
Zeitschrift für Analysis und ihre Anwendungen
Journal for Analysis and its Applications

Volume 20 (4), No. 2001, 959–985

A Priori Gradient Bounds and Local C1,α-Estimates
for (Double) Obstacle Problems

under Non-Standard Growth Conditions
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Abstract. We prove local gradient bounds and interior Hölder estimates for the first derivatives
of functions u ∈ W 1

1,loc(Ω) which locally minimize the variational integral I(u) =
R
Ω

f(∇u) dx
subject to the side condition Ψ1 ≤ u ≤ Ψ2. We establish these results for various classes of
integrands f with non-standard growth. For example, in the case of smooth f the (s, µ, q)-
condition is sufficient. A second class consists of all convex functions f with (p, q)-growth.

Keywords: Non-standard growth, (double) obstacle problems, a priori estimates, regularity of
minimizers
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1. Introduction

In this paper we discuss the regularity properties of functions u ∈ W 1
1,loc which locally

minimize the variational integral

I(u) =
∫

Ω

f(∇u) dx

subject to the constraint Ψ1 ≤ u ≤ Ψ2 almost everywhere on Ω (double obstacle prob-
lems). Here Ω denotes a bounded domain in Rn (n ≥ 2) and f : Rn → [0,∞) is a given
strictly convex function such that f(Z) grows faster than |Z| as |Z| → ∞.

To be precise we briefly summmarize our setting. We consider locally Lipschitz
functions Ψ1 and Ψ2 such that Ψ2 − Ψ1 ≥ m holds for a number m > 0, and we say
that u ∈ W 1

1,loc(Ω) is locally I-minimizing with respect to the (double) side condition
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Ψ1 ≤ u ≤ Ψ2 if and only if f(∇u) is in L1
loc(Ω) and

I
(
u, spt(u− v)

)
=

∫

spt(u−v)

f(∇u) dx

≤
∫

spt(u−v)

f(∇v) dx = I
(
v, spt(u− v)

) (1.1)

holds for any v ∈ W 1
1,loc(Ω) such that spt(u − v) b Ω and Ψ1 ≤ v ≤ Ψ2 almost ev-

erywhere in Ω. Constrained problems of this type have been recently faced by few
authors under different assumptions, covering degenerate energy densities f (see [5, 31,
32]), possibly with non-standard growth conditions of a particular type (see [23]). Here
we investigate the smoothness of local minimizers under growth and differentiability
assumptions on f which are quite different from the standard hypotheses usually con-
sidered, proving new regularity results recovering and substantially extending most of
the previous ones available in the literature.

Before going into details let us briefly outline the history of the regularity results
for the single and double obstacle problem. The most common case is the so-called
p-growth behaviour of f which means that f is of class C2 satisfying

|Z|p ≤ f(Z) ≤ L(1 + |Z|p) (1.2)

ν(1 + |Z|2) p−2
2 |Y |2 ≤ D2f(Z)(Y, Y ) ≤ L(1 + |Z|2) p−2

2 |Y |2 (1.3)

for all Z, Y ∈ Rn with constants ν, L > 0 and with a fixed exponent p > 1 (we refer
the reader to the papers [6, 10, 11, 22, 28, 31] and the references quoted therein).
Of course, it should be mentioned that the classical case p = 2 is extensively treated
in the monographs [14, 21]. Under assumptions (1.2) - (1-3) optimal smoothness of
local minimizers (depending on the structure of Ψ1 and Ψ2) has been established. For
example, it is shown in [31] that any solution u of (1.1) has Hölder continuous first
derivatives provided ∇Ψ1 and ∇Ψ2 are Hölder continuous functions.

In recent years integrands f with non-standard growth became object of intensive
investigation. Ten years ago Marcellini (see [24 - 27]) replaced assumption (1.2) by the
so-called (p, q)-growth condition

|Z|p ≤ f(Z) ≤ L(1 + |Z|q) (1.4)

with 1 < p ≤ q and proved (using also an appropriate version of assumption (1.3))
C1,α-regularity of unconstrained local minimizers provided q < np

n−2 in the case n > 2
(see comment (v) below for details). For related results also in the vectorial setting we
refer to the papers [2, 27].

On the other hand, many problems in Mathematical Physics (see, for example, [16]
or [17]) motivate the study of functionals of nearly linear growth like

I1(u) =
∫

Ω

|∇u| ln(1 + |∇u|) dx (1.5)
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or its iterated version

Ik(u) =
∫

Ω

|∇u| ln (
1 + ln

(
1 + . . . ln(1 + |∇u|) . . .

))
dx (1.6)

which are obviously not of (p, q)-growth for any 1 < p ≤ q. Partial C1,α-regularity
results for free minimizers of energies given by (1.5) or (1.6) covering also the vector-
valued case were presented first in [15, 16, 18]; later on these results were completed in
[8] and full regularity was proved in [29] (see also [13]).

The first result in our paper addresses the double obstacle problem for functionals
given by (1.5) and (1.6) but also covers the case of integrands like f(Z) = |Z|p ln(1+|Z|),
its iterated versions and in addition includes integrands of (p, q)-growth as studied by
Marcellini. We can even consider integrands f of (s, µ, q)-growth which means that f
has to satisfy the following set of hypotheses: let F : R+

0 → R+
0 denote a continuous

function, fix some real number s ≥ 1 and assume

lim
t→∞

F (t)
t

= ∞ and F (t) ≥ c0t
s for large values of t. (1.7)

The integrand f is required to be a non-negative function of class C2(Rn) such that,
for all Z, Y ∈ Rn,

c1F (|Z|) ≤ f(Z) (1.8)

|D2f(Z)| |Z|2 ≤ c2(1 + f(Z)) (1.9)

λ(1 + |Z|2)−µ
2 |Y |2 ≤ D2f(Z)(Y, Y ) ≤ Λ(1 + |Z|2) q−2

2 |Y |2 (1.10)

where µ ∈ R, q > 1 and c0, c1, c2, λ, Λ denote positive constants. If n ≥ 3, we assume in
addition that

q < (2− µ) n
n−2 (1.11)

is satisfied. Note that, on account of q > 1, (1.11) gives the upper bound

µ < 1 + 2
n (1.12)

which we also assume in the case n = 2. Under these hypotheses, our results are
summarized in the following

Theorem 1.1.
(a) Assume that f satisfies (1.7) − (1.12). Then any solution u of (1.1) is locally

Lipschitz continuous if so are the two obstacles Ψ1 and Ψ2. If we assume the obstacles
to have Hölder continuous gradients, then the solution of (1.1) is of class C1,α

loc (Ω) for
some 0 < α < 1.

(b) If condition (1.9) is dropped and if we replace condition (1.11) by the stronger
condition

q < (2− µ) + s 2
n , (1.13)

then we also obtain the conclusion of statement (a).

Let us briefly comment on our conditions:
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(i) Condition (1.7) together with the second part of condition (1.10) implies s ≤ q
(compare [1: Lemma 2.1] if q < 2). For this reason (1.13) is more restrictive than (1.11),
and (1.13) reduces to (1.11) if s reaches the optimal value q.

(ii) The case of integrands with nearly linear growth like (1.5) and (1.6) is covered
choosing s = 1.

(iii) We may assume that 2−µ ≤ s (which is obvious if µ ≥ 1 or µ ≤ 0; in the case
0 < µ < 1 again compare [1: Lemma 2.1]). The lower bound q ≥ 2 − µ follows from
(1.10).

(iv) In Section 3 we will construct an example of an integrand fµ,q satisfying (1.10)
precisely with exponents µ and q for a given range of values for µ and q. The balancing
condition (1.9) is also satisfied. Moreover, the growth of fµ,q is exactly q. Thus we
obtain regularity under the condition q < (2−µ)n

n−2 .
For the unbalanced case described in Theorem 1.1/(b) we give an example of an

integrand f depending also on the parameter s by the way demonstrating the importance
of condition (1.13).

(v) Suppose that we are given numbers q > p > 1 and that (1.10) holds with
µ = 2 − p. This case corresponds to the version of (p, q)-growth introduced by Mar-
cellini in the paper [25] where the growth behaviour is formulated in terms of the second
derivatives. Marcellini then proved regularity of unconstrained local solutions u assum-
ing (1.11) but without any balancing condition. Instead of this he requires u to be of
class W 1

q,loc(Ω), hence in our setting we can choose s = q and get regularity under the
same condition on q and p as in [25]. Thus we recover Marcellini’s regularity result and
extend it to the constrained case.

(vi) Now let us assume that just (1.10) is true with q > p > 1 and µ = 2− p. Then
we have (1.7) with s = p, and part (b) of Theorem 1.1 implies regularity in the case
that q < p(n+2)

n . The latter condition also occurs in the second part of the paper [25];
it turns out to be sufficient to obtain existence for the kind of equations considered by
Marcellini.

