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Hausdorff Convergence and Asymptotic Estimates
of the Spectrum of a Perturbed Operator

T. A. Mel’nyk

Abstract. A family of self-adjoint compact operators Aε (ε > 0) acting in Hilbert spaces Hε is
considered. The asymptotic behaviour as ε → 0 of eigenvalues and eigenvectors of the operators
Aε is studied; the limiting operator A0 : H0 7→ H0 is non-compact. Asymptotic estimates of the
differences between eigenvalues of Aε and points of the spectrum σ(A0) (both of the discrete
spectrum and the essential one) are obtained. Asymptotic estimates for eigenvectors of Aε are
also proved.
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0. Introduction

The task of eigenvalue perturbation theory is to study the asymptotic behaviour of
eigenvalues and eigenfunctions of some perturbed operator A(ε) as ε → 0, where ε is
usually a positive parameter of the perturbation. If the domains of definition of A(ε)
and the limiting operator A(0) are the same, i.e. D(A(ε)) = D(A(0)) for any ε > 0,
then this behaviour depends essentially on the convergence A(ε) to the limiting operator
A(0). For many problems A(ε) must converge strongly to A(0).

In the papers [46, 50], nice reviews of eigenvalue perturbation theory were given,
especially, for problems connected to quantum mechanics, where we usually have differ-
ent perturbations of potentials. There were discussed also some problems, which do not
fit into the scheme of Kato’s perturbation theory. The main reason, why this theory
cannot be applied, is the essential spectrum of the limiting operator.

In the classic book by Kato [17] there are two examples (Examples 1.19 and 1.20
in Section VII) with the same kind of perturbation (small parameter near the higher
derivative), but the asymptotic behaviour of the spectrum is completely different. These
examples show that the spectrum of a perturbed operator can behave very complex itself
at singular perturbation. In [47] an abstract operator scheme of such kind of perturba-
tion was proposed. The main assumption is the uniformly convergence of the resolvents.
Spectral problems of homogenization theory, problems with perturbed boundary con-
ditions, spectral stiff problems fit also into this scheme. A new aspect (high frequency
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convergence) of the asymptotic behaviour of the spectrum of stiff problems was studied
in [4, 23]. Using the WKB-method, asymptotic expansions for eigenvalues and eigen-
functions were constructed in [23].

A lot of cases of asymptotic behaviour of the spectrum appear in spectral problems
with concentrated masses [12, 13, 20 - 22, 40, 48]. The asymptotic behaviour depends
on the dimension of the space and of the region, where we have the density perturbation.

Domain perturbation. It is an interesting problem to study the behaviour of
the eigenvalues and eigenfunctions of certain differential operators when the domain
is perturbed. If this perturbation is smooth and in some sense small, then with the
help of a family of diffeomorphisms we can reduce the problem to the study of the
behaviour of the spectrum of a family of operators defined in the same domain; and
the coefficients of these operators behave well enough. On the other hand, there are
many problems, in which the domain perturbation is not smooth and small, and it
is not possible to use this method. In [41], for a simple eigenvalue of the Neumann
problem in Ωε, the difference between the asymptotic formulas in the case of smooth
and non-smooth (step-like) perturbations was shown.

Moreover, the asymptotic behaviour of the spectrum depends essentially on the kind
of boundary conditions that we impose. For eigenvalues to depend continuously on a
variation of the domain, Dirichlet conditions allow much more general perturbations of
the domain than Neumann conditions (see, for example, [2, 3, 9, 14, 15]).

The asymptotic behaviour of eigenvalues of boundary value problems in domains
with a small cavity of order ε, i.e. Ωε = Ω \ ωε, was investigated in [25, 43] (for the
Laplace operator) and in [16] (for systems of differential operators of high order).

There are many publications which have been aimed at spectral problems in ε-
periodically perforated domains with different boundary conditions on the holes (see [29,
42, 51, 52] and references there). In [29] complete asymptotic expansions with respect
to a small parameter ε were constructed for eigenvalues and eigenfunctions of spectral
boundary value problems of Steklov, Neumann, and Dirichlet types. In [42] an abstract
operator scheme for the investigation of the behaviour of eigenvalues and eigenfunctions
of operators acting in different spaces was proposed. Using this scheme, it is possible
to justify the asymptotic behaviour and to obtain asymptotic estimates for eigenvalues
and eigenfunctions of boundary value problems with various kinds of perturbations (see
[42: Section III]). Here we cite some new papers, in which this scheme was also applied:
spectral problems with quickly oscillating boundary conditions [8], spectral problems
in domains perforated along the boundary [5], and spectral problems in strongly non-
uniform thin perforated domains with rapidly varying thickness [26].

