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Boundary Layer Correctors
for the Solution of Laplace Equation in a

Domain with Oscillating Boundary

Y. Amirat and O. Bodart

Abstract. We study the asymptotic behaviour of the solution of Laplace equation in a domain
with very rapidly oscillating boundary. The motivation comes from the study of a longitudinal
flow in an infinite horizontal domain bounded at the bottom by a plane wall and at the top by
a rugose wall. The rugose wall is a plane covered with periodic asperities which size depends
on a small parameter ε > 0. The assumption of sharp asperities is made, that is the height
of the asperities does not vanish as ε → 0. We prove that, up to an exponentially decreasing
error, the solution of Laplace equation can be approximated, outside a layer of width 2ε, by a
non-oscillating explicit function.
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1. Motivation

Let us consider a viscous fluid in an infinite horizontal domain limited at the bottom
by a plane wall P and at the top by a rough wall Rε. We assume that P moves at a
constant horizontal velocity γ = (γ′, 0) (γ′ ∈ R2) and that Rε is at rest. The latter is
assumed to consist of a plane wall covered with periodic asperities which size depends
on a small parameter ε > 0. Let 0 < ai < bi < li (i = 1, 2). We denote

S = (0, l1)× (0, l2)

S̃ = (a1, b1)× (a2, b2)

Sε = εS

S̃ε = εS̃

.

Let η be a non-negative Lipschitz-continuous function on R2, S-periodic, and let ηε be
the Sε-periodic function defined by

ηε(x′) =

{
l3

(
1 + ε η

(
x′
ε

))
if x′ ∈ Sε \ S̃ε

l′3
(
1 + ε η

(
x′
ε

))
if x′ ∈ S̃ε
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with l′3 > l3 > 0 and x′ = (x1, x2). Observe that ηε has a jump on the boundary ∂S̃ε of
S̃ε; this jump tends to l′3 − l3 as ε → 0, and then the amplitude of the oscillations of ηε

is large. The domain of the flow is

Oε =
{

x = (x′, x3) ∈ R3
∣∣∣ x′ ∈ R2 and 0 < x3 < ηε(x′)

}
.

It is bounded at the bottom by

P =
{

x = (x′, x3) ∈ R3
∣∣∣ x′ ∈ R2 and x3 = 0

}

and at the top by Rε = ∂Oε \ P , where ∂Oε denotes the boundary of Oε. The profile
of the asperities is then assumed to be the graph of the function ηε on R2. The mean
height of the asperities does not vanish as ε → 0. In the case where η is identically 0
the plate Rε is comb shaped.

The velocity vε = (vε1, vε2, vε3) and the pressure pε of the fluid satisfy the stationary
Navier-Stokes equations

−ν∆vε + (vε · ∇)vε +∇pε = 0

∇vε = 0

vε = 0

vε = γ

in Oε

in Oε

on Rε

on P





(1)

and they are assumed to be periodic with respect to x1 and x2, with periods εl1 and
εl2. Here ν > 0 is the viscosity. We assume that 1

ε is an integer so that ηε, vε and pε

are also periodic with respect to x1 and x2, with periods l1 and l2. Then Oε can be
viewed as generated by periodic translations of the bounded domain

Ω̃ε =
{

x ∈ R3
∣∣∣ x′ ∈ S and 0 < x3 < ηε(x′)

}
.

We denote

P̃ =
{

x = (x′, x3) ∈ R3
∣∣∣ x′ ∈ S and x3 = 0

}

L̃ε =
{

x = (x′, x3) ∈ R3
∣∣∣ x′ ∈ ∂S and 0 < x3 < ηε(x′)

}

and R̃ε = ∂Ω̃ε \ (L̃ε ∪ P̃ ), where ∂S is the boundary of S.
Suppose now that γ = (0, g, 0) and that the function η is independent of x2, i.e. η

is a Lipschitz-continuous function on (0, l1) and ηε = ηε(x1) with

ηε(x1) =

{
l3

(
1 + εη

(
x1
ε

))
if x1 ∈ (0, εl1) \ (εa1, εb1)

l′3
(
1 + εη

(
x1
ε

))
if x1 ∈ (εa1, εb1).

Then, a particular solution (vε, pε) of problem (1) is in the form vε = (0, uε, 0), pε = 0,
provided uε satisfies the Laplace equation in the bi-dimensional section

Ωε =
{

x = (x1, x3) ∈ R2
∣∣∣ 0 < x1 < l1 and 0 < x3 < ηε(x1)

}
,
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i.e. uε ∈ H1
e (Ωe) and

∆uε = 0

uε = 0

uε = g

in Ωε

on Re

on P





. (2)

Here
P =

{
x = (x1, x3) ∈ R2

∣∣∣ 0 < x1 < l1 and x3 = 0
}

L =
{

x = (x1, x3) ∈ R2
∣∣∣ x1 = 0 and 0 < x3 < η(0)

}

∪
{

x = (x1, x3) ∈ R2
∣∣∣ x1 = l1 and 0 < x3 < η(l1)

}

and Rε = ∂Ωε \ (P ∪ L), ∂Ωε being the boundary of Ωε. Setting

Dε =
{

x = (x1, x3) ∈ R2
∣∣∣ x1 ∈ R and 0 < x3 < ηε(x1)

}

we denote, for each m ≥ 0,

Hm
per(Ωε) =

{
f ∈ Hm

loc(Dε)
∣∣∣ f ∈ Hm(Ωε), f(x1 + l1, x3) = f(x1, x3) a.e. in Dε

}

endowed with the norm of Hm(Ωε).

Our aim is to study the asymptotic