There exist some preliminary versions of Theorem 1.1: in [12] there is considered
the case of a single obstacle Ψ of class W 2

∞(Ω) for the logarithmic energy introduced in
(1.5) and partial C1-regularity was proved provided n ≤ 4. Assuming condition (1.13)
with s = 1 the nearly linear setting was studied in [13], and singular points where
excluded for any dimension n still dealing with a single obstacle Ψ and also under
stronger hypotheses on Ψ than stated in Theorem 1.1 above.

Observe that a modification of Moser’s iteration argument was applied in [13]. Here
we use De Giorgi’s technique which turned out to be useful in the case of linear growth
studied in [4, 20] and which now is seen to cover any of the above mentioned growth
conditions.

Next, we turn our attention to the double obstacle problem in the context of energies
with (p, q)-growth as stated in (1.4) (thus exluding integrals as in (1.5) or (1.6)): we
now move in a different direction by weakening, with respect to the cases considered in
the literature, not only the growth assumptions but also those regarding the smoothness
of the integrand f . Very recently (see [7, 9]) some surprising regularity properties like
Lipschtiz continuity were proved without any differentiability assumption on f . Here
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we want to prove similar results in the constrained situation. More precisely, we obtain
Lipschitz regularity of solutions without assuming any differentiability property for f ,
in particular, any ellipticity condition involving D2f is dropped. In place of this a
“qualified” form of convexity (see (1.15)) is assumed while the obstacles Ψ1 and Ψ2

have to satisfy a local Lipschitz condition.

Theorem 1.2. Let f ∈ C0(Rn) be such that:

(σ2 + |Z|2) p
2 ≤ f(Z) ≤ L(σ2 + |Z|2) p

2 + L(σ2 + |Z|2) q
2 (1.14)

∫

[0,1]n

(
f(Z + Dϕ)− f(Z)

)
dx ≥ ν

∫

[0,1]n

(
σ2 + |Z|2 + |Dϕ|2)

p−2
2 |Dϕ|2dx (1.15)

for any Z ∈ Rn and ϕ ∈ C∞0
(
(0, 1)n

)
, where 1 < p ≤ q < pn+1

n , ν > 0, L ≥ 1 and
σ ∈ [0, 1]. Then any solution u ∈ W 1

1,loc(Ω) to (1.1) is locally Lipschitz continuous if so
are the two obstacles Ψ1 and Ψ2.

In addition to (1.14) and (1.15) suppose that
(i) f ∈ C2(Rn) if p ≥ 2 or σ > 0

or
(ii) f ∈ C2(Rn ∼ {0}) ∩ C1,p−1(Rn) when 1 < p < 2 and σ = 0.

Moreover, we assume that for σ = 0 we have

lim sup
|z|→0

|D2f(z)|
|z|p−2

≤ L < +∞. (1.16)

Then u is in the space C1,α
loc (Ω) provided Ψ1 and Ψ2 have locally Hölder continuous

gradients.

We remark that the result of Theorem 1.2, which is obtained using an appropriate
modification of the approximation and (Moser-) iteration technique presented in [7], is
completely new even in the standard case p = q and also includes the degenerate p-case
treated in [31] (that follows choosing σ = 0). Actually, the degenerate case in [31] is
extended not only because the functional has (p, q)-growth but also since no hypotheses
has been made on the growth of the second derivatives of f : (1.16) only controls the
kind of degeneration of D2f .

Let us give some further comments on the hypotheses of Theorem 1.2: condition
(1.15) requires a kind of uniform (quasi-) convexity of our integrand f , and in [9] it is
shown that under suitable hypotheses on f inequality (1.15) is equivalent to the usual
pointwise condition. We will comment on this during the proof of the second part of
Theorem 1.2 (see Lemma 4.3). So, comparing the assumptions of Theorems 1.1 and
1.2 we remark: according to [1: Lemma 2.1] the right-hand side of (1.10) implies the
right-hand side of (1.14) whereas the left-hand side of (1.10) gives (1.15). So, if f is
smooth, then Theorem 1.2 is a consequence of Theorem 1.1, which holds under even
weaker assumptions relating p and q. On the other hand, despite its apparently involved
formulation the convexity condition (1.15) is very general. For example, all integrands
f of the form f(Z) = |Z|p + h(Z) are included where h is a general convex function
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satisfying nothing but a q-growth assumption of the type 0 ≤ h(z) ≤ L(1 + |z|q).
However, according to this generality, the relation between p and q is more restrictive
than the one stated in Theorem 1.1.

With obvious changes in notation (see Theorem 1.1) it should of course be possible
to give a variant of Theorem 1.2 also for non-smooth convex integrands f of nearly
linear growth. Since the iteration technique requires some technical modifications, we
did not include this aspect for the sake of clearness and brevity.

2. Proof of Theorem 1.1

In the following ε and δ will denote two sequences of positive real numbers such that
ε → 0 and δ → 0. From time to time we shall pass to any subsequence that will still
be denoted by ε and δ, respectively. Moreover, c will denote a finite, positive constant,
not necessarily the same in any two occurencies, while only the relevant dependences
will be highlighted. The proof of Theorem 1.1 is organized in the following five steps:

- approximation
- linearization
- a priori Lq-estimates
- a priori L∞-estimates
- conclusion.

Step 1 (Approximation). Let {ϕt}t>0 be a family of smooth mollifiers. We denote
by uε, Ψ1,ε and Ψ2,ε the ε-mollification with kernel ϕε of u, Ψ1 and Ψ2, respectively.
Furthermore, let m > 0 be such that Ψ2 − Ψ1 ≥ m and and fix ε̄ > 0 such that
Ψ2,ε − Ψ1,ε ≥ m

2 whenever 0 < ε < ε̄. We fix R > 0 and x0 ∈ Ω with the property
B2R ⊂ {x ∈ Ω : dist(x, ∂Ω) > ε} (ε < ε̄) where Br = Br(x0). Then we define

K′ε =
{

w ∈ uε + W̊ 1
q (B2R) : Ψ1,ε ≤ w ≤ Ψ2,ε

}

and vε,δ ∈ K′ε as the unique solution of the Dirichlet problem

Jδ(w) =
∫

B2R

fδ(∇w) dx → min in K′ε (2.1)

where for any δ > 0
fδ(Z) = f(Z) + δ(1 + |Z|2) q

2 . (2.2)

Observe that we have by standard results (see, e.g., [6, 31] and the references given at
the end of the proof of Lemma 2.1)

vε,δ ∈ C1,α(B2R) ∩W 2
q,loc(B2R)

for some 0 < α < 1.
From now on we shall drop the subscripts ε and δ just denoting

vε,δ ≡ v, fδ ≡ f, Ψi,ε ≡ Ψi (i ∈ {1, 2}), K′ε = K′.

The full notation will be recovered later, in Step 5.

Step 2 (Linearization). Here we are going to prove the following
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Lemma 2.1. Under the assumptions of Theorem 1.1, v is of class W 2
t (B2R) for

any t < ∞ and
Df(∇v) ∈ W 1

t,loc(B2R). (2.3)

Moreover, the equation
∫

B2R

Df(∇v) · ∇ϕdx =
∫

B2R

ϕg dx (2.4)

is valid for any ϕ ∈ C1
0 (B2R), where

g = 1S1

(− div [Df(∇Ψ1)]
)

+ 1S2

(− div [Df(∇Ψ2)]
)

and Si =
{
x ∈ B2R : v = Ψi

}
(i ∈ {1, 2}).