There are many papers that deal with the asymptotic investigation of spectral
boundary value problems in junctions consisting of a finite number of domains with
different limit dimensions [2, 7, 11, 14, 15, 18, 19, 39]. Asymptotics for low eigenval-
ues were found in [11, 18, 19]. In [2, 14, 15] the behaviour of eigenvalues of Neumann
Laplacians was studied in perturbed domains Ωε, for which Ω ⊂ Ωε and the Lebesgue
measure of Ωε \ Ω tends to 0 as ε → 0. There it was shown that besides of eigenvalues
of the Neumann Laplacian in Ω there are other accumulation points. More full results
were obtain in [7], where it was shown that the solutions of three-dimensional elastic
structure problems converge to solutions of a “coupled” eigenvalue problem of a new
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type. A similar limiting problem was obtained in [31] for the Laplacian, but the junction
body is degenerated as ε → 0.

Spectral boundary value problems in junctions, whose number of components in-
creases as ε → 0, have own specific difficulties. The main reason is the special character
of the connectedness of such thick junctions, which are the union of some domain and a
large number of ε-periodically situated thin domains: there are points in a thick junc-
tion, which are at a short distance of order O(ε), but the length of all curves, which
connect these points in the junction, is of order O(1). Because of this, many new effects
appear in the asymptotic behavior of solutions of boundary value problems in thick
junctions. As was shown in [6, 10, 49], the limiting operators are not compact for spec-
tral boundary value problems in thick junctions, and these operators can have both
points of the discrete spectrum and points of the essential spectrum. As a consequence,
“...an exhaustive study of the spectral properties will not be done” (see [10: p. 163]).
In [27, 28, 30 - 32, 34 - 37] the full structure of the spectrum of limiting operators
was found, and a new method was proposed for the investigation of the asymptotic be-
havior of eigenvalues and eigenfunctions of boundary value problems in thick junctions
of different types. There were obtained asymptotic estimates both for eigenvalues and
corresponding eigenfunctions. For these problems there are both common singularities
in the asymptotic investigation and own particular singularities for each problem that
are defined by the type of a thick junction (for more detail reviews, see [35, 36]). In
[36] asymptotic estimates were obtained for solutions of a spectral problem in thick
junction of type 3 : 1 : 1, when there are simultaneously three kind of perturbations:
stiff perturbation, density perturbation, and domain perturbation.

Here we present an abstract scheme of investigation of the asymptotic behaviour of
eigenvalues and eigenvectors of some family of abstract operators {Aε} acting in dif-
ferent spaces. This scheme generalizes the procedure of justification of the asymptotic
behaviour of eigenvalues and eigenvectors of boundary value problems in thick junctions
of different types [27, 28, 30 - 32, 34 - 37]. Using this scheme, we can obtain asymp-
totic estimates both for eigenvalues and for eigenfunctions. Of course, the scheme can
be applied to other perturbed spectral problems, which satisfy conditions represented
below.

Cases, in which the essential spectrum is changed by perturbation into the dis-
crete spectrum, appeared in many other perturbed problems (see [46], [17: Section
VII/Example 1.19], [4, 13, 14, 23], [24: Section III.4], and [1, 45]). Similar effects,
namely, spectral pollution could appear in finite element approximation of eigenvalues
and eigenfunctions of thin elastic shell problems in membrane approximation (see [44]
and references therein). The richness of such problems and different methods of in-
vestigation is a consequence of the various kinds of perturbations. Most part of these
studies was made under the restrictions that the strong convergences of the correspond-
ing spectral families and domains of definition both for the limiting operator and for the
perturbed operators are the same. In [1] the authors reduced some perturbed problem
in a perforated domain to the asymptotic investigation of a sequence of such operators
{T ε,K : K ∈ N} with fixed domain and co-domain, each of them converging strongly to
an operator T̃K as ε → 0. In [49: Section V.11 - V.13], the authors preferred to study
corresponding spectral families and to propose a new method; the idea is based on
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the convergence of solutions of evolution problems in time and on Fourier and Laplace
transforms of the corresponding solutions. This method was also used in [23, 44, 46].

Our scheme with respect to his ideology is close to the scheme in [42: Section III.1].
There exist four principal distinctions between these schemes, which are discussed in
Subsection 1.2.

1. Statement of the problem

1.1 The family of self-adjoint compact operator {Aε : ε > 0}. Eigenvalue
perturbation theory originated with the description of proper oscillations of mechanical
systems. Usually oscillating processes in domains depending on a small parameter ε are
described by the problem

(d2Uε

dt2
, v

)
Vε

+ aε(Uε, v) = 0 (v ∈ Hε)

Uε(0) = φ1,
dUε

dt
(0) = φ2





where aε is a bilinear, symmetric, continuous, and coercive form on a separable Hilbert
space Hε, which is densely and compactly embedded into a Hilbert space Vε, and where
the constants C1, C2, C3 in the inequalities

|aε(u, v)| ≤ C1‖u‖Hε‖v‖Hε

aε(u, u) ≥ C2‖u‖2Hε

‖u‖Vε ≤ C3‖u‖Hε





(u, v ∈ Hε)

are independent of the small parameter ε > 0.

