψ, s(Ψ), γ′)|γ′| dγ′
]

e−µ(t−Ψ)

+ µ

∫ t

Ψ

e−µ(t−ρ)

∫

Γ

K(γ, γ′)u
(
ρ, s(Ψ) + γ(ρ−Ψ), γ′

)
dγ′dρ.

(17)

2. Properties of the solution

2.1 Remark on positivity. Because of the interpretation of u as a particle density,
the solution of problem (1) - (5) should remain non-negative. Theorem 2 in [1] can be
used to show that solutions stay non-negative for any fixed boundary, actually for a
more general class of problems.

2.2 Boundedness. The following lemma deals with the boundedness of the solution.

Lemma 1. Let t̃ > 0 and u be a continuous solution of integral equations (15)−(17)
on Ωt̃. Let s be a fixed boundary, where ṡ(t) < γ1. Let reciprocity conditions (6) − (7)
hold. Then there exists a constant M depending only on t̃ and the upper bounds for
initial and boundary data such that

0 ≤ u(t, x, γ) ≤ M

for 0 ≤ x ≤ s(t), 0 ≤ t ≤ t̃ and γ ∈ Γ.

Proof. Let
I(t̃) = sup

t∈[0,t̃],x∈[0,s(t)],γ∈Γ

|u(t, x, γ)|.

Let M0 be an upper bound for the initial data and the source term fγ(t), where γ ∈ Γ+.
Choose t ∈ [0, t̃], x ∈ [0, s(t)] and γ ∈ Γ such that I(t̃) = u(t, x, γ). Then there are three
possibilities:

1. (t, x, γ) ∈ Iγ . Then the integral equation yields

|u(t, x, γ)| ≤ M0e
−µt + µ

∫ t

0

e−µ(t−η)

∫

Γ

K(γ, γ′)u(η, x− γt + γη, γ′) dγ′dη

≤ M0 + µ

∫ t̃

0

I(η) dη.
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2. (t, x, γ) ∈ IIγ . Here we obtain

|u(t, x, γ)| ≤
[

r
|γ|

∫ −γ0

−γ1

L(γ, γ′)u
(
t− x

γ , 0, γ′
)|γ′| dγ′ + M0

]
e−

µx
γ

+ µ

∫ t

t− x
γ

e−µ(t−ρ)

∫

Γ

K(γ, γ′)u
(
ρ, γ

(
ρ− t + x

γ

)
, γ′

)
dγ′dρ

≤ r̂I(t̃) + M0 + µ

∫ t̃

0

I(η) dη.

3. (t, x, γ) ∈ IIIγ . With the short notation Ψ = Ψγ(t, x) we get

|u(t, x, γ)| ≤
[

κ
|γ|

∫ γ1

γ0

R(γ, γ′)u(Ψ, s(Ψ), γ)|γ′| dγ′
]

e−µ(t−Ψ)

+ µ

∫ t

Ψ

e−µ(t−ρ)

∫

Γ

K(γ, γ′)u
(
ρ, s(Ψ)− γ(ρ−Ψ), γ′

)
dγ′dρ

≤ κ̂I(t̃) + µ

∫ t̃

0

I(η) dη.

Altogether we obtain

I(t̃) ≤ max(κ̂, r̂) I(t̃) + M0 + µ

∫ t̃

0

I(η) dη.

Using the definition M2 = max(κ̂, r̂) we get

I(t̃) ≤ M0

1−M2
+

µ

1−M2

∫ t̃

0

I(η) dη.

Gronwall’s Lemma yields

I(t̃) ≤ M where M =
M0

1−M2
exp

µt̃

1−M2
.

Thus, we get |u(t, x, γ)| ≤ M for all (t, x, γ) ∈ Ωt̃ × Γ

2.3 Properties of the free boundary. Here we get an upper bound for the free
boundary.

Lemma 2. For fixed t̃ > 0 let

M0 = e−
µt̃

1−max(κ̂,r̂) · (1−max(κ̂, r̂))γ0

2(1− κ)(γ1 − γ0)2
(18)

be an upper bound for the initial data u0,γ (γ ∈ Γ) and the source term fγ(t) (γ ∈
Γ+, 0 ≤ t ≤ t̃). Let (s, u) be a solution of equations (15) − (17) and (14), where s ∈
C1[0, t̃] and u ∈ C(Ωt̃). Then the free boundary satisfies the estimate ṡ(t) < γ0.
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Proof. We define M2 = max(κ̂, r̂). Equation (18) yields
(

M0

1−M2

)
e

µt̃
1−M2 ≤ γ0

2(1− κ)(γ1 − γ0)2
.

From Lemma 1 we know the estimate |u(t, x, γ)| ≤ M for 0 ≤ x ≤ s(t), 0 ≤ t ≤ t̃ and
γ ∈ Γ, where M = γ0

2(1−κ)(γ1−γ0)2
. Equation (14) can be rearranged to give

ṡ(t) = (1− κ)
∫ γ1

γ0

(
γ′ − ṡ(t)

)
u
(
t, s(t), γ′

)
dγ′

and we get

ṡ(t) ≤ (1− κ)(γ1 − ṡ(t))M(γ1 − γ0) ⇐⇒ ṡ(t) ≤ (1− κ)γ1M(γ1 − γ0)
1 + (1− κ)M(γ1 − γ0)

.

Inserting the definition of M gives

ṡ(t) ≤
γ1(1− κ)(γ1 − γ0) 1

2
γ0

(1−κ)(γ1−γ0)2

1 + (1− κ)(γ1 − γ0) 1
2

γ0
(1−κ)(γ1−γ0)2

=
γ1γ0

2γ1 − γ0
< γ0

and the lemma is proved

2.4 Continuity. The right-hand side of integral equations (15) - (17) is regarded as an
integral operator F . For short we write ũ instead of Fu. Let

ΩT =
{

(t, x) : 0 ≤ t ≤ T and 0 ≤ x ≤ s(t)
}

.

Lemma 3. Let assumptions (8) − (11), compatibility conditions (12) − (13) and
reciprocity conditions (6)− (7) hold for some T > 0. Let s ∈ C1,1[0, T ] be a prescribed
fixed boundary, where 0 ≤ ṡ(t) < γ0 for t ∈ [0, T ], and u ∈ C(ΩT × Γ). Then ũ ∈
C(ΩT × Γ).