Proof. Following the lines of [10 - 13] or [4] we fix 0 < s < m
10 and consider a

function hs : [0,+∞) → [0, 1] of class C1 such that hs = 1 on [0, s], hs = 0 on [2s, +∞)
and h′s ≤ 0. Given η ∈ C1

0 (B2R), η ≥ 0, we let

wt = v + tηhs ◦ (v −Ψ1)

which belongs to the class K′ if the positive number t satisfies t supΩ η ≤ m
10 . From the

minimum property of v we deduce
∫

B2R

Df(∇v) · ∇(
ηhs ◦ (v −Ψ1)

)
dx ≥ 0

hence there is a Radon measure λ1 = λ1(s) such that
∫

B2R

Df(∇v) · ∇(
ηhs ◦ (v −Ψ1)

)
=

∫

B2R

η dλ1(s). (2.5)

Actually, λ1(s) does not depend on s (use the comparison function wt = v + tη[hs ◦ (v−
Ψ1)− hs′ ◦ (v−Ψ1)] with s < s′, η ∈ C1

0 (B2R), η ≥ 0 and |t| > 0 small enough). Hence
we may write λ1 in equation (2.5). In order to estimate λ1, we fix η ∈ C1

0 (B2R), η ≥ 0,
and observe by (2.5)

∫

B2R

η dλ1 =
∫

B2R

Df(∇v) · ∇ηhs ◦ (v −Ψ1) dx

+
∫

B2R

Df(∇Ψ1) · η∇
(
hs ◦ (v −Ψ1)

)
dx

+
∫

B2R

(
Df(∇v)−Df(∇Ψ1)

) · (∇v −∇Ψ1)ηh′s ◦ (v −Ψ1) dx

≤
∫

B2R

Df(∇v) · ∇ηhs ◦ (v −Ψ1) dx

−
∫

B2R

div
(
Df(∇Ψ1)

)
ηhs ◦ (v −Ψ1) dx

−
∫

B2R

Df(∇Ψ1) · ∇ηhs ◦ (v −Ψ1) dx

→
∫

B2R∩[v=Ψ1]

η
(− div (Df(∇Ψ1))

)
dx as s ↓ 0.
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Therefore λ1 is of the form

λ1 = 1[v=Ψ1]Θ1

(− div (Df(∇Ψ1))
)× Lebesgue measure (2.6)

for a density function Θ1 : Ω → [0, 1]. In a similar way, using wt = v − tηhs ◦ (Ψ2 − v)
with s, t, η as stated before (2.5), we get the equation

−
∫

B2R

Df(∇v) · ∇(
ηhs ◦ (Ψ2 − v)

)
dx =

∫

B2R

η dλ2 (2.7)

for another Radon measure λ2 indepedent of s. In place of (2.6) we get

λ2 = 1[v=Ψ2]Θ2

(
div (Df(∇Ψ2))

)× Lebesgue measure. (2.8)

Putting together (2.5) - (2.8) we arrive at
∫

B2R

Df(∇v) · ∇
{

ϕ
[
hs ◦ (v −Ψ1) + hs ◦ (Ψ2 − v)

]}
dx

=
∫

B2R

ϕ
{

Θ11S1

(− div (Df(∇Ψ1))
)

+ Θ21S2

(− div (Df(∇Ψ2))
)}

dx

(2.9)

being valid for all ϕ ∈ C1
0 (B2R) and any s ∈ (0, m

10 ). Let us fix s and ϕ as above. Then,
for t ∈ R such that |t| supΩ |ϕ| < s, the function

wt = v + tϕ
{
1− [

hs ◦ (v −Ψ1) + hs ◦ (Ψ2 − v)
]}

is in the class K′, the minimality of v implies
∫

B2R

Df(∇v) · ∇
{

ϕ
(
1− [

hs ◦ (v −Ψ1) + hs ◦ (Ψ2 − v)
])}

dx = 0.

Thus, from (2.9), v ∈ W̊ 1
2 (Ω) is a weak solution of the equation −div (Df(∇v)) = g

with g ∈ L∞(B2R). Recalling the growth condition (1.10) for D2f we see (compare
[13] or [21] for details) that v ∈ W 2

t (B2R) for any finite t. Hence we may integrate by
parts in (2.5) and (2.7) to get (2.6) and (2.8) with densities ≡ 1 which finally proves
the lemma

Remark 2.2. Of course, Lemma 2.1 is valid under weaker assumptions as stated
in Theorem 1.1.

Step 3 (A priori Lq-estimates). To obtain uniform Lq-estimates for ∇v we fix

M > 1 + ‖∇Ψ1‖2L∞(B2R) + ‖∇Ψ2‖2L∞(B2R) (2.10)

and for 0 < ρ ≤ R we set

Uρ
κ =

{
x ∈ BR+ρ : 1 + |∇v|2 > κ

}
.
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Lemma 2.3. There is a constant c = c(R) independent of ε and δ such that, for
any κ > 2M and η ∈ C1

0 (BR+ρ) with 0 ≤ η ≤ 1, η ≡ 1 on BR and |∇η| ≤ 2
ρ ,

∫

Uρ
κ

η2(1 + |∇v|2)−µ
2 |∇2v|2dx ≤ c

ρ2

∫

BR+ρ∼BR

|D2f(∇v)| |∇v|2dx.

Proof. Fix κ > 2M and set for all t ∈ R
h̃(t) = min

{
max[t− 1, 0], 1

}

h(t) = hM (t) = h̃(M−1t),

hence h(t) = 0 if t < M and h(t) = 1 if t > 2M . In (2.4) we may replace ϕ by ∂sϕ
where s ∈ {1, . . . , n}. Integrating by parts and using (2.3) we obtain

∫

B2R

D2f(∇v) (∂s∇v,∇ϕ) dx = −
∫

B2R

g ∂sϕ dx (2.12)

remaining valid for any ϕ ∈ W̊ 1
2 (Ω). Then we introduce the quantity:

Γ = Γ(∇v) = 1 + |∇v|2. (2.13)

By Lemma 2.1 we may pick ϕ = η2∂sv h(Γ) as test function in (2.12). Since ∇v = ∇Ψi

almost everywhere on Si it is seen by (2.11) that h(Γ) = 0 almost everywhere on Si.
Thus the right-hand side of (2.12) vanishes and we obtain (from now on summation
with respect to s = 1, . . . , n)

0 =
∫

BR+ρ

D2f(∇v)
(
∂s∇v,∇{η2∂sv h(Γ)}) dx

=
∫

BR+ρ

D2f(∇v) (∂s∇v, ∂s∇v)η2h(Γ) dx

+
∫

BR+ρ

D2f(∇v) (∂s∇v,∇h(Γ))η2∂sv dx

+
∫

BR+ρ

D2f(∇v) (∂s∇v,∇η2)∂sv h(Γ) dx

=: A1 + A2 + A3.

(2.14)

Since ∂jh(Γ) = 2h′(Γ)∇v ∂j∇v and h′ ≥ 0 we see that A2 is positive on account of

A2 =
∫

BR+ρ

D2f(∇v)
(∇|∇v|2,∇|∇v|2)h′(Γ)η2dx ≥ 0.

Now use Young’s inequality to handle A3 and observe that
∫

BR+ρ

D2f(∇v)(∇η,∇η)∂sv ∂sv h(Γ) dx ≤ c
ρ2

∫

BR+ρ∼BR

|D2f(∇v)| |∇v|2dx.

Finally, (2.14), (2.10) and κ > 2M imply the assertion (ignoring the “δ-part” on the
left-hand side)
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As an application we get

Lemma 2.4. Let the assumptions of Theorem 1.1 hold and set χ = n
n−2 if n ≥ 3.

In the case n = 2 define a number χ > 1 through the condition

χ

{
> q

2−µ in the case (a) of Theorem 1.1
> 2s

s+2−µ−q in the case (b) of Theorem 1.1.

Then there are local constants c = c(R) and β = β(n, s, q, µ) independent of ε and δ
such that ∫

BR

(1 + |∇v|2) (2−µ)χ
2 dx ≤ c

{∫

B2R

(1 + f(∇v)) dx

}β

.

Note that our assumptions imply q < (2 − µ)χ. The proof given below in fact will
show that in the case n = 2 we can choose for χ any finite number. Of course, the
constants will depend on the quantity χ.

Proof of Lemma 2.4. (a) Let ρ = R, fix κ > 2M and define h(t) = hκ(t) and
Γ according to (2.11) and (2.13). Then we have with η as in Lemma 2.3 and using
Sobolev’s inequality

∫

BR

(1 + |∇v|2) (2−µ)χ
2 dx ≤ c

∫

B2R

(
ηh(Γ)[1 + |∇v|2] (2−µ)

4
)2χ

dx + c(κ)

≤ c

[∫

B2R

∣∣∇(
ηh(Γ)[1 + |∇v|2] 2−µ

4
)2∣∣dx

]χ

+ c(κ)

≤ c(κ)
(
1 + T1 + T2 + T3

)χ

where we abbreviated

T1 =
∫

B2R

|∇η|2h2(Γ)[1 + |∇v|2] 2−µ
2 dx

T2 =
∫

B2R

η2|∇h(Γ)|2[1 + |∇v|2] 2−µ
2 dx

T3 =
∫

B2R

(ηh(Γ))2
∣∣∇[1 + |∇v|2] 2−µ

4
∣∣2dx.

The bound for T1 follows from 2−µ
2 ≤ s

2 and (1.7) - (1.8). Since ∇h(Γ) = 0 on the
complement of UR

κ ∼ UR
2κ we may estimate T2 by

T2 ≤ c(κ)
∫

UR
κ ∼UR

2κ

η2|∇h(Γ)|2dx

≤ c(κ)
∫

UR
κ ∼UR

2κ

η2(1 + |∇v|2)−µ
2 |∇2v|2dx

≤ c(κ,R)
∫

UR
κ

(1 + f(∇v)) dx



A Priori Gradient Bounds 969

since 1 + |∇v|2 is bounded on UR
κ ∼ UR

2κ where we used Lemma 2.3 and the balancing
condition (1.9). For T3 observe

∣∣∇[1 + |∇v|2] 2−µ
4

∣∣2 ≤ C[1 + |∇v|2]−µ
2 |∇2v|2.