Remark 1. It should be noted that here and further all constants ci and Ci in
asymptotic inequalities are independent of the parameter ε.

Obviously, the bilinear form aε defines a new scalar product inHε; the corresponding
norm is equivalent to the norm inHε, and in this case the constants are also independent
of the small parameter ε.

Let (u, v)Hε = aε(u, v). Then the corresponding proper oscillation problem (we look
for oscillations of the form Uε = exp(−i

√
λ(ε) t)uε) is reduced to the spectral problem

λ(ε)Aε(uε) = uε in Hε (1)

where Aε : Hε 7→ Hε is a self-adjoint, positive, compact operator, which is defined by
the formula

(Aεu, v)Hε = (u, v)Vε (u, v ∈ Hε). (2)

It is easy to see that supε>0 ‖Aε‖ ≤ C2
3 .

So, for each fixed ε > 0, all characteristic values of the operator Aε make up the
sequence

0 <
1

C2
3

≤ λ1(ε) ≤ . . . ≤ λn(ε) ≤ . . . → +∞ (n →∞) (3)
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with the classical convention of repeated values. Let {uε
n : n ∈ N} be the set of

corresponding eigenvectors, which are orthonormal in Vε, i.e.

(uε
n, vε

m)Vε
= δn,m (n,m ∈ N) (4)

where δn,m is the Kronecker symbol.
The aim of the present paper is to study the asymptotic behavior of the characteristic

values λn(ε) and the eigenvectors uε
n as ε → 0, and to find other limiting points of the

spectrum of the operator Aε under conditions imposed below.

1.1 Limiting operator. LetH0 be a separable Hilbert space, which is densely and only
continuously embedded into a Hilbert space V0. Since this embedding is not compact,
the operator A0 : H0 7→ H0 defined by

(A0u, v)H0 = (u, v)V0 (u, v ∈ H0) (5)

is self-adjoint, positive, and continuous only. As was shown in [6, 27, 28, 30 -32, 34,
36], the spectrum σ(A0) of the limiting operator consists of the discrete part σd(A0)
formed by finite-to-one isolated eigenvalues 1

µ , and of the essential spectrum σess(A0) =
σ(A0) \ σd(A0). Two cases of their reciprocal situation are possible:

- The essential spectrum consists of accumulation points, which divide the eigenvalues
into non-increasing sequences.

- There is a finite number of intervals on the positive semi-axis, where are situated
non-increasing sequences of eigenvalues with finite multiplicity, and the essential
spectrum is located between these intervals.

We consider the second case, which is more general, and assume in addition that there
are only two such intervals. Then the eigenvalues of the operator A0 form two sequences

1
b1
← . . . ≤ 1

µ
(1)
n

≤ . . .
1

µ
(1)
1

(6)

0 <
1
b3
← . . . ≤ 1

µ
(2)
n

≤ . . .
1

µ
(2)
1

<
1
b2

<
1
b1

(7)

as n →∞, and the essential spectrum σess(A0) is equal to the union [0, b−1
3 ]∪ [b−1

2 , b−1
1 ].

Let v
(k)
n (n ∈ N; k = 1, 2) be the corresponding eigenvectors, which are assumed

to be in a Hilbert space Z0 which is densely and continuously embedded into H0 and
compactly embedded into V0. Let these eigenvectors be orthonormalized in V0, i.e.

(v(k)
n , v(k)

m )V0 = δn,m and (v(1)
n , v(2)

m )V0 = 0 (n,m ∈ N; k = 1, 2). (8)

1.2 Connection conditions between the spaces. First let us introduce some no-
tation. By N( 1

µ , A0) denote the proper subspace corresponding to the eigenvalue 1
µ of

the operator A0. By (uε, λ(ε),Λ) (ε > 0) denote a sequence, whose components are
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respectively the normed eigenvector uε, the corresponding characteristic number of the
operator Aε, and the limit number Λ = limε→0 λ(ε). In view of (3), Λ 6= 0.

Assume that the following conditions (C1) - (C6) are satisfied.

(C1) There exists a linear continuous operator Sε : V0 7→ Vε with Sε(Z0) ⊂ Hε

such that
‖Sεu‖Vε

≤ c1‖u‖V0 (u ∈ V0)

‖Sεu‖Hε
≤ c1‖u‖Z0 (u ∈ Z0)

}

where the constant c1 > 0 depends neither on ε nor on u.