Proof. Inside the domains Iγ − IIIγ continuity follows from the definition of the
operator. Now consider a point on the boundary between regions Iγ and IIγ . In order
to show continuity in t and x it is sufficient to prove

lim
(t,x)∈Iγ

x→γt

ũγ(t, x) = lim
(t,x)∈IIγ

x→γt

ũγ(t, x).

Compatibility condition (12) yields

lim
(t,x)∈Iγ

x→γt

ũγ(t, x)

= lim
(t,x)∈Iγ

x→γt

{
u0(x− γt, γ)e−µt

+ µ

∫ t

0

e−µ(t−η)

∫

Γ

K(γ, γ′)u
(
η, x− γt + γη, γ′

)
dγ′dη

}

= u0(0, γ)e−µt + µ

∫ t

0

e−µ(t−η)

∫

Γ

K(γ, γ′)u(η, γη, γ′) dγ′dη
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=
[

r
|γ|

∫ −γ0

−γ1

L(γ, γ′)u(0, 0, γ′)|γ′| dγ′ + fγ(0)
]

e−µt

+ µ

∫ t

0

e−µ(t−ρ)

∫

Γ

K(γ, γ′)u(ρ, γρ, γ′) dγ′dρ

= lim
(t,x)∈IIγ

x→γt

{[
r
|γ|

∫ −γ0

−γ1

L(γ, γ′)u
(
t− x

γ , 0, γ′
)|γ′| dγ′ + fγ

(
t− x

γ

)]
e−

µx
γ

+ µ

∫ 0

t− x
γ

e−µ(t−ρ)

∫

Γ

K(γ, γ′)u
(
ρ, γ

(
ρ− t + x

γ

)
, γ′

)
dγ′dρ

}

= lim
(t,x)∈IIγ

x→γt

ũγ(t, x).

Now consider a point on the boundary between Iγ and IIIγ . Again, it is sufficient
to prove

lim
(t,x)∈Iγ
x→s0+γt

ũγ(t, x) = lim
(t,x)∈IIIγ
x→s0+γt

ũγ(t, x)

which is guaranteed by compatibility condition (13). Similarly we obtain continuity in
the variable γ from compatibility conditions (12) - (13)

2.5 Lipschitz continuity. For the proof of the existence theorem for the free boundary
value problem it is essential to have Lipschitz continuity of a solution. This property is
shown in the following lemma.

Lemma 4. Let t1 ≤ s0
γ0

. Let s ∈ C1 be a fixed boundary with ṡ(t) > 0 and ṡ(t) < γ0

for t ∈ [0, t1]. Let assumptions (8) − (11), compatibility conditions (12) − (13) and
reciprocity conditions (6) − (7) hold. Let uγ , γ ∈ Γ be a solution of integral equations
(15)− (17). Then there exists a Lipschitz constant for uγ , uniformly with respect to γ,
which depends only on the initial and boundary conditions.

Proof. For h > 0 define the functions

Jγ(t) = max
x

max
|ξ|≤h,|σ|≤h

∣∣u(t + σ, x + ξ, γ)− u(t, x, γ)
∣∣

where (t, x), (t + σ, x + ξ) ∈ Ωt1 . For an arbitrary t ∈ (0, t1) we choose x∗, ξ∗, σ∗ where
|ξ∗|, |σ∗| ≤ h such that

Jγ(t) =
∣∣u(t + σ∗, x∗ + ξ∗, γ)− u(t, x∗, γ)

∣∣.

Further, we define
J(t) = sup

γ∈Γ
Jγ(t).

M is chosen in accordance with Lemma 1. Let Lip(u0,γ) ≤ M1 for all γ ∈ Γ and
Lip(fγ) ≤ M1 for all γ ∈ Γ+.
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Case 1: (t, x∗), (t + σ∗, x∗ + ξ∗) ∈ Iγ for an arbitrary fixed γ ∈ Γ. Without loss of
generality we consider σ∗ ≥ 0. From integral equation (15) we get

Jγ(t) =
∣∣∣u0

(
x∗ + ξ∗ − γ(t + σ∗), γ

)
e−µ(t+σ∗) − u0(x∗ − γt, γ)e−µt

∣∣∣

+
∣∣∣∣µ

∫ t+σ∗

0

e−µ(t+σ∗−η)

∫

Γ

K(γ, γ′)u
(
η, x∗ + ξ∗ − γ(t + σ∗) + γη, γ′

)
dγ′dη

− µ

∫ t

0

e−µ(t−η)

∫

Γ

K(γ, γ′)u
(
η, x∗ − γt + γη, γ′

)
dγ′dη

∣∣∣∣

≤
∣∣∣u0

(
x∗ + ξ∗ − γ(t + σ∗), γ

)− u0(x∗ − γt, γ)
∣∣∣e−µ(t+σ∗)

+ u0(x∗ − γt, γ)
∣∣e−µ(t+σ∗) − e−µt

∣∣ + µM

∫ t+σ∗

t

e−µ(t+σ∗−η) dη

+ µ

∣∣∣∣
∫ t

0

e−µ(t+σ∗−η)

×
∫

Γ

K(γ, γ′)
{

uγ′
(
η, x∗ + ξ∗ − γ(t + σ∗ + η)

)− uγ′
(
η, x∗ − γt + γη

)}
dγ′

+
(
e−µ(t+σ∗−η) − e−µ(t−η)

) ∫

Γ

K(γ, γ′)u
(
η, x∗ − γt + γη, γ′

)
dγ′dη

∣∣∣∣
≤ (1 + γ)hM1 + M0µh + M

(
eµ(t+σ∗) − eµt

)
e−µ(t+σ∗)

+ µ(1 + γ)
∣∣∣∣
∫ t

0

e−µ(t+σ∗−η)J(η) dη

∣∣∣∣ + µM

∣∣∣∣
∫ t

0

(
e−µ(t+σ∗−η) − e−µ(t−η)

)
dη

∣∣∣∣

≤ H1h + µ(1 + γ1)
∫ t

0

J(η) dη

where H1 = 2µM + (1 + γ1)M1 + M0µ.
Case 2: (t, x∗), (t+σ∗, x∗+ξ∗) ∈ IIγ for an arbitrarily chosen, fixed γ ∈ Γ. Without

loss of generality we consider

t− x∗

γ
≤ t + σ∗ − x∗ − ξ∗

γ
≤ t ≤ t + σ∗.