Hence Lemma 2.3) and (1.9) also give the bound for T3, i.e. the first part of the lemma.
(b) We fix R < r < 3

2R and 0 < ρ < 1
2R and consider η̃ ∈ C1

0 (Br+ ρ
2
) with η̃ ≡ 1

on Br and |∇η̃| ≤ 4
ρ . As above we obtain

∫

Br

(1 + |∇v|2) (2−µ)χ
2 dx

≤ c

{
1 +

1
ρ2

∫

B2R

(1 + |∇v|2) 2−µ
2 dx + c

∫

B
r+ ρ

2
∩UR

κ

(1 + |∇v|2)−µ
2 |∇2v|2dx

}χ

.

Now we apply Lemma 2.3, where we replace R by r + ρ
2 and ρ by ρ

2 . Observing the
growth condition for D2f we arrive at

∫

Br

(1 + |∇v|2) (2−µ)χ
2 dx

≤ c

{
1 + 1

ρ2

∫

B2R

(1 + |∇v|2) 2−µ
2 dx +

c

ρ2

∫

Br+ρ∼Br

(1 + |∇v|2) q
2 dx

}χ

.

(2.15)

This corresponds to the inequality given in [7: after (4.6)], where we now can choose
t = q. With this choice, the following interpolation procedure of [7] reads as ‖∇u‖q ≤
‖∇u‖θ

s‖∇u‖1−θ
(2−µ)χ where θ ∈ (0, 1) is such that 1

q = θ
s + 1−θ

(2−µ)χ . Note that the arguments
of [7] require the bound q

2−µ (1−θ) < 1 which for n ≥ 3 is equivalent to (1.13). If n = 2,
then the above inequality reads as χ > s

s+2−µ−q which clearly holds according to our
choice of χ. Thus we may follow the lines of [7] again to get the claim of the lemma

Step 4 (A priori L∞-estimates). Now let us introduce the notation

ω = ωε,δ = ln(1 + |∇v|2)
A(h, r) = Aε,δ(h, r) = {x ∈ Br : ω ≥ h} (h ≥ 0)

where we assume in the following that the balls B2r are compactly contained in Ω.

Lemma 2.5. Consider η ∈ C1
0 (BR) with 0 ≤ η ≤ 1. Then for any k ≥ k0(M)

∫

A(k,R)

(1 + |∇v|2)1−µ
2 |∇ω|2η2dx +

∫

A(k,R)

(1 + |∇v|2)−µ
2 (ω − k)2η2|∇2v|2dx

≤ C

∫

A(k,R)

(1 + |∇v|2) q
2 (ω − k)2|∇η|2dx.

(2.16)

Here C < +∞ only depends on the data and is independent of δ and k, k0(M) denotes
a constant depending only on Ψ1 and Ψ2 through the quantity M appearing in (2.10).
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Proof. (i) In (2.12) we pick ϕ = η2∂sv max[ω − k, 0]. On [v = Ψi] we have

max[ω − k, 0] = max[ln(1 + |∇Ψi|2)− k, 0] = 0

provided k ≥ k0(M) := supBR
maxi=1,2 ln(1 + |∇Ψi|2). Thus (2.12) reduces to

∫

A(k,R)

D2f(∇v)
(
∂s∇v,∇{η2∂sv(ω − k)})dx = 0 (k ≥ k0(M)). (2.17)

Next observe
∫

A(k,R)

D2f(∇v)(∂s∇v, ∂sv∇ω)η2dx

= 1
2

∫

A(k,R)

D2f(∇v)(∇ω,∇ω)(1 + |∇v|2)η2dx

≥ λ
2

∫

A(k,R)

(1 + |∇v|2)1−µ
2 |∇ω|2η2dx

(2.18)

where we neglected the δ-part of f on the right-hand side. It remains to estimate
∫

A(k,R)

D2f(∇v)(∂s∇v,∇∂sv)η2(ω − k) dx ≥ 0

and ∣∣∣∣
∫

A(k,R)

D2f(∇v)(∂s∇v∂sv,∇η2)(ω − k) dx

∣∣∣∣

=
∣∣∣∣
∫

A(k,R)

D2f(∇v)(∇ω,∇η)(1 + |∇v|2)η(ω − k) dx

∣∣∣∣

≤
∫

A(k,R)

(
D2f(∇v)(∇ω,∇ω)

) 1
2 η(1 + |∇v|2) 1

2

× (
D2f(∇v)(∇η,∇η)

) 1
2 (ω − k)(1 + |∇v|2) 1

2 dx

≤ ε

∫

A(k,R)

D2f(∇v)(∇ω,∇ω)η2(1 + |∇v|2) dx

+ 1
ε

∫

A(k,R)

D2f(∇v)(∇η,∇η)(ω − k)2(1 + |∇v|2) dx.

For ε small enough we get from (2.17)
∫

A(k,R)

D2f(∇v)(∇ω,∇ω)η2(1 + |∇v|2) dx

≤ C

∫

A(k,R)

D2f(∇v)(∇η,∇η)(1 + |∇v|2)(ω − k)2dx

and by (1.10) and (2.18) we have bounded the first integral on the right-hand side of
(2.16).
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(ii) This time we pick ϕ = η2∂sv max[ω − k, 0]2 in (2.12). As in (i) we get for
k ≥ k0(M) ∫

A(k,R)

D2f(∇v)(∂s∇v, ∂s∇v)(ω − k)2η2dx

+
∫

A(k,R)

D2f(∇v)(∂sv ∂s∇v,∇ω)2(ω − k)η2dx

= −
∫

A(k,R)

D2f(∇v)(∂s∇v,∇η)2η(ω − k)2∂svdx.

(2.19)

As for (2.18), by ellipticity the second integral on the left-hand side is ≥ 0. The right-
hand side of (2.19) is bounded by

C

∫

A(k,R)

(
D2f(∇v)(∂s∇v, ∂s∇v)

) 1
2 η

(
D2f(∇v)(∇η,∇η)

) 1
2 |∇v|(ω − k)2dx

≤ C

{
ε

∫

A(k,R)

D2f(∇v)(∂s∇v, ∂s∇v)η2(ω − k)2dx

+ 1
ε

∫

A(k,R)

|∇v|2D2f(∇v)(∇η,∇η)(ω − k)2dx

}

and by choosing ε properly we get

∫

A(k,R)

D2f(∇v)(∂s∇v, ∂s∇v)η2(ω − k)2dx

≤ C

∫

A(k,R)

|∇v|2D2f(∇v)(∇η,∇η)(ω − k)2dx

which completes the proof of Lemma 2.5

Finally, we introduce the notation

a(h, r) = aε,δ(h, r) =
∫

A(h,r)

(1 + |∇v|2) q
2 dx

τ(h, r) = τε,δ(h, r) =
∫

A(h,r)

(1 + |∇v|2) q
2 (ω − h)2dx

to obtain

Lemma 2.6. Let χ > 1 as defined in Lemma 2.4, and h ≥ k0(M) and 0 < r < R.
Then:

(i) τ(h, r) ≤ C a(h, r)
χ−1

χ (R− r)−2τ(h,R).

(ii) a(h, r) ≤ (h− k)−2τ(k, r) for h ≥ k ≥ k0(M).