(C2) There exists a linear continuous operator Pε : Hε 7→ Z0 such that, for any
sequence {(uε, λ(ε),Λ) : ε > 0} with 1

Λ 6∈ σess(A0), there exist some constants c2 > 0
and ε0 > 0 such that

‖Pεu
ε‖Z0 ≤ c2(Λ)‖uε‖Hε

for all ε ∈ (0, ε0). If v ∈ Z0, then

‖Pε(Sεv)‖Z0 ≤ c3‖Sεv‖Hε

for all ε ∈ (0, ε0) where the constant c3 > 0 depends neither on ε nor on v and Pε(Sεv) →
v in V0 as ε → 0.

(C3) For any sequence {(uε, λ(ε), Λ) : ε > 0} with 1
Λ /∈ σess(A0) and for any

subsequence {ε′} such that Pε′u
ε′ → u0 weakly in Z0,

lim
ε′→0

(uε′ ,Sε′v)Hε′ = (u0, v)H0

for all v ∈ Z0.

(C4) If, for some vectors wε, vε ∈ Hε, Pεw
ε → w0 in V0 and Pεv

ε → v0 in V0 as
ε → 0, then limε→0(wε, vε)Vε = (w0, v0)V0 .

(C5) There is a number δ0 > 0 such that for any 1
µ ∈ σd(A0) there exists a linear

operator Rε : N( 1
µ , A0) 7→ Hε such that, for all v ∈ N( 1

µ , A0) with ‖v‖V0 = 1,

Rεv = Sεv +O(ε) in Vε and ‖Rεv‖Hε = cv +O(ε),

and there exists some constant c3 > 0 such that

‖µAε(Rεv)−Rεv‖Hε ≤ c3ε
δ0

for any ε ∈ (0, ε0).

(C6) There exist δ1 > 0 such that for any 1
µ ∈ σess(A0) there exists constants

c4 > 0 and ε0 > 0 and an element wε ∈ Hε with ‖wε‖Hε = 1 +O(ε) such that

‖µAεwε − wε‖Hε ≤ c4ε
δ1

for all ε ∈ (0, ε0).
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For better understanding, we write the diagram

in which the imbedding H ⊂ V means that the space H is densely and only continuously
embedded into V, but the imbedding H ⊂⊂ V is compact in addition. It should be
stressed here that the operator Pε is not uniformly bounded with respect to ε; it is
uniformly bounded only on some sequences (see condition (C2)). We note also that
Z0 ⊂⊂ V0, and usually δ1 ≤ δ0 ≤ 1.

Remark 2. In this remark we comment the main distinctions between the scheme
in [42: Subsection III.1]:

(i) The limiting operator A0 in [42] is compact.
(ii) The family of operator {Aε} is uniformly compact. The facts of this condition

for spectral problems in domains depending on a small parameter ε mean that there
exists an extension operator in a domain, which is independent of ε, and this opera-
tor is bounded uniformly with respect to ε in the corresponding Sobolev norm. The
uniformly boundedness of extension operators is a necessary condition in statements
of some problems (see [54]). For other problems, such extension operators exist, for
example, for domains that are ε-periodically perforated by holes with the diameter of
order ε [1, 5, 26, 42, 51, 52]. But for thick junctions, there exist no extension operators
that are bounded uniformly in ε (see, for instance, [32, 35, 36]). This is one of the main
difficulties in the investigation of boundary value problems in thick junctions.

(iii) There is no analogy in our scheme to condition (C3) in [42]. Besides, condition
(C3) is not true for boundary value problems in thick junctions (see [33]).

(iv) The scheme in [42] deals only with two spaces Hε and H0 where the operators
Aε and A0 act, respectively.

Further we will repeatedly use [53: Lemma 12], which has wide applications for
the approximation of eigenvalues and eigenvectors of self-adjoint compact operators.
Therefore, we recall this lemma here.

Lemma (Vishik and Lyusternik [53: Lemma 12]). Let A : H 7→ H be a continuous
linear compact self-adjoint operator in a Hilbert space H. Suppose there exist a number
µ > 0 and a vector u ∈ H such that ‖u‖H = 1 and

‖Au− µu‖H ≤ α (α > 0).

Then there exists an eigenvalue µn of the operator A such that |µn−µ| ≤ α. Moreover,
for any d > α there exists a vector ū such that

‖u− ū‖H ≤ 2αd−1, ‖ū‖H = 1,

and ū is a linear combination of eigenvectors corresponding to all eigenvalues of A from
the segment [µ− d, µ + d].
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2. Low frequency convergence

Proper oscillations, which correspond to the fundamental frequencies
√

λn(ε) at fixed
indices n, are called low frequency oscillations, and the corresponding frequencies are
called low frequencies. We introduce a new characteristic for low frequencies (see [34]).