First, we need an auxiliary estimate. Remembering the choice of the time interval, we
know that all the points on the left boundary belong to the domain Iγ′ for γ′ ∈ Γ−.
Hence we get

r
|γ|

∫ −γ0

−γ1

L(γ, γ′)
{

u
(
t + σ∗ − x∗+ξ∗

γ , 0, γ′
)− u

(
t− x∗

γ , 0, γ′
)}|γ′| dγ′e−

µ(x∗+ξ∗)
γ

≤ r
|γ|

∫ −γ0

−γ1

L(γ, γ′)
{

u0

(− γ′
(
t + σ∗ − x∗+ξ∗

γ

)
, γ′

)
e−µ(t+σ∗− x∗+ξ∗

γ )

− u0

(− γ′
(
t− x∗

γ

)
, γ′

)
e−µ(t− x∗

γ ) + µ

∫ t+σ∗− x∗+ξ∗
γ

0

e−µ(t+σ∗− x∗+ξ∗
γ −η)

×
∫

Γ

K(γ′, γ′′)u
(
η,−γ′(t + σ∗ − x∗+ξ∗

γ

)
+ γ′η, γ′′

)
dγ′′dη − µ

∫ t− x∗
γ

0

e−µ(t− x∗
γ −η)
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×
∫

Γ

K(γ′, γ′′)u
(
η,−γ′

(
t− x∗

γ

)
+ γ′η, γ′′

)
dγ′′dη

}
|γ′| dγ′e−

µ(x∗+ξ∗)
γ

≤ r
|γ|

∫ −γ0

−γ1

L(γ, γ′)
(
1 + 1

γ

)

×
{(

γ1M1 + µM0 + 3µM
)
h + γ1µ

∫ t− x∗
γ

0

J(η) dη

}
|γ′| dγ′e−

µ(x∗+ξ∗)
γ

≤ r̂

{(
γ1M1 + µM0 + 3µM

)(
1 + 1

γ

)
h + γ1

(
1 + 1

γ

)
µ

∫ t− x∗
γ

0

J(η) dη

}
e−

µ(x∗+ξ∗)
γ .

Therefore, we obtain

Jγ(t)

=
∣∣∣∣
[

r
|γ|

∫ −γ0

−γ1

L(γ, γ′)u
(
t + σ∗ − x∗+ξ∗

γ , 0, γ′
)|γ′| dγ′ + fγ

(
t + σ∗ − x∗+ξ∗

γ

)]
e−

µ(x∗+ξ∗)
γ

−
[

r
|γ|

∫ −γ0

−γ1

L(γ, γ′)u
(
t− x∗

γ , 0, γ′
)|γ′| dγ′ + fγ

(
t− x∗

γ

)]
e−

µx∗
γ

∣∣∣∣

+
∣∣∣∣µ

∫ t+σ∗

t+σ∗− x∗+ξ∗
γ

e−µ(t+σ∗−ρ)

∫

Γ

K(γ, γ′)u
(
ρ, γ

(
ρ− (t + σ∗) + x∗+ξ∗

γ

)
, γ′

)
dγ′dρ

− µ

∫ t

t− x∗
γ

e−µ(t−ρ)

∫

Γ

K(γ, γ′)u
(
ρ, γ

(
ρ− t + x∗

γ

)
, γ′

)
dγ′dρ

∣∣∣∣

≤ r̂

{(
γ1M1 + µM0 + 3µM

)(
1 + 1

γ

)
h + γ1

(
1 + 1

γ

)
µ

∫ t− x∗
γ

0

J(η) dη

}
e−

µ(x∗+ξ∗)
γ

+ M0
µ

γ
h + µM

∣∣∣∣
∫ t− x∗

γ

t+σ∗− x∗+ξ∗
γ

e−µ(t+σ∗−ρ)dρ

∣∣∣∣

+ µM

∣∣∣∣
∫ t+σ∗

t

e−µ(t+σ∗−ρ)dρ

∣∣∣∣ + M1

∣∣σ∗ − ξ∗

γ

∣∣e−µ(x∗+ξ∗)
γ

+ µ

∣∣∣∣
∫ t

t− x∗
γ

e−µ(t+σ∗−ρ)

∫

Γ

K(γ, γ′)
{

uγ′
(
ρ, γ

(
ρ− t− σ∗ + x∗+ξ∗

γ

))

− uγ′
(
ρ, γ

(
ρ− t + x∗

γ

))}
dγ′

+
(
e−µ(t+σ∗−ρ) − e−µ(t−ρ)

) ∫

Γ

K(γ, γ′)u
(
ρ, γ

(
ρ− t + x∗

γ

)
, γ′

)
dγ′dρ

∣∣∣∣ + r̂M
µ

γ
h

≤ H2h + µ
(
1 + 1

γ0

)
(r̂γ1 + 1)

∫ t

0

J(ρ) dρ

where
H2 = r̂

(
γ1M1 + µM0 + 3µM

)(
1 + 1

γ0

)

+ r̂M
µ

γ
+ M1

(
1 + 1

γ0

)
+ M0

µ

γ0
+ µM

(
4 + 1

γ0

)
.

Case 3: (t, x∗), (t + σ∗, x∗ + ξ∗) ∈ IIIγ for an arbitrary, fixed γ ∈ Γ. In the sequel
we use the short notation Ψ1 = Ψ(t, x∗) and Ψ2 = Ψ(t + σ∗, x∗ + ξ∗). Without loss of
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generality we assume Ψ1 ≤ Ψ2 ≤ t ≤ t + σ∗. In accordance with the assumptions we
have |Ψ1 − Ψ2| ≤ h(1 + 1

γ0
). The choice of t1 guarantees that all points on the right

boundary belong to the domain Iγ′ for γ′ ∈ Γ′. Then we obtain

max
γ′∈Γ+

∣∣∣u(Ψ2, s(Ψ2), γ′)− u(Ψ1, s(Ψ1), γ′)
∣∣∣

≤ max
γ′∈Γ+

{(
2µM + (1 + γ)M1 + M0µ

)
h + µ(1 + γ)

∫ t

0

J(η) dη

}

× (1 + Lip(s))
|Ψ1 −Ψ2|

h

≤
{(

2µM + (1 + γ1)M1 + M0µ
)
h + µ(1 + γ1)

∫ t

0

J(η) dη

} (
1 + 1

γ0

)
(1 + γ0).