Proof. Statement (ii) is immediate. As to statement (i), we consider η ∈ C1
0 (BR)

such that η ≡ 1 on Br, 0 ≤ η ≤ 1 and |∇η| ≤ C(R − r)−1. Again we let Γ = Γ(∇v) =
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1 + |∇v|2 and select β ∈ [0, q
2 ) to be fixed later. Then by Sobolev’s inequality (for

simplicity we let n ≥ 3)
∫

A(h,r)

Γ
q
2 (ω − h)2dx

=
∫

A(h,r)

Γ
q
2−β(ω − h)2Γβdx

≤
( ∫

A(h,r)

Γ( q
2−β)χ(ω − h)2χdx

) 1
χ

( ∫

A(h,r)

Γ
χ

χ−1 βdx

)χ−1
χ

︸ ︷︷ ︸
=:X

≤ X

( ∫

A(h,R)

{
η Γ

1
2 ( q

2−β)(ω − h)
}2χ

dx

) 1
χ

≤ CX

∫

A(h,R)

∣∣∇(
η(ω − h)Γ

1
2 ( q

2−β)
)∣∣2dx

and the remaining integral splits into the sum of the following terms:
∫

A(h,R)

|∇η|2(ω − h)2Γ
q
2−βdx ≤ C(R− r)−2τ(h,R)

∫

A(h,R)

η2|∇ω|2Γ q
2−βdx ≤ r.-h. side of (2.16) if q

2 − β ≤ 1− µ
2

∫

A(h,R)

η2(ω − h)2Γ
q
2−β−2|∇Γ|2dx ≤ C

∫

A(h,R)

η2(ω − h)2Γ
q
2−β−1|∇2v|2dx

≤ r.-h. side of (2.16)

if again the above inequality holds for β. So let us define β = 1
2 (q + µ)− 1 ≥ 0. Finally

X ≤ a(h, r)
χ−1

χ follows from assumption (1.11) and altogether we have proved Lemma
2.6

From Lemma 2.6 we deduce as in [20: Lemma 3.7] (compare [19: Proposition 5.1])
the existence of a positive number d ≥ k0(M) such that a(d, R

2 )τ(d, R
2 ) = 0, hence

|A(d, R
2 )| = 0 and in conclusion A(d, R

2 ) = ∅. This implies

|∇v|2 ≤ ed on BR
2
. (2.20)

By construction d is bounded in terms of the quantities τ(0, R) and a(0, R), thus on
account of Lemma 2.4 and (2.20) we have proved the gradient bounds

‖∇vε,δ‖L∞(B R
2

) ≤ C (2.21)

for v = vε,δ where C = C
( ∫

BR
fδ(∇vε,δ) dx

)
.

Step 5 (Conclusion). Recovering the full notation we finally choose

δ = δ(ε) :=
(
1 + ε−1 + ‖∇uε‖2q

Lq(B2R)

)−1
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and set vε = vε,δ(ε) and fε = fδ(ε). Using the minimality of vε and Jensen’s inequality
we have ∫

B2R

F (|∇vε|) dx ≤
∫

B2R

f(∇vε) dx

≤
∫

B2R

fε(∇uε) dx

≤
∫

B2R

f(∇u) dx + o(ε).

(2.22)

On one hand, (2.22) proves together with (2.21) uniform gradient bounds on BR
2
, on

the other hand we may suppose on account of (2.22) that vε ⇀ v weakly in W 1
1 (B2R)

and almost everywhere in BR, thus Ψ1 ≤ v ≤ Ψ2. Letting ε → 0 and using lower
semicontinuity we get

∫

B2R

f(∇v) dx ≤ lim inf
ε→0

∫

B2R

f(∇vε) dx ≤
∫

B2R

f(∇u) dx

and the minimality of u gives

∫

B2R

f(∇u) dx =
∫

B2R

f(∇v) dx,

i.e. v = u by the uniqueness of minimizers. So far it is proved, via a standard covering
argument, that the solution u is locally Lipschitz if so are the obstacles. Once ∇u is
known to be bounded the type of growth of f becomes irrelevant and the whole theorem
follows (compare again [13, 31]).

3. Examples

Starting with the nearly linear case we construct an example satisfying (1.8) - (1.10)
with optimal exponents in (1.10): for µ > 1 set

ϕ(r) =
∫ r

0

∫ s

0

(1 + t2)−
µ
2 dtds (r ∈ R+

0 )

Φ(Z) =
∫ |Z|

0

∫ s

0

(1 + t2)−
µ
2 dtds = ϕ(|Z|) (Z ∈ Rn).

Lemma 3.1. The function Φ satisfies

(i) DΦ(Z) = Z
∫ 1

0
(1 + t2|Z|2)−µ

2 dt

(ii) ∂2Φ
∂Zα∂Zβ

(Z) = [δαβ − |Z|−2ZαZβ ]
∫ 1

0
(1 + t2|Z|2)−µ

2 dt + |Z|−2ZαZβ(1 + |Z|2)−µ
2

(iii) D2Φ(Z)(Y, Y ) ≥ 1
4 |Y |2(1 + |Z|2)−µ

2

(iv) |D2Φ(Z)| |Z|2 ≤ C |Z|
for all Z, Y ∈ Rn with a suitable constant C > 0.
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Proof. Using a linear transformation, the proof of statements (i) and (ii) is obvious.
Moreover, statement (iii) is a consequence of statement (ii) and follows by considering
the cases |Y ·Z| ≤ 1

2 |Y | |Z| and |Y ·Z| > 1
2 |Y | |Z|, respectively. We like to remark that

the exponent −µ
2 occuring on the right-hand side of statement (iii) is the best possible

which can be seen by considering Y parallel to Z.
Next we are going to prove statement (iv). Observing

|D2Φ(Z)| = sup
|Y |=1

D2Φ(Z)(Y, Y ) ≤ 2
∫ 1

0

(1 + t2|Z|2)−µ
2 dt

we get

|Z|2|D2Φ(Z)| ≤ 2|Z|
∫ |Z|

0

(1 + s2)−
µ
2 ds ≤ 2|Z|

∫ ∞

0

(1 + s2)−
µ
2 ds

the last integral being finite on account of µ > 1

From ϕ′(r) ≤ ∫∞
0

(1 + t2)−
µ
2 dt < ∞ it follows that ϕ is at most of linear growth,

thus we have to modify our construction.
Let q > 1 and define ρ(t) = (1 + t2)

q
2 . The function ρ̃ is given for all n ∈ N0 and

t ∈ [2n, 2n + 2) by

ρ̃(t) =
{

ρ(t) if 2n ≤ t < 2n + 1
ρ(2n + 1) + (t− [2n + 1])

(
ρ(2n + 2)− ρ(2n + 1)

)
if 2n + 1 ≤ t < 2n + 2.

We extend ρ̃ to the whole line by setting ρ̃(−t) = ρ̃(t) (t ≥ 0) and consider a mollifica-
tion (ρ̃)ε with some small ε > 0.

Lemma 3.2.
(i) (ρ̃)ε is an N -function, i.e. convex and additionally limt→+∞ 1

t (ρ̃)ε(t) = +∞.

(ii) Let g(Z) = (ρ̃)ε(|Z|) (Z ∈ Rn). Then 0 ≤ D2g(Z)(Y, Y ) ≤ c(1 + |Z|2) q−2
2 |Y |2

for all Z, Y ∈ Rn.
(iii) g satisfies |Z|2|D2g(Z)| ≤ c(g(Z) + 1) for any Z ∈ Rn where c > 0 denotes a

constant.

Proof. By construction we have statement (i). Now fix ε = 1
10 and consider the

mollification

(ρ̃)ε(s) = 1
ε

∫ +∞

−∞
k
(

s−t
ε

)
ρ̃(t) dt.

We fix n0 ∈ N and sketch the proofs of statements (ii) and (iii) for a given s ∈ U(t0),
where U(t0) is some small neighbourhood of t0 = 2n0 + 1. To this purpose we let
a = s−t0

ε and compute

(ρ̃)′′ε (s) =
∫ ∞

a

k(y)ρ′′(s− εy) dy + k(a)
ε

(
lim
t↓t0

ρ̃′(t)− lim
t↑t0

ρ̃′(t)
)
. (3.1)

Now ρ is strictly convex implying

lim
t↓t0

ρ̃′(t) ≤ ρ′(2n + 2) and lim
t↑t0

ρ̃′(t) ≥ ρ′(2n),

thus by (3.1) there is a constant (depending on ε) such that

(ρ̃)′′ε (s) ≤ (ρ)′′ε (s) + c
(
ρ′(2n + 2)− ρ′(2n)

)
= (ρ)′′ε (s) + cρ′′(ξ) (3.2)

for ξ ∈ (2n, 2n + 2). With (3.2) the lemma is proved by direct computations
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Given Lemma 3.2, we finally set
f(Z) = g(Z) + Φ(Z) (Z ∈ Rn)

F (t) = (ρ̃)ε(t) + ϕ(t) (t ∈ R).

If we choose µ, q ∈ (1, 2), then f satisfies (1.8) - (1.10), (1.7) with s = q, and due to
the degeneracy of D2g the lower bound in (1.10) can not be improved. Thus, if we also
impose (1.12), then f is admissible in Theorem 1.1.

Suppose we are given numbers q > p > 1, then we replace µ by 2 − p and obtain
completly analogous results with balancing condition |Z|2|D2Φ(Z)| ≤ c(1 + |Z|p). The
function g remains unchanged. In particular, if we now choose p and q to satisfy q < pn

n−2 ,
then regularity of local minimizers follows from Theorem 1.1 but can not be deduced
by Theorem 1.2.