Definition 1. The value
T = sup

n∈N
lim
ε→0

λn(ε)

is called the threshold of low frequencies.

Theorem 1. For any fixed index n ∈ N,

λn(ε) → µ(1)
n (ε → 0)

and there exists a subsequence of the sequence {ε} (still denoted by {ε}) such that

Pεu
ε
n → ṽ(1)

n weakly in Z0 as ε → 0

where ṽ
(1)
n is an eigenvector of the operator A0 which corresponds to the characteristic

value µ
(1)
n from sequence (6). Moreover, the eigenvectors {ṽ(1)

n } are orthonormalized in
V0, i.e. (ṽ(1)

n , ṽ
(1)
m )V0 = δn,m (n,m ∈ N).

Proof.

1. Take any characteristic value µ
(1)
n of the operator A0 and a corresponding eigen-

vector v
(1)
n , normalized by (8). Due to condition (C5) there exists a vector Rn

ε :=
Rεv

(1)
n ∈ Hε such that

Rn
ε = Sεv

(1)
n +O(ε) in Vε, ‖Rn

ε ‖Hε = cn +O(ε),

and
‖µ(1)

n Aε(Rn
ε )−Rn

ε ‖Hε ≤ c3ε
δ0 . (9)

Since Pε(Sεv
(1)
n ) → v

(1)
n in V0 as ε → 0 (see condition (C2)), it follows from condition

(C4) that
lim
ε→0

‖Sεv
(1)
n ‖2Vε

= ‖v(1)
n ‖2V0

= 1.

Taking into account these facts and the continuity of the imbedding Hε ⊂ Vε, we get

0 < c0 ≤ c ‖Sεv
(1)
n ‖2Vε

≤ ‖Rn
ε ‖2Hε

≤ c′n (10)

at ε small enough, where the constant c0 depends neither on ε nor on v
(1)
n . Now using

(10), we derive from (9)

∥∥∥∥Aε

( Rn
ε

‖Rn
ε ‖Hε

)
− 1

µ
(1)
n

Rn
ε

‖Rn
ε ‖Hε

∥∥∥∥
Hε

≤ c εδ0 . (11)
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Applying the first part of [53: Lemma 12] to (11), we conclude that every small neigh-
borhood of each characteristic value µ

(1)
n contains a characteristic value of the operator

Aε. Since we have a denumerable set of characteristic values µ
(1)
n on the interval (0, b1),

for the threshold of low frequencies T we have T ≤ b1. Taking into account this and
(4), we deduce from (1) that

‖uε
n‖Hε

≤ c(n).

Next, with the help of a diagonal process, one can choose a subsequence of {ε} (still
denoted by {ε}) such that

λn(ε) → λ∗n
Pεu

ε
n → ṽ(1)

n

}
weakly in Z0 and strongly in V0 as ε → 0.

Since T ≤ b1, we have

0 <
1

C2
3

≤ λ∗1 ≤ . . . ≤ λ∗n ≤ . . . ≤ b1.

Passing to the limit in (4) as ε → 0 and taking into account condition (C4) we obtain
(ṽ(1)

n , ṽ
(1)
m )V0 = δn,m (n,m ∈ N) whence ṽ

(1)
n 6= 0.

Now pass to the limit in the identity

λn(ε)(Aεu
ε
n,Sεv)Hε = (uε

n,Sεv)Hε (v ∈ Z0). (12)

Due to conditions (C2) and (C4) and the definitions of the operators Aε and A0, the
limit of the left-hand side in (12) is equal to λ∗n(A0ṽ

(1)
n , v)H0 . Because of condition

(C3), the limit of the right hand-side is equal to (ṽ(1)
n , v)H0 . Thus, λ∗n is a characteristic

value of the operator A0, and it is from the first series (6); ṽ
(1)
n is the corresponding

eigenvector.
2. In order to complete the proof, it remains to show that

λ∗n = µ(1)
n (n ∈ N). (13)

Let µ
(1)
k = µ

(1)
k+1 = . . . = µ

(1)
k+r−1 be a characteristic value of the operator A0 with

multiplicity r. Then, let us prove that there exist exactly r characteristic values of the
operator Aε with regard to their multiplicity, which tend to µ

(1)
k as ε → 0. This will

mean that relations (13) are true.
First assume that there exist q characteristic values {λni(ε) : i = 1, . . . , q} of the

operator Aε which tend to µ
(1)
k and q > r. By the preceding arguments, we have

Pεu
ε
ni
→ ṽni weakly in Z0 as ε → 0 (i = 1, . . . , q)

where ṽni (i = 1, . . . , q) are orthonormal in V0 eigenvectors of the operator A0. This
means that the eigenvalue µ

(1)
k has multiplicity q. This is a contradiction.
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Now suppose q < r. Applying the second part of [53: Lemma 12] to (11) at n = k+i,
we obtain that there exists a linear combination

U (i)
ε =

q∑

j=1

αij(ε)uε
nj

, 0 < c1 ≤
q∑

j=1

α2
ij(ε) ≤ c2,

of the eigenvectors uε
n1

, . . . , uε
nq

of the operator Aε such that

‖Rk+i
ε − U (i)

ε ‖Vε
≤ ciε

δ0 (i = 0, . . . , r − 1).