In accordance with the definition we get

Jγ(t) =
∣∣∣∣
[

κ
|γ|

∫ γ1

γ0

R(γ, γ′)u(Ψ2, s(Ψ2), γ′)|γ′| dγ′
]

e−µ(t−Ψ2)

−
[

κ
|γ|

∫ γ1

γ0

R(γ, γ′)u(Ψ1, s(Ψ1), γ′)|γ′| dγ′
]

e−µ(t−Ψ1)

+ µ

∫ t+σ∗

Ψ2

e−µ(t+σ∗−ρ)

∫

Γ

K(γ, γ′)u
(
ρ, s(Ψ2)− γ(ρ−Ψ2), γ′

)
dγ′dρ

− µ

∫ t

Ψ1

e−µ(t+σ∗−ρ)

∫

Γ

K(γ, γ′)u
(
ρ, s(Ψ1)− γ(ρ−Ψ1), γ′

)
dγ′dρ

∣∣∣∣
≤ κ̂ max

γ′∈Γ+

{
u(Ψ2, s(Ψ2), γ′)

}
µ|Ψ2 −Ψ1|

+ κ̂ max
γ′∈Γ+

{
u(Ψ2, s(Ψ2), γ′)− u(Ψ1, s(Ψ1), γ′)

}
e−µ(t−Ψ1)

+ µ

∣∣∣∣
∫ t

Ψ2

e−µ(t+σ∗−ρ)J(ρ)
{
γ0

(
1 + 1

γ0

)
+ γ1

(
1 + 1

γ0

)}
dρ

∣∣∣∣

+ µ

∣∣∣∣
∫ t

Ψ2

µhM dρ

∣∣∣∣ + µM |Ψ1 −Ψ2|+ µMh

≤ κ̂e−µ(t−Ψ1)

{(
2µM + (1 + γ1)M1 + M0µ

)
h + µ(1 + γ1)

∫ t

0

J(η) dη

}

× (
1 + 1

γ0

)
(1 + γ0)

+ κ̂Mµ
(
1 + 1

γ0

)
h + µ(γ0 + γ1)

(
1 + 1

γ0

)∫ t

0

J(ρ) dρ + µ2MT1h + 2µM
(
1 + 1

γ0

)
h

≤ H3h + µ
(
1 + 1

γ0

){
κ̂(1 + γ0)(1 + γ1) + (γ0 + γ1)

} ∫ t

0

J(ρ) dρ

where

H3 =
(
1 + 1

γ0

)[
(κ̂ + 2)µ + κ̂(1 + γ0)

(
3µM + (1 + γ1)M1

)
+ µ2Mt1

]
.
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In the sequel we use the fact that if g : [a, c] → R is a continuous function, Lipschitz
continuous on [a, b] and on [b, c], then it is Lipschitz continuous on [a, c]. Hence we need
not investigate cases, where testing points belong to different domains.

Define

C1 = max{Hi : i = 1, 2, 3}
C2 = µ

(
1 + 1

γ0

)(
(r̂ + 1)γ1 + 1 + γ0 + κ̂(1 + γ0)(1 + γ1)

)
.

Altogether we obtain an estimate which holds for the whole domain Ωt1 :

J(t) ≤ C1h + C2

∫ t

0

J(ρ) dρ.

The Gronwall lemma yields J(t) ≤ (C1h) eC2t and we get J(t) ≤ Cges h with Cges =
C1e

C2t

The assertion of this lemma can be extended iteratively to arbitrary time intervals
by an iteration process.

3. Existence and uniqueness for the fixed boundary problem

The following proposition yields existence and uniqueness for solutions of problem (15)
- (17) with prescribed fixed right boundary s on the domain of definition

ΩT =
{

(t, x) : 0 ≤ t ≤ T and 0 ≤ x ≤ s(t)
}

.

It will be used for the existence proof for the free boundary problem.

Proposition 1. Let s be a fixed boundary, s(t) > 0 for t ∈ [0, T ], and s be con-
tinuously differentiable with 0 < ṡ(t) < γ0. Let assumptions (8) − (11), compatibility
conditions (12) − (13) and reciprocity conditions (6) − (7) hold. Then there exists a
unique continuous solution of problem (15)− (17).

Proof. Lipschitz continuity of fγ and u0,γ guarantees the existence of a constant
c > 0 which satisfies

|u0,γ(x1)− u0,γ(x2)| ≤ c |x1 − x2| (x1, x2 ∈ [0, s0])

|fγ(t1)− fγ(t2)| ≤ c |t1 − t2| (t1, t2 ≥ 0, γ > 0).

We have already shown that every solution satisfies the integral equation

uγ(t, x) =




u0(x− γt, γ)e−µt + µ
∫ t

0
e−µ(t−η)

∫
Γ

K(γ, γ′)uγ′(η, x− γt + γη) dγ′dη in Iγ

[
r
|γ|

∫ −γ0

−γ1
L(γ, γ′)u(t− x

γ , 0, γ′)|γ′| dγ′ + fγ(t− x
γ )

]
e−

µx
γ

+µ
∫ t

t− x
γ

e−µ(t−ρ)
∫
Γ

K(γ, γ′)u(ρ, γ(ρ− t + x
γ ), γ′) dγ′dρ in IIγ

κ
|γ|

∫ γ1

γ0
R(γ, γ′)uγ′(Ψ, s(Ψ))|γ′| dγ′e−µ(t−Ψ)

+µ
∫ t

Ψ
e−µ(t−ρ)

∫
Γ

K(γ, γ′)u
(
ρ, s(Ψ) + γ(ρ−Ψ), γ′

)
dγ′dρ in IIIγ .
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The right-hand side of this equation is produced by the operator F . We are looking
for a fixed point of F . Recall that F maps u into ũ. The space C(ΩT × Γ) with norm
‖u‖ = maxγ∈Γ ‖uγ‖ is a Banach space. For the solution u we define a box M as follows:

M =
{

u ∈ C(ΩT × Γ) :
∣∣uγ(t, x)− u0,γ(x)

∣∣ ≤ m ∀ (t, x) ∈ ΩT , γ ∈ Γ
}

.