Finally, we modify our example in order to demonstrate the flexibility of condition
(1.13). Suppose that we are given numbers 2 ≤ s ≤ q and µ ∈ R. Let p = 2 − µ and
assume for simplicity that n = 3. Suppose further that p < s. We let

f̃(Z) = (ρ̃s)ε(|z1|) + (ρ̃q)ε

√
z2
2 + z2

3

where (ρ̃s)ε and (ρ̃q)ε are defined as before Lemma 3.2 with respect to the exponents s
and q. We have

0 ≤ D2f̃(Z)(Y, Y ) ≤ C(1 + |Z|2) q−2
2 |Y |2 (3.3)

and
c(1 + |Z|2) s

2 ≤ f̃(Z) ≤ C(1 + |Z|2) q
2 (3.4)

for all Z, Y ∈ Rn with constants c > 0 and C > 0. Note that the exponents in (3.3) and
(3.4) can not be improved. Moreover, due to the degeneracy of D2f̃ , the lower bound
in (3.3) is the best possible.

In the case 1 < s < 2 the right-hand side inequality of (3.3) fails to be true. Here
we modify the example by letting

f̃(Z) = (ρ̃s)ε(Γ), Γ =
(
z2
1 + z2

2 + |z3|2(1+γ)
) 1

2

for some appropriate γ > 0. Then (3.3) (for some q > s) and the first inequality of (3.4)
are valid, the second one of (3.4) holds for some q̃ with s < q̃ < q.

In both examples we then set f(Z) = Φ(Z) + f̃(Z) which only in the limit case
s = q is of balanced type. In the case µ ≥ 1, Φ is of lower growth than any power
|Z|1+ϑ (ϑ > 0) for µ < 1 we get Φ(Z) ≤ C(1 + |Z|2) p

2 , the exponent p being optimal.
Moreover, we have inequality (iii) from Lemma 3.1, and regularity of local solutions
follows if

q < p + s 2
3 . (3.5)

From (3.5) it is evident in which way the parameter s improves regularity. The quantities
µ and q in the above example describe the behaviour of the second derivative D2f , and
as a matter of fact the upper bound for D2f implies the corresponding upper bound for
f itself. In contrast to this the lower growth order s of f is quite strong and can not be
deduced from the lower bound on D2f . By incorporating s as an additional quantity
in the condition for regularity we obtain better results as, for example, in [13] where
regularity for the above example would follow provided that q < p + 2

3 , and the latter
condition does not take care of the choice of s.
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4. Proof of Theorem 1.2

We start by making some preliminary reductions. Let us observe that, since both Ψ1

and Ψ2 are of class C0,1
loc (Ω) and since the argumentation is purely local, we may suppose

without loss of generality that Ψ1,Ψ2 ∈ W 1
∞(Ω) and that after translation 0 ≤ Ψ1 ≤ Ψ2.

Moreover, again without loss of generality we may suppose that

X := ‖DΨ1‖2L∞(Ω) + ‖DΨ2‖2L∞(Ω) < 1
10 . (4.1)

This last point (4.1) may be needs some comments. Suppose that X > 0 (otherwise
we are trivially done) and pick λ := [10X]−1. We observe that u is a solution to the
original problem if and only if the function ũ = λu is a solution to a similar obstacle
problem with f(Z), Ψ1 and Ψ2 replaced by f̃(Z) = f(Z

λ ), Ψ̃1 = λΨ1 and Ψ̃2 = λΨ2,
respectively. Moreover, we observe that f̃ satisfies hypotheses (1.14) and (1.15) with
different constants of ellipiticity and growth

ν̃ = ν̃(ν,X) and L̃ = L̃(L,X). (4.2)

Therefore, up to passing to ũ proving our theorem for ũ and going back to u, we may
assume (4.1). Of course, an explicit dependence on the quantity X will not appear, the
dependence will only appear through (4.2).

Adjusting the constants L and ν we finally suppose that

σ ≤ 1
10 . (4.3)

Now we really start proving Theorem 1.2, again organizing the proof in several steps:

- approximation
- linearization
- a priori estimates and
- conclusion.

We shall keep the same notation as introduced in the proof of Theorem 1.1.

Steps 1 - 2 (Approximation and Linearization). The approximation procedure has
to be refined, so let us recall the following approximation result taken from [7].

Lemma 4.1. Let f : Rn → R be a continuous function satisfying (1.14) and (1.15).
Then there is a family {fδ}0<δ<1 of C2 functions fδ : Rn → R such that fδ → f
uniformly on compact subsets of Rn. Moreover, we have

fδ(Z) ≥ Λ−1(σ2 + δ2 + |Z|2) q
2 + C−1

∗ (σ2 + δ2 + |Z|2) p
2 (4.4)

fδ(Z) ≤ C∗(σ2 + δ2 + |Z|2) q
2 + C∗(σ2 + δ2 + |Z|2) p

2 (4.5)

|Dfδ(Z)| ≤ C∗(σ2 + δ2 + |Z|2) q−1
2 + C∗(σ2 + δ2 + |Z|2) p−1

2 (4.6)

|D2fδ(Z)| ≤ Λ(σ2 + δ2 + |Z|2) q−2
2 + Λ (4.7)

D2fδ(Z)(Y, Y ) ≥ C−1
∗ (σ2 + δ2 + |Z|2) p−2

2 |Y |2 + Λ−1(σ2 + δ2 + |Z|2) q−2
2 |Y |2 (4.8)
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for any Z, Y ∈ Rn. Here we have

C∗ = C∗(n, q, p, L, ν) independent of σ, δ

Λ = Λ(n, p, q, L, ν, δ) independent of σ.

Now, the approximation we are going to use follows the same ideas as in the proof
of Theorem 1.1: BR = BR(x0) b Ω, uε, Ψ1,ε, Ψ2,ε and vε,δ have the same meaning
but this time, when defininig vε,δ, in (2.1) we shall use the approximating sequence
{fδ}0<δ<1 provided by Lemma 4.1 above to regularize the energy density f , instead of
the functions in (2.2). Note that, with a slight change of notation, we now consider
balls BR instead of B2R as done in the previous sections. With these definitions also
the linearization procedure works and we come up with the statement of Lemma 2.1. In
the same manner as outlined in Section 2, it is seen that vε,δ ∈ C1,α(BR)∩W 2

2,loc(BR).
Again we drop the indexes ε and δ for a moment.

Step 3 (A priori estimates). We have the following variants of Lemma 2.4 and
estimate (2.21).

Lemma 4.2. Assume that δ < 1
10 and that

χ

{ = n
n−2 if n > 2

> max
{

p
3p−2q , 4q−2p

p } if n = 2.

Then there is a constant β = β(n, p, q) and a local constant c = c(n, p, q, L, ν), both
being independent of ε and δ such that for all 0 < ρ < R

sup
B R

2

|∇v| ≤ c

{∫

BR

f(∇v) dx + 1
}β

(4.9)

∫

Bρ

|∇v|pχdx ≤ c c(ρ)
{∫

BR

f(∇v) dx + 1
}β

. (4.10)

Proof. Testing the linearized equation (2.4) with ϕ = η2∂sψ where η ∈ C∞0 (BR)
and ψ ∈ C∞(BR), we obtain by partial integration

∫

BR

D2f(∇v)(∂s∇v,∇ψ)η2dx =

2
∫

BR

Df(∇v) · ∇η η ∂sψ dx−
∫

BR

g η2∂sψ dx− 2
∫

BR

Df(∇v) · ∇ψ η ∂sη dx

(4.11)

and via an approximation argument this is also true for all ψ ∈ W 1
2 (BR). Now choose

1
10 ≤ κ ≤ 1

5 such that (recall (4.1))

‖∇Ψ1‖2L∞(BR) + ‖∇Ψ2‖2L∞(BR) ≤
κ

2
,

set (compare (2.11))
h̃(t) = min{max[t− 1, 0], 1}
h(t) = hκ(t) = h̃(κ−1t)
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and, finally, define (compare 2.13))

Γ = Γ(∇v) = σ2 + δ2 + |∇v|2.
Now we fix γ > 0 and choose ψ = ∂svΓγh(Γ) in (4.11). As in Section 2, the integral on
the right-hand side of (4.11) which is generated by the obstacles vanishes and we obtain
(using summation with respect to s = 1, . . . , n)

I + II + III : =
∫

BR

D2f(∇v)(∂s∇v, ∂s∇v)Γγh(Γ) η2dx

+ γ

∫

BR

D2f(∇v)(∂s∇v,∇|∇v|2)Γγ−1h(Γ) ∂sv η2dx

+
∫

BR

D2f(∇v)(∂s∇v,∇|∇v|2)Γγh′(Γ) ∂sv η2dx

≤ c

∫

BR

|Df(∇v)| |∇η| η |∇ψ| dx

≤ c

∫

BR

η |∇η| |Df(∇v)|
[
|∇2v|Γγh(Γ)

+ γ Γγ−1 |∇v|
∣∣∇|∇v|2

∣∣h(Γ) + |∇v|
∣∣∇|∇v|2

∣∣Γγh′(Γ)
]
dx

=: IV.