Passing to the limit in the last inequalities over a suitable subsequence of {ε} and taking
into account condition (C4), we get

v
(1)
k+i =

q∑

j=1

α∗ij ṽnj , 0 < c1 ≤
q∑

j=1

(α∗ij)
2 ≤ c2 (i = 0, . . . , r − 1),

but this contradicts the linear independence of the vectors v
(1)
k , v

(1)
k+1, . . . , v

(1)
k+r−1 (r

linearly independent vectors are linear combinations of some q (q < r) linearly indepen-
dent vectors). Since the above reasoning holds for any subsequence of {ε} chosen at the
beginning of the proof, we have λn(ε) → µ

(1)
n as ε → 0. The theorem is proved

3. Hausdorff convergence of the spectrum

It turns out that there exist other converging sequences of characteristic values λn(ε)(ε)
with n(ε) → +∞ as ε → 0; the corresponding oscillations are usually called high
frequency oscillations.

Theorem 2. The spectrum of the operator Aε converges to the spectrum of the
operator A0 in the Hausdorff sense, i.e.

1. For all 1
µ ∈ σ(A0) there exists 1

λ(ε) ∈ σ(Aε) such that λ(ε) → µ as ε → 0.

2. If 1
λ(ε) ∈ σ(Aε) and λ(ε) → Λ as ε → 0, then 1

Λ ∈ σ(A0).

Proof. If 1
µ ∈ σd(A0), then statement 1 follows from condition (C5) and the first

part of [53: Lemma 12], which we apply to the corresponding inequality (11). If 1
µ ∈

σess(A0), then this statement follows from condition (C6) and [53: Lemma 12].
We prove statement 2 by contradiction. Assume 1

Λ /∈ σ(A0). This means also
1
Λ /∈ σess(A0). Because of (3), 1

Λ 6= 0. Consider the sequence {(uε, λ(ε),Λ) : ε > 0}. Due
to condition (C2) there exists a vector Pεu

ε ∈ Z0 such that ‖Pεu
ε‖Z0 ≤ c1(Λ)‖uε‖Hε

at ε small enough. Since ‖uε‖Vε = 1 and the sequence {λ(ε)} is bounded, it follows
from (1) that ‖uε‖Hε ≤ λ(ε) ≤ c. Therefore, there exists a subsequence {ε′} such that
Pε′u

ε′ → u0 weakly in Z0.
Next, similarly as in the first part of Theorem 1, we conclude that u0 6= 0 and u0 is

an eigenvector, which corresponds to the characteristic value Λ of A0, i.e. 1
Λ ∈ σ(A0).

The theorem is proved
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4. Asymptotic estimates

In previous two sections we proved convergence theorems, which show that only points
of the spectrum of the operator A0 are the accumulation points of the spectrum of
the operator Aε as ε → 0. The treshold of low frequencies (T = b1) indicates where
the low and high frequency limits of the spectrum of Aε are concentrated. In general,
the treshold gives us some information about the perturbation of a spectral problem.
The treshold is equal to +∞ for majority spectral problems of perturbation theory, for
example, for spectral problems with quickly oscillating coefficients, for spectral problems
in perforated domains, and we can say, in some sense, that the perturbation for such
problems is not very singular.

For spectral problems in thick junctions, the treshold is equal to some positive
number for the Neumann condition on the boundaries of the thin domains [30, 31]; it
equals +∞ for the Dirichlet condition [38], and it is equal 0 for the Steklov problem
[37].

In this section, we prove asymptotic estimates both for the eigenvalues and the
eigenvactors of the starting problem and make more precise the asymptotic behavior
of the spectrum of Aε both near points of the discrete spectrum of the operator A0 as
well as near points of the essential one. As was shown in [34, 38], a new kind of proper
oscillations can be presented near the points of the essential spectrum.