Claim. There exist constants T, m > 0 such that u ∈ M implies ũ ∈ M .

Lemma 3 guarantees continuity of ũγ as a function of (t, x) in ΩT for γ ∈ Γ. First
we choose T > 0 such that |s(t)− s0| < s0 for 0 ≤ t ≤ T and define

m0 = sup
t∈[0,T ]

|s(t)− s(0)|.

Then we choose m > c m0
(1−κ)(s0−m0)

and T possibly smaller such that

T ≤ min





(1− κ̂)m− cm0

2µ(max
γ∈Γ

‖u0,γ‖+ m) + cγ1
,

(1− r̂)m
µ(1 + r̂)(max

γ∈Γ
‖u0,γ‖+ m) + µ‖f‖+ c(1 + γ1)



.

Since K(γ, γ′) ≥ 0 and
∫
Γ

K(γ, γ′) dγ′ = 1 , we get∫

Γ

K(γ, γ′)u(t, x, γ′) dγ′ ≤ max
γ∈Γ

{u(t, x, γ′)}.
Next we estimate ũγ(t, x) in all three domains Iγ − IIIγ :

Estimate for ũγ(t, x) in Iγ :∣∣ũγ(t, x)− u0,γ

(
xs0
s(t)

)∣∣

≤ ‖u0,γ‖(1− e−µt) + γ1cT +
(

max
γ∈Γ

‖u0,γ‖+ m
)
(1− e−µt) + c

∣∣x(s(t)−s0)
s(t)

∣∣

≤ T
(
2µ max

γ∈Γ
‖u0,γ‖+ γ1c + µm

)
+ cm0

≤ m.

Estimate for ũγ(t, x) in IIγ : By the same technique, with x ≤ γt we get∣∣ũγ(t, x)− u0,γ

(
xs0
s(t)

)∣∣

≤
∣∣∣∣
[

r
|γ|

∫ −γ0

−γ1

L(γ, γ′)u
(
t− x

γ , 0, γ′
)|γ′| dγ′ + fγ

(
t− x

γ

)]
e−

µx
γ − fγ(0)

− r
|γ|

∫ −γ0

−γ1

L(γ, γ′)u(0, 0, γ′)|γ′| dγ′ + uγ(0, 0)− u0,γ

(
xs0
s(t)

)

+ µT
(

max
γ∈Γ

‖u0,γ‖+ m
)∣∣∣∣

≤
∣∣∣
(
r̂(max

γ∈Γ
‖u0,γ‖+ m

)
+ ‖f‖

)
(e−

µx
γ − 1)

∣∣∣ +
∣∣∣∣ r
|γ|

∫ −γ0

−γ1

L(γ, γ′)|γ′| dγ′m
∣∣∣∣

+ c
∣∣t− x

γ |+ c
∣∣ xs0
s(t)

∣∣ + µT
(

max
γ∈Γ

‖u0,γ‖+ m
)

≤ T
(
µ(1 + r̂)

(
max
γ∈Γ

‖u0,γ‖+ m
)

+ µ‖f‖+ c (1 + γ1)
)

+ r̂m

≤ m.
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Estimate for ũγ(t, x) in IIIγ : Here we have x > s0 − γ1t, using the short notation
Ψ = Ψγ(t, x) we obtain

∣∣ũγ(t, x)− u0,γ

(
xs0
s(t)

)∣∣

≤
∣∣∣κ̂

(
max
γ∈Γ

‖u0,γ‖+ m
)(

e−µ(t−Ψ) − 1
)∣∣∣ + c

∣∣s0 − xs0
s(t)

∣∣

+ µT
(

max
γ∈Γ

‖u0,γ‖+ m
)

+
∣∣∣∣ κ
|γ|

∫ γ1

γ0

R(γ, γ′)|γ′| dγ′m
∣∣∣∣

≤ T
(
µ(1 + κ̂)

(
max
γ∈Γ

‖u0,γ‖+ m
)

+ cγ1

)
+ κ̂m + cm0

≤ m.

Hence the claim is proved.
Now we show the contraction property. We choose u1, u2 ∈ M satisfying

u1(0, x, γ) = u0(x, γ) = u2(0, x, γ)

ui(t, 0, γ) = r
|γ|

∫ −γ0

−γ1

L(γ, γ′)ui(t, 0, γ′)|γ′| dγ′ + f(t, γ) (i = 1, 2).

In Iγ the following estimate is valid:

‖ũ1,γ − ũ2,γ‖

= sup
(t,x)∈Iγ

∣∣∣∣µ
∫ t

0

e−µ(t−η)

∫

Γ

K(γ, γ′)u1

(
η, x− γt + γη, γ′

)
dγ′dη + u0(x− γt, γ)e−µt

− µ

∫ t

0

e−µ(t−η)

∫

Γ

K(γ, γ′)u2

(
η, x− γt + γη, γ′

)
dγ′dη − u0(x− γt, γ)e−µt

∣∣∣∣

≤ sup
(t,x)∈Iγ

µ

∫ t

0

e−µ(t−η)dη max
γ∈Γ

‖u1,γ − u2,γ‖

≤ µT max
γ∈Γ

‖u1,γ − u2,γ‖.

In IIγ we have x ≤ γt, therefore we get

‖ũ1,γ − ũ2,γ‖ ≤ r̂ max
γ∈Γ

‖u1,γ − u2,γ‖+ max
γ∈Γ

‖u1 − u2‖µT.

Similarly, in IIIγ we get

‖ũ1,γ − ũ2,γ‖ ≤ κ̂ max
γ∈Γ

‖u1,γ − u2,γ‖+ µT max
γ∈Γ

‖u1,γ − u2,γ‖.