(4.12)

Now we use the ellipticity and growth properties (4.4) - (4.8) stated in Lemma 4.1 to
get

I ≥ C−1
∗

∫

BR

Γ
p−2
2 +γ |∇2v|2h(Γ) η2dx

II = γ
2

∫

BR

D2f(∇v)
(∇|∇v|2,∇|∇v|2)Γγ−1h(Γ) η2dx

≥ γ
2 C−1

∗

∫

BR

Γ
p−2
2 +γ−1

∣∣∇|∇v|2
∣∣ h(Γ) η2dx

III ≥ 1
2 C−1

∗

∫

BR

Γ
p−2
2 +γ

∣∣∇|∇v|2∣∣ h′(Γ) η2dx

IV ≤ cC∗

∫

BR

η |∇η| [Γ q−1
2 + Γ

p−1
2 ]

[
|∇2v|Γγh(Γ)

+ γ Γγ−1|∇v|
∣∣∇|∇v|2

∣∣ h(Γ) + |∇v|
∣∣∇|∇v|2

∣∣ Γγh′(Γ)
]
dx.

(4.13)

Thus, (4.12) and (4.13) prove the existence of a real number c, independent of ε, δ and
σ such that

3∑

i=1

Ai : =
∫

BR

Γ
p−2
2 +γ |∇2v|2h(Γ) η2dx

+ γ

∫

BR

Γ
p−2
2 +γ−1

∣∣∇|∇v|2
∣∣ h(Γ) η2dx

+
∫

BR

Γ
p−2
2 +γ

∣∣∇|∇v|2∣∣ h′(Γ) η2dx
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≤ c

∫

BR

η |∇η| [Γ q−1
2 + Γ

p−1
2 ]

[
|∇2v|Γγh(Γ)

+ γ Γγ−1|∇v|
∣∣∇|∇v|2

∣∣ h(Γ) + |∇v|
∣∣∇|∇v|2

∣∣ Γγh′(Γ)
]
dx

=:
2∑

j=1

3∑

i=1

Bj
i .

(4.14)

We start estimating Bj
1 using Young’s inequality and setting τ = q − p:

B1
1 ≤ 1

4

∫

BR

Γ
p−2
2 +γ |∇2v|2 h(Γ) η2 dx + 4

∫

BR

Γ
p
2 +τ+γh(Γ) |∇η|2dx

≤ 1
4 A1 + 4

∫

BR

Γ
p
2 +τ+γ |∇η|2dx

B2
1 ≤ 1

4 A1 + 4
∫

BR

Γ
p
2 +γ |∇η|2dx.

Clearly, Bj
2 can be handled in the same way. For Bj

3 we observe

B1
3 ≤

∫

BR

Γ
q−1
2 ΓγΓ

1
2
∣∣∇|∇v|2

∣∣ h′(Γ) η |∇η| dx

≤ 1
4

∫

BR

Γ
p−2
2 +γ

∣∣∇|∇v|2∣∣2h′(Γ) η2 dx + 4
∫

BR

Γ
p
2 +τ+γ+1h′(Γ) |∇η|2dx

≤ 1
4 A3 + 4

∫

BR

Γ
p
2 +τ+γ+1h′(Γ) |∇η|2dx

B2
3 ≤ 1

4 A3 + 4
∫

BR

Γ
p
2 +γ+1h′(Γ) |∇η|2dx.

Subtracting 1
2

∑
Ai in (4.14) and then neglecting A3 we have proved the existence of a

constant c = c(n, p, q, L, ν) such that

∫

BR

Γ
p−2
2 +γ |∇2v|2h(Γ) η2dx + γ

∫

BR

Γ
p−2
2 +γ−1

∣∣∇|∇v|2
∣∣ h(Γ) η2dx ≤

c(γ + 1)
∫

BR

[
Γ

p
2 +γ + Γ

p
2 +τ+γ ] |∇η|2dx + c

∫

BR

[
Γ

p
2 +γ+1 + Γ

p
2 +τ+γ+1

]
h′(Γ) |∇η|2dx.

(4.15)
As in Section 2 the integrand of the second term on the right hand-side of (4.15) is
supported on κ ≤ Γ ≤ 2κ, on the left-hand side we observe

Γ
p−2
2 +γ−1

∣∣∇|∇v|2∣∣2 ≤ cΓ
p−2
2 +γ |∇2v|2,

hence there is a constant c = c(n, p, q, L, ν) such that

∫

BR

Γ
p−2
2 +γ−1

∣∣∇|∇v|2∣∣2h(Γ) η2dx ≤ c

∫

BR

[
Γ

p
2 +γ + Γ

p
2 +τ+γ

]|∇η|2dx. (4.16)
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Now we set
G(s) = 1 +

∫ s

0

√
t

p−2
2 +γ−1h(t) dt

and claim the existence of a real number c = c(p, κ) such that for all s ≥ 0

1 + s
p
4 + γ

2

c(γ + 1)
≤ G(s) ≤ c(1 + s

p
4 + γ

2 ). (4.17)

In fact, the second inequality follows by the elementary calculation

G(s) ≤ 1 +
∫ s

0

t
p−2
4 + γ−1

2 dt = 1 +
s

p
4 + γ

2

p
4 + γ

2

.

For the first inequality we first consider the case 0 < s < 3κ recalling that κ ≤ 1
5 :

G(s) ≥ 1 ≥ 1 + s
p
4 + γ

2 − (
3
5

) p
4 ≥ (

1− 4

√
3
5

)
(1 + s

p
4 + γ

2 ).

For s ≥ 3κ observe that

G(s) ≥ 1 +
∫ s

2κ

t
p−2
4 + γ−1

2 dt

≥ 1 +
s

p
4 + γ

2 − (2κ)
p
4 + γ

2

p
4 + γ

2

≥ 1 +
s

p
4 + γ

2 − (2
3s)

p
4 + γ

2

p
4 + γ

2

≥
1− 4

√
2
3

p
4 + γ

2

[ 14 + s
p
4 + γ

2 ]

≥ c(p)
γ+1 [1 + s

p
4 + γ

2 ]

and (4.17) is established. The left-hand side of (4.17) implies

c (γ + 1)−2χ(1 + Γ( p
2 +γ)χ) ≤ c (γ + 1)−2χ(1 + Γ

p
4 + γ

2 )2χ ≤ G(Γ)2χ,

the right-hand side of (4.17) gives with (4.16) and Sobolev’s inequality in the case n ≥ 3

(∫

BR

η2χG(Γ)2χdx

) 1
χ

≤ c

∫

BR

|∇(η G(Γ))|2dx

≤ c

∫

BR

|∇η|2G(Γ)2dx + c

∫

BR

η2|∇G(Γ)|2dx

≤ c

∫

BR

|∇η2|(1 + Γ
p
4 + γ

2 )2dx + c

∫

BR

η2Γ
p−2
2 +γ−1h(Γ)

∣∣∇|∇v|2
∣∣ dx

≤ c

∫

BR

|∇η|2(1 + Γ
p
2 +τ+γ) dx.
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Thus we have proved the existence of a real number c = c(n, p, q, L, ν) such that

(∫

BR

η2χ(1 + Γ( p
2 +γ)χ) dx

) 1
χ

≤ c (γ + 1)2
∫

BR

|∇η|2Γ p
2 +τ+γdx. (4.18)

We observe that this is exactly inequality (4.11) of [7]. What is more, the case γ = 0
corresponds to the equation after (4.6) in [7] and directly gives (4.10) (compare [7:
Proposition 4.1]). Once this is known we proceed from (4.18) with the iteration given
in [7: Proposition 4.2/Step 2] to prove (4.9) and the whole lemma

Step 4 (Conclusion). Again recovering the full notation and using the minimality
of vε,δ it is known so far

∫

BR

|∇vε,δ|pdx ≤ C∗

∫

BR

fδ(∇uε) dx (4.19)

sup
B R

2

|∇vε,δ| ≤ c

(
1 +

∫

BR

fδ(∇uε) dx

)β

(4.20)

∫

Bρ

|∇vε,δ|pχdx ≤ c(ρ, R)
(

1 +
∫

BR

fδ(∇uε) dx

)β

. (4.21)

For fixed ε > 0 we have by construction fδ → f uniformly on compact sets as δ → 0,
thus fδ(∇uε) → f(∇uε) in L1(BR) as δ → 0. Then (4.19) and (4.21) yield a suitable
subsequence such that for δ → 0

vε,δ

{
⇁ wε in W 1

p (BR) ∩W 1
pχ,loc(BR)

→ wε a.e. on BR
(4.22)

where the latter convergence immediately proves that the limit wε respects the mollified
obstacles Ψi,ε (i = 1, 2). Now we proceed exactly as in the conclusion of Theorem 1.1
(compare (2.22)) to obtain as ε → 0

wε ⇁ w in W 1
p (BR) and a.e. on BR

Ψ1 ≤ w ≤ Ψ2 a.e. on BR

supB R
2

|∇w| ≤ c
(
1 +

∫
BR

f(∇u) dx
)β

. (4.23)

We finally claim that for all ε > 0

∫

BR

f(∇wε) dx ≤ lim inf
δ↓0

∫

BR

fδ(∇vε,δ) dx. (4.24)

We first note that lower semicontinuity and (4.22) give for fixed ρ < R

∫

Bρ

f(∇wε) dx ≤ lim inf
δ↓0

∫

Bρ

f(∇vε,δ) dx. (4.25)
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On the other hand we have∫

BR

fδ(∇vε,δ) dx ≥
∫

Bρ

fδ(∇vε,δ) dx

=
∫

Bρ

f(∇vε,δ) dx +
∫

Bρ

[
fδ(∇vε,δ)− f(∇vε,δ)

]
dx.