Theorem 3. Let µ
(1)
n = µ

(1)
n+1 = . . . = µ

(1)
n+r−1 be a characteristic value of the

operator A0 with multiplicity r and let v
(1)
n , . . . , v

(1)
n+r−1 be corresponding eigenvectors

satisfying condition (8). Then there exist positive constants ε0, Ci(n), c0 and {αik(ε)}
such that for all ε ∈ (0, ε0) the inequalities

∥∥∥∥R(n+i)
ε −

r−1∑

k=0

αik(ε)uε
n+k

∥∥∥∥
Hε

≤ Ci(n) εδ0 (i = 0, . . . , r − 1) (14)

hold where 0 < c1 ≤
∑r−1

k=0 α2
ik(ε) ≤ c2 and R

(n+i)
ε = Rε(v

(1)
n+i). For any n ∈ N and ε

small enough we have
|λn(ε)− µ(1)

n | ≤ c(n) εδ0 . (15)

Proof. Applying to inequality (11) at n = n+ i the second part of [53: Lemma 12]
with the number

d =
1
4

min
{∣∣∣ 1

µ
(1)
n

− 1

µ
(1)
n−1

∣∣∣,
∣∣∣ 1

µ
(1)
n

− 1

µ
(1)
n+r

∣∣∣
}

and taking into account Theorem 1, we get

∥∥∥∥
R

(n+i)
ε

‖R(n+i)
ε ‖Hε

− U (i)
ε

∥∥∥∥
Hε

≤ 2d−1c(i) εδ0 , ‖U (i)
ε ‖Hε = 1 (16)

where U
(i)
ε is a linear combination of eigenvalues un+i

ε (i = 0, . . . , r− 1). Now the first
statement of the theorem follows from (16) and (10).
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Since the set of eigenvectors v
(1)
n+i (i = 0, 1, . . . , r−1) makes up a finite orthonormal

basis in the proper subspace N( 1

µ
(1)
n

, A0) and due to condition (C5),

∥∥µAε(Rεv)−Rεv
∥∥
Hε
≤ cmax(n) εδ0 ∀ v ∈ N( 1

µ
(1)
n

, A0) with ‖v‖V0 = 1 (17)

where the constant cmax(n) > 0 depends neither on ε nor on v.
Let us show that at ε small enough there are exactly r characteristic values of the

operator Aε on the segment

I(ε) =
{

µ : |µ− µ(1)
n | ≤ c0(n) εδ0

}
, where c0(n) = 2

√
µ

(1)
n+r cmax(n).

From Theorem 1 it follows that the characteristic values λn+i(ε) (i = 0, . . . , r − 1)
may be in this segment. Assume that some characteristic value does not belong to this
segment at ε small enough; without loss of generality it can be assumed that this is
λn+r−1(ε). Then there exists a subsequence {ε′} such that

Pε′(uε′
n+r−1) → ṽ

(1)
n+r−1 weakly in Z0 as ε′ → 0 (18)

where ṽ
(1)
n+r−1 is some eigenvector from the subspace N( 1

µ
(1)
n

, A0) and ‖ṽ(1)
n+r−1‖V0 = 1.

Consider the vector Rε′ ṽ
(1)
n+r−1 instead of v in condition (C5). Using the definition of

the operator Aε, it follows from (1) that

(
λn+r−1(ε′)− µ(1)

n

)(
Rε′ ṽ

(1)
n+r−1, u

ε′
n+r−1

)
Vε′

=
(
Rε′ ṽ

(1)
n+r−1 − µ(1)

n Aε′(Rε′ ṽ
(1)
n+r−1), u

ε′
n+r−1

)
Hε′

(19)

Due to (18) and the facts that

Rεṽ
(1)
n+r−1 = Sεṽ

(1)
n+r−1 +O(ε)

Pε(Sεṽ
(1)
n+r−1) → ṽ

(1)
n+r−1

}
in V0 as ε → 0

(see condition (C5) and (C2), respectively), we derive from condition (C4) that

(
Rε′ ṽ

(1)
n+r−1, u

ε′
n+r−1

)
Vε′

= ‖ṽ(1)
n+r−1‖2V0

+ αε′ = 1 + αε′ > 1
2 (20)

at ε small enough; here αε′ → 0 as ε′ → 0. By virtue of (20) and the corresponding
inequality for ṽ

(1)
n+r−1 in condition (C5), it follows from (19) that

|λn+r−1(ε′)− µ(1)
n | ≤ 2cmax(n)(ε′)δ0‖uε′

n+r−1‖Hε′

= 2cmax(n)
√

λn+r−1(ε′) (ε′)δ0

≤ c0(n)(ε′)δ0 ,

i.e. λn+r−1(ε′) ∈ I(ε′), but this contradicts our assumption. The theorem is proved
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Remark 3. By condition (C5), Rε(v
(1)
n+i) = Sε(v

(1)
n+i) + O(ε) in Vε. Now taking

into account that the imbedding Hε ⊂ Vε is continuous, it follows from (14) (as usually,
δ0 ∈ (0, 1]) that

∥∥∥∥Sε(v
(1)
n+i)−

r−1∑

k=0

αik(ε)uε
n+k

∥∥∥∥
Vε

≤ Ci(n)εδ0 (i = 0, . . . , r − 1). (21)

The following theorem give us an asymptotic picture near characteristic values of
the operator A0 from the second series (7).