We can decrease T once more if necessary, such that µT + max(κ̂, r̂) < 1. Then

max
γ∈Γ

‖ũ1,γ − ũ2,γ‖ ≤
(
µT + max(κ̂, r̂)

)
max
γ∈Γ

‖u1,γ − u2,γ‖

is true for the whole domain Ω̃T . Hence we have a contraction constant strictly less
than 1, and by Banach’s theorem we get existence and uniqueness of a fixed point of
F



Free Boundary Problem 875

4. Existence for the free boundary problem

The existence for the free boundary problem is shown in the following proposition, using
a fixed point argument.

Proposition 2. Let assumptions (8) − (11), compatibility conditions (12) − (13)
and reciprocity conditions (6)− (7) hold for some t̃ > 0. Let

M0 = e−
µt̃

1−max(κ̂,r̂)
(1−max(κ̂, r̂))γ0

2(1− κ)(γ1 − γ0)2

be an upper bound for the initial data u0,γ (γ ∈ Γ) and for the source term on the left
boundary fγ(t) (γ ∈ Γ+, 0 ≤ t ≤ t̃). Then there exists a solution (s, u) of equations
(15)− (17) and (14) such that s ∈ C1,1([0, t̃]) and uγ ∈ C0,1(Ωt̃) for all γ ∈ Γ.

Proof. We want to construct a solution for t ≤ t̃. Let s be a candidate for the free
boundary. Positivity of u yields ṡ(t) ≥ 0 and s(t) ≥ s0 > 0 for all 0 ≤ t ≤ t̃. Obviously,
ṡ(t) < γ1 holds. Therefore, we know from Lemma 1 that

|u(t, x, γ)| ≤ γ0

2(1− κ)(γ1 − γ0)2
.

Define c1 = γ1γ0
2γ1−γ0

. By Lemma 2 each solution s of equation (14) satisfies ṡ(t) ≤ c1 < γ0

and we obtain
s(t) ≤ s0 + γ0t̃ =: c0.

Let σ = s0
2γ1

. We consider the set of functions

B =
{

s ∈ C1[0, σ] : s(0) = s0, ṡ(0) = s1, ‖ṡ‖ ≤ c1

}

where

s1 =
(1− κ)

∫ γ1

γ0
γ′u0(s0, γ

′) dγ′

1 + (1− κ)
∫ γ1

γ0
u0(s0, γ′) dγ′

,

which guarantees compatibility with the initial data. For t ∈ [0, σ] Proposition 1 yields
the existence of a solution uγ ∈ C(Ωσ) (γ ∈ Γ) for a fixed s ∈ B with ṡ(t) > 0. Now
we define a map G by

G : B → C1[0, σ], (Gs)(t) = s0 +
∫ t

0

(1− κ)
∫ γ1

γ0
γ′u(η, s(η), γ′) dγ′

1 + (1− κ)
∫ γ1

γ0
u(η, s(η), γ′) dγ′

dη.

From the assumptions we get
(Gs)(0) = s0

d
dt (Gs)(0) = s1

}

and the estimate
∣∣∣∣
d

dt
(Gs)(t)

∣∣∣∣ =

∣∣∣∣∣
(1− κ)

∫ γ1

γ0
γ′u(t, s(t), γ′) dγ′

1 + (1− κ)
∫ γ1

γ0
u(t, s(t), γ′) dγ′

∣∣∣∣∣ ≤ c1,



876 C. Kuttler

hence G(B) ⊂ B.

Let 0 < L < ∞ be a uniform Lipschitz constant for uγ (γ ∈ Γ) (the existence is
guaranteed by Lemma 4). Then the following estimate holds:

∣∣∣∣
d

dt
Gs(t + h)− d

dt
Gs(t)

∣∣∣∣

=
∣∣∣∣

(1− κ)
∫ γ1

γ0
γ′u(t + h, s(t + h), γ′) dγ′

1 + (1− κ)
∫ γ1

γ0
u(t + h, s(t + h), γ′) dγ′

−
(1 + κ)

∫ γ1

γ0
γ′u(t, s(t), γ′) dγ′

1 + (1− κ)
∫ γ1

γ0
u(t, s(t), γ′) dγ′

∣∣∣∣

≤
∣∣∣∣(1− κ)

∫ γ1

γ0

γ′u(t + h, s(t + h), γ′) dγ′
(

1 + (1− κ)
∫ γ1

γ0

u(t, s(t), γ′) dγ′

− (1− κ)
∫ γ1

γ0

γ′u(t, s(t), γ′) dγ′
(

1 + (1− κ)
∫ γ1

γ0

u(t, s(t), γ′) dγ′
)

+ (1− κ)
∫ γ1

γ0

γ′u(t, s(t), γ′) dγ′
(

1 + (1− κ)
∫ γ1

γ0

u(t, s(t), γ′) dγ′
)

− (1− κ)
∫ γ1

γ0

γ′u(t, s(t), γ′) dγ′
(

1 + (1− κ)
∫ γ1

γ0

u(t + h, s(t + h), γ′)dγ′
)∣∣∣∣

≤ (
1 + (1− κ)(γ1 − γ0)M

)
(1− κ)L

∫ γ1

γ0

γ′dγ′(1 + γ0)h

+ (1− κ)2M
∫ γ1

γ0

γ′ dγ′(γ1 − γ0)L(1 + γ0)h

= (1− κ)L(1 + γ0)
(
1 + 2(1− κ)(γ1 − γ0)M

)1
2
(γ2

1 − γ2
0)h.

Obviously, B is closed and convex, and G(B) is a bounded set in C1,1[0, σ]. Therefore,
[6: Lemma 6.36] yields that G(B) is precompact in C1,0[0, σ]. Schauder’s fixed point
theorem guarantees the existence of a fixed point s̃ ∈ B of G, which is a solution for
t ∈ [0, σ]. Iterating this argument, the solution can be extended to the whole time
interval [0, t̃]

5. Uniqueness for the free boundary problem

Since Schauder’s fixed point theorem does not yield uniqueness of the solution, this has
to been shown separately.

Proposition 3. Let the assumptions of Proposition 2 hold. Then for any t1 > 0
there exists at most one solution (s, u) of equations (15) − (17) and (14) with s ∈
C1,1([0, t1]) and uγ ∈ C0,1(Ωt1) for all γ ∈ Γ.