(4.26)

Given M > 0, the second integral I on the right-hand side of (4.26) is estimated by

|I| ≤
∫

Bρ∩[|∇vε,δ|≤M ]

∣∣fδ(∇vε,δ)− f(∇vε,δ)
∣∣ dx + c

∫

Bρ∩[|∇vε,δ|>M ]

(1 + |∇vε,δ|q) dx,

where the second part II is handled in the following way: by equiintegrability (since
we have (4.10), ε > 0 is fixed and q < pχ) fix t > 0 and choose M(t) large enough
such that II ≤ t for all δ > 0. Thus lim supδ↓0 |I| ≤ t holds true on account of uniform
convergence of fδ on compact sets. With (4.25) and (4.26) we obtain

lim inf
δ↓0

∫

BR

fδ(∇vε,δ) dx + t ≥
∫

Bρ

f(∇wε) dx

and letting first t ↓ 0 and then ρ ↑ R, (4.24) is proved. At this point, arguing as for
Theorem 1.1 it turns out that u ≡ w so that the local boundedness of ∇u and hence
the local Lipschtiz continuity of u follows.

Next we prove local Hölder continuity of ∇u. Since our arguments are purely local,
we may assume that |∇u| ≤ M < +∞ a.e. on Ω for some number M .

Lemma 4.3. Under the hypotheses imposed on f stated in the second part of The-
orem 1.2 the convexity condition (1.15) implies

D2f(Z)(Y, Y ) ≥ 2ν(σ2 + |Z|2) p−2
2 |Y |2 (4.27)

for all Y, Z ∈ Rn, where in the case p < 2 together with σ = 0 it has to be assumed
z 6= 0.

Proof. The proof is elementary, for example, we may follow the arguments used
by Morrey [30: Proof of Theorem 4.4.3]. We briefly sketch the ideas: set

Θ(t) =
∫

Ω

(
f(Z + t∇ϕ)− f(Z)

)
dx− ν

∫

Ω

h(t, x) t2|∇ϕ|2dx

h(t, x) =
(
σ2 + |Z|2 + t2|∇ϕ|2)

p−2
2 .

By condition (1.15), Θ reaches its minimum at t = 0, hence Θ′′(0) ≥ 0 which means
that ∫

Ω

D2f(Z)(∇ϕ,∇ϕ) dx ≥ 2ν

∫

Ω

(σ2 + |Z|2) p−2
2 |∇ϕ|2dx. (4.28)

Next, consider ψ ∈ C1
0 (Ω) with ψ ≥ 0 and η ∈ C1(R) such that η and η′ are of class

L∞. For ξ ∈ Rn set ϕ(x) = η(s x · ξ) ψ(x) (s > 0). We then have
∇ϕ(x) = η′(s x · ξ) s ξ ψ(x) + η(s x · ξ)∇ψ(x).

Inserting this into (4.28), dividing by s2 and then letting s →∞ we get
(
D2f(Z)(ξ, ξ)− 2ν(σ2 + |Z|2) p−2

2 |ξ|2
)

lim inf
s→∞

∫

Ω

ψ2(x)(η′(s x · ξ))2dx ≥ 0.

Using this for η = sin and η = cos and adding the results we deduce (4.27) from the
arbitrariness of ψ
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To proceed further let us first consider the case σ > 0. Setting a(Z) = Df(Z)
we quote [21: p. 97/Lemma 4.3] noting that a(Z) is locally coercive on account of
(4.27): there exists a strongly coercive vector field [21: p. 94/Definition 4.1] ã such that
ã(Z) = a(Z) for |Z| ≤ M . This field is of class C1(Rn) and it is easy to check (using
the formula for ã) that ã satisfies hypotheses (1.4) - (1.6) of [31] with p = 2. Observing
that

∫
Ω

ã(∇u) · ∇ϕdx ≥ 0 for any ϕ with compact support such that Ψ1 ≤ u + ϕ ≤ Ψ2,
Hölder continuity of ∇u follows from [31: Theorem 2.8].

In the case σ = 0 we set

ã(Z) = ψ(|Z|) a(Z) + k g(|Z|) |Z|p−2 Z

with ψ, k, g exactly as in [21: p. 97]. With the help of (1.16) we deduce [31: Formula
(1.5)]. Condition [31: (1.6)] trivially holds for ã. Using g′ ≥ 0 together with (4.27) we
get

∇ã(Z)Y · Y ≥ 2ν ψ(|Z|) |Z|p−2 |Y |2 + ψ′(|Z|) (Z · Y )
|Z| (a(Z) · Y )

+ k g(|Z|)
[
|Z|p−2 |Y |2 + (p− 2) |Z|p−4 (Z · Y )2

]

with

|Z|p−2 |Y |2 + (p− 2) |Z|p−4 (Z · Y )2 ≥
{ |Z|p−2 |Y |2 if p ≥ 2

(p− 1)|Z|p−2 |Y |2 if 1 < p < 2.

In the case ψ′(|Z|) 6= 0 we have |Z| ∈ [2M, 3M ], hence

∣∣∣∣ψ′(|Z|)
(Z · Y )
|Z| (a(Z) · Y )

∣∣∣∣ ≤ c(p,M) |Y |2|Z|p−2

and (observe that g ≥ c0 > 0 on [2M,∞])

k g(|Z|)
[
|Z|p−2 |Y |2 + (p− 2) |Z|p−4 (Z · Y )2

]
≥ k c0 c(p) |Z|p−2|Y |2.

So, if we choose k large enough, we get

∇ã(Z)Y · Y ≥ [
α ψ(|Z|) + β g(|Z|)]|Z|p−2 |Y |2

with positive numbers α and β. This implies [31: (1.4)], and the proof can be finished
as before
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[20] Giaquinta, M., Modica, G. and J. Souček: Functionals with linear growth in the calculus
of variations. Comm. Math. Univ. Carolinae 20 (1979), 143 – 171.

[21] Kinderlehrer, D. and G. Stampacchia: An Introduction to Variational Inequalities and
their Applications. New York - San Francisco - London: Acad. Press 1980.

[22] Lindqvist, P.: Regularity for the gradient of the solution to a nonlinear obstacle problem
with degenerate ellipticity. Nonlin. Anal. 12 (1988), 1245 – 1255.



A Priori Gradient Bounds 985

[23] Lieberman, G.: Regularity of solutions to some degenerate double obstacle problems. In-
diana Univ. Math. J. 40 (1991), 1009 – 1028.

[24] Marcellini, P.: Regularity of minimizers of integrals of the calculus of variations with non
standard growth conditions. Arch. Rat. Mech. Anal. 105 (1989), 267 – 284.

[25] Marcellini, P.: Regularity and existence of solutions of elliptic equations with (p, q)-growth
conditions. J. Diff. Equ. 90 (1991), 1 – 30.

[26] Marcellini, P.: Regularity for elliptic equations with general growth conditions. J. Diff. Equ.
105 (1993), 296 – 333.

[27] Marcellini, P.: Everywhere regularity for a class of elliptic systems without growth condi-
tions. Ann. Scuola Norm. Sup. Pisa 23 (1996), 1 – 25.

[28] Michael, J. and W. Ziemer: Interior regularity for solutions to obstacle problems. Nonlin.
Anal. 10 (1986), 1427 – 1448.

[29] Mingione, G. and F. Siepe: Full C1,α regularity for minimizers of integral functionals with
L log L growth. Z. Anal. Anw. 18 (1999), 1083 – 1100.

[30] Morrey, C. B.: Multiple Integrals in the Calculus of Variations (Grundlehren der math.
Wiss. in Einzeldarstellungen: Band 130). Berlin - Heidelberg - New York: Springer 1966.

[31] Mu, J. and W. P. Ziemer: Smooth regularity of solutions of double obstacle problems
involving degenerate elliptic equations. Comm. Part.Diff.Equ. 16 (1991), 821 – 843.
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