Theorem 4. Let µ
(2)
m = µ

(2)
m+1 = . . . = µ

(2)
m+r−1 be a characteristic value of the

operator A0 with multiplicity r and let v
(2)
m , . . . , v

(2)
m+r−1 be the corresponding eigenvec-

tors, which satisfy (8). Then there exist constants εm,k and c3(m, k) such that for any
ε ∈ (0, εm,k) the interval

Im(ε) =
(
µ(2)

m − c3ε
δ0 , µ(2)

m + c3ε
δ0

)

contains r characteristic values of the operator Aε. Moreover, for the corresponding
eigenvectors we have the asymptotic estimates

∥∥∥∥
Rε(v

(2)
m+i)

‖Rε(v
(2)
m+i)‖Hε

− Ũ (i)
ε

∥∥∥∥
Hε

≤ c(m) εδ0 ,
(‖Ũ (i)

ε ‖Hε = 1; i = 0, . . . , r − 1
)

(22)

where Ũ
(i)
ε is a linear combination of eigenvectors corresponding to all characteristic

values of the operator Aε from the interval Im(ε).

Proof. The proof is based on arguments of the previous theorems. Namely, we
assume that there exist q characteristic values λni(ε)(ε) (i = 1, . . . , q) of the operator
Aε, which converge to µ

(2)
m . Then due to condition (C2) we have

‖Pεu
ε
ni(ε)

‖Z0 ≤ c1(µ(2)
m )‖uε

ni(ε)
‖Hε (i = 1, . . . , q).

In the same way as in the second part of Theorem 1 we prove that q = r. To conclude
the proof, it remains to repeat the proof of Theorem 3

Remark 4. In fact asymptotic estimate (21) is the estimate of the opening between
the subspace Sε

(
N( 1

µ
(1)
n

, A0)
)

and the subspace spanned on eigenvectors of Aε, for which

the corresponding eigenvalues tend to 1

µ
(1)
n

as ε → 0. A similar estimate we can obtain

from (22). If the characteristic value of A0 in Theorems 3 or 4 is simple, then (14), (21)
or (22) are asymptotic estimates for the eigenvectors of the operator Aε. Usually the
norm in Hε is the energy norm, and for many problems estimates in the energy norms
serve as a criterion that the limiting problem is true.

To obtain asymptotic estimates near the essential spectrum of A0, we should use
condition (C6), where from we get

∥∥∥∥Aε

( wε

‖wε‖Hε

)
− 1

µ

wε

‖wε‖Hε

∥∥∥∥
Hε

≤ c εδ1 .

Applying to this inequality [53: Lemma 12] with the constant d = c εδ1/2, we come to
the following theorem.



954 T. A. Mel’nyk

Theorem 5. For any 1
µ ∈ σess(A0) there exists a finite number of eigenvalues of

Aε on the interval
Iµ(ε) =

(
1
µ − c εδ1 , 1

µ + c εδ1

)
.

Further, there exists a vector Ũε ∈ Hε such that

∥∥∥∥
wε

‖wε‖Hε

− Ũε

∥∥∥∥
Hε

≤ 2 εδ1/2 and ‖Ũε‖2Hε
= 1,

and Ũε is a finite linear combination of eigenvectors uε
k(ε)+i (i = 0, . . . , p(ε)) which

correspond to all eigenvalues λ−1
k(ε)+i(ε) (i = 0, . . . , p(ε)) of the operator Aε from the

segment [ 1
µ − c εδ1/2, 1

µ + c εδ1/2].

5. Comments

Here we demonstrate the application of the presented scheme to the problem of the paper
[35]. There a mixed boundary value problem for the Laplace operator in a junction Ωε

of a domain Ω0 and a large number N2 of ε-periodically situated thin cylinders with
thickness of order ε = O(N−1) was considered.

The operator Pε is an extension operator from H1(Ωε) to H1(Ω0 ∪D−), where D−
is a domain that is filled up by the thin cylinders in the limiting passage as ε → 0. This
operator is only asymptotically bounded in ε on the eigenfunctions in the Sobolev space
H1. It is to be noticed that the construction of the extension operator for junctions of
type 3 : 2 : 1 is both, the most complex with respect to its construction and the most
general of other types of periodic thick junctions.

The operator Sε is a restriction operator, which associates with each function f ∈
L2(Ω0 ∪D−) its restriction to L2(Ωε).

The operator Rε is a global asymptotic approximation for the eigenfunctions, which
we constructed on the basis of solutions of the limiting spectral problem using the
matching principle for the asymptotic expansions. In [37] such approximation was
constructed for the essential spectrum of the limiting problem.
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