Proof. First we want to show uniqueness for a t ∈ [0, t∗1], where t∗1 ≤ s0
2γ1

. Assume
there are two different solutions (s, u) and (s̃, ũ). Then choose a constant M such that

|E|, Lip(E) ≤ M for E = uγ , ũγ (γ ∈ Γ).
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We set
s0(t) = min{s(t), s̃(t)}
I(t) = |ṡ(t)− ˙̃s(t)|

Jγ(t) = max0≤x≤s0(t)|uγ(t, x)− ũγ(t, x)|
J(t) = maxγ∈Γ{Jγ(t)}.

Let Iγ be the domain corresponding to s and let Ĩγ correspond to s̃. Then let Îγ = Iγ∩Ĩγ .
Similarly ÎIIγ is defined. Let t ∈ (0, t∗1). Now we choose arbitrary but fixed γ ∈ Γ and
x∗ ∈ [0, s0(t)] such that

Jγ(t) =
∣∣uγ(t, x∗)− ũγ(t, x∗)

∣∣.
If (t, x∗) ∈ Îγ , then the integral equations yield Jγ(t) ≤ µ

∫ t

0
J(η) dη, similarly Jγ(t) ≤

2µ
∫ t

0
J(η) dη for (t, x∗) ∈ IIγ . Further we need the estimate

max
0≤t′≤t

|s(t′)− s̃(t′)| ≤
∫ t

0

|ṡ(η)− ˙̃s(η)| dη =
∫ t

0

I(η) dη.

Now we consider (t, x∗) ∈ ÎIIγ . Without loss of generality we assume Ψγ(t, x∗) ≥
Ψ̃γ(t, x∗) and use the short notation Ψ = Ψγ(t, x∗) and Ψ̃ = Ψ̃γ(t, x∗). By definition
we have

x∗ − γ(t−Ψ) = s(Ψ) ⇐⇒ Ψ = s(Ψ)−x∗

γ + t ⇐⇒ s(Ψ)− γΨ = x∗ − γt

x∗ − γ(t− Ψ̃) = s̃(Ψ̃) ⇐⇒ Ψ̃ = s̃(Ψ̃)−x∗

γ + t ⇐⇒ s̃(Ψ̃)− γΨ̃ = x∗ − γt

from which it follows that

0 ≤ Ψ− Ψ̃

=
∣∣ s̃(Ψ̃)

γ − s(Ψ)
γ

∣∣
≤ 1

γ |s̃(Ψ̃)− s(Ψ̃)|+ 1
γ |s(Ψ̃)− s(Ψ)|

≤ 1
γ

∫ t

0

I(η) dη + 1
γ

γ1γ0
2γ1−γ0

(Ψ− Ψ̃)

≤ 1
γ0

∫ t

0

I(η) dη + γ1
2γ1−γ0

(Ψ− Ψ̃)

and therefore

Ψ− Ψ̃ ≤ (
1− γ1

2γ1−γ0

)−1 1
γ0

∫ t

0

I(η) dη = 2γ1−γ0
γ1−γ0

1
γ0

∫ t

0

I(η) dη.

Now we need some auxiliary estimates. In accordance with the definition, the estimate
∣∣∣u

(
ρ, s(Ψ) + γ(ρ−Ψ), γ′

)− ũ
(
ρ, s̃(Ψ̃) + γ(ρ− Ψ̃), γ′

)∣∣∣

=
∣∣∣u

(
ρ, x0 − γt + γρ, γ′

)− ũ
(
ρ, x0 − γt + γρ, γ′

)∣∣∣

≤ Jγ′(ρ)
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holds where ρ ∈ [Ψ, t]. Similarly we obtain
∣∣u(Ψ, s(Ψ), γ′)− ũ(Ψ̃, s̃(Ψ̃), γ′)

∣∣

≤
∣∣∣u(Ψ, s(Ψ), γ′)− u(α, ξ, γ′) + u(α, ξ, γ′)

− ũ(α, ξ, γ′) + ũ(α, ξ, γ′)− ũ(Ψ̃, s̃(Ψ̃), γ′)
∣∣∣

≤ M
(|Ψ− α|+ |s(Ψ)− ξ|) + J(α) + M

(|Ψ̃− α|+ |s̃(Ψ̃)− ξ|)

where (α, ξ) ∈ Îγ′ with Ψ̃ ≤ α ≤ Ψ (γ′ ∈ Γ+). Further, we compute

I(t) =
∣∣∣∣

(1− κ)
∫ γ1

γ0
γ′u(t, s(t), γ′) dγ′

1 + (1− κ)
∫ γ1

γ0
u(t, s(t), γ′) dγ′

−
(1− κ)

∫ γ1

γ0
γ′ũ(t, s̃(t), γ′) dγ′

1 + (1− κ)
∫ γ1

γ0
ũ(t, s̃(t), γ′) dγ′

∣∣∣∣

≤
∣∣∣∣(1− κ)

∫ γ1

γ0

γ′u(t, s(t), γ′) dγ′ (1− κ)
∫ γ1

γ0

ũ(t, s̃(t), γ′)− u(t, s(t), γ′) dγ′
∣∣∣∣

+
(

1 + (1− κ)
∫ γ1

γ0

u(t, s(t), γ′) dγ′
)

× (1− κ)
∫ γ1

γ0

γ′
{
u(t, s(t), γ′)− ũ(t, s̃(t), γ′)

}
dγ′

∣∣∣∣

≤ (1− κ)
{
1 + 2(1− κ)M(γ1 − γ0)

}(γ2
1
2 − γ2

0
2

){
M

∫ t

0

I(η) dη + µ

∫ t

0

J(η) dη

}
.

Hence the integral equations yield for (t, x∗) ∈ ÎIIγ

Jγ(t) ≤
∣∣∣∣
[

κ

|γ|
∫ γ1

γ0

R(γ, γ′)u(Ψ, s(Ψ), γ′)|γ′| dγ′
]

e−µ(t−Ψ)

−
[

κ

|γ|
∫ γ1

γ0

R(γ, γ′)ũ(Ψ̃, s̃(Ψ̃), γ′)|γ′| dγ′
]

e−µ(t−Ψ̃)

+ µ

∫ t

Ψ

e−µ(t−ρ)

∫

Γ

K(γ, γ′)u
(
ρ, s(Ψ) + γ(ρ−Ψ), γ′

)
dγ′dρ

− µ

∫ t

Ψ̃

e−µ(t−ρ)

∫

Γ

K(γ, γ′)ũ
(
ρ, s̃(Ψ̃) + γ(ρ− Ψ̃), γ′

)
dγ′dρ

∣∣∣∣
≤ κ̂M

∣∣e−µ(t−Ψ) − e−µ(t−Ψ̃)
∣∣ + κ̂e−µ(t−Ψ̃)

∣∣u(Ψ, s(Ψ), γ′)− ũ(Ψ̃, s̃(Ψ̃), γ′)
∣∣

+ µ

∣∣∣∣
∫ t

Ψ

e−µ(t−ρ)

∫

Γ

K(γ, γ′)Jγ′(ρ) dγ′dρ

∣∣∣∣ + µ

∣∣∣∣
∫ Ψ̃

Ψ

e−µ(t−ρ)M dρ

∣∣∣∣

≤ κ̂Mµ|Ψ− Ψ̃|+ κ̂
{

M
(
|Ψ− α|+ |Ψ̃− α|+ |s(Ψ)− ξ|+ |s̃(Ψ̃)− ξ|

)
+ J(α)

}

+ µ

∫ t

0

J(ρ) dρ + µM |Ψ̃−Ψ|

≤ {
κ̂Mµ + µM + κ̂M2 + 2κ̂Mγ1

}
2γ1−γ0
γ1−γ0

1
γ0

∫ t

0

I(η) dη

+ (1 + κ̂)µ
∫ t

0

J(η) dη + 2κ̂M

∫ t

0

I(η) dη.
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Altogether we obtain

I(t) + J(t)

≤
[
(1− κ)

{
1 + 2(1− κ)M(γ1 − γ0)

}(γ2
1
2 − γ2

0
2

)
(M + µ) + (1− κ̂)µ + 2κ̂M

+
{
κ̂Mµ + µM + 2κ̂M + 2κ̂Mγ1

}
2γ1−γ0
γ1−γ0

1
γ0

] ∫ t

0

(
I(η) + J(η)

)
dη.

From the Gronwall lemma we get I(t) + J(t) ≤ 0, but from the definition we know
I(t), J(t) ≥ 0, therefore we have I(t) = J(t) = 0 which implies uniqueness of solutions
for t ∈ [0, t∗1]. We iterate this principle until t = t1 is reached

6. Special case: constant speed

Now we want to investigate the special case of constant speed Γ = {γ ∈ R : |γ| = γ∗},
i.e. γ0 = γ∗ = γ1. Then the transport equation assumes the form

u+
t + γu+

x = −µ
2 (u+ − u−) (19)

u−t − γu−x = −µ
2 (u− − u+) (20)

where u+ denotes the particles moving to the right and, equivalently, u− the particles
moving to the left. This system is the well-known correlated random walk in one
dimension.

Now we look for appropriate boundary conditions. Condition (14) for the free
boundary can be brought into

ṡ(t) =
γ∗(1− κ)u(t, s(t), γ∗)

1 + (1− κ)u(t, s(t), γ∗)
. (21)

The right boundary condition has the general form

u(t, s(t), γ) = κ
|γ|

∫ γ1

γ0

R(γ, γ′)u(t, s(t), γ′)|γ′| dγ′ (γ ∈ Γ−)

corresponding to

u(t, s(t),−γ∗) = κ
γ R(−γ∗, γ∗)u(t, s(t), γ∗)γ∗ = κR(−γ∗, γ∗)u(t, s(t), γ∗)

in the special case. Thus we obtain

u(t, s(t),−γ∗) = κu(t, s(t), γ∗) (22)

as right boundary condition in the special case. Analogously we get

u(t, 0, γ∗) = r
γ∗L(γ∗,−γ∗)u(t, 0,−γ∗)γ∗ + f(t, γ∗)

= rL(γ∗,−γ∗)u(t, 0,−γ∗) + f(t, γ∗)

for the left boundary condition so that it gets the form

u(t, 0, γ∗) = ru(t, 0,−γ∗). (23)

Hence transport equation (1) together with initial and boundary conditions (2), (3), (5)
and (14) reduces to system (19) - (23). For a detailed discussion of this special case see
[10].
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7. The parabolic limit

Now we want to consider the parabolic limit of system (19) - (23), which corresponds to
the classical one-phase Stefan problem. If we let γ →∞ and µ →∞ in the hyperbolic
problem (19) - (23) such that γ2

µ = D, 0 < D < ∞, we expect a formal transition to
the classical parabolic Stefan problem (diffusion equation and appropriate initial and
boundary conditions).

Therefore we introduce total mass u = u+ + u− and flow v = γ(u+ − u−). With
the new variables system (19) - (20) assumes the form

ut + vx = 0 (24)
1
µ vt + Dux + v = 0. (25)

Then, by eliminating mixed derivatives [9], we get the telegraph equation

1
µ utt + ut = Duxx

from where the diffusion equation appears as the formal limit. In (u, v) coordinates
boundary conditions (21) - (22) read

u(t, s(t)) =
1 + κ

1− κ

v(t, s(t))
γ

ṡ(t) =
γ

γ + v(t, s(t))
v(t, s(t))





.

Using formally v
γ → 0 and v + Dux → 0 (from (25)) we obtain

u(t, s(t)) = 0

ṡ(t) = −Dux(t, s(t))

}
.

The left boundary condition (23) reads

u(t, 0) =
2f(t)
1− r

+
(r + 1)
(1− r)

v(t, 0)
γ

in (u, v) coordinates. Analogously we get

u(t, 0) =
2f(t)
1− r

for γ →∞. Altogether we obtain the following parabolic system:

– Diffusion equation: ut = Duxx

– Initial conditions: u(0, x) = u+
0 (x) + u−0 (x)

– Boundary conditions: u(t, 0) = 2f(t)
1−r and u(t, s(t)) = 0

– Stefan condition: ṡ(t) = −Dux(t, s(t))

which corresponds to the classical parabolic one-phase Stefan problem (cf. [2, 5]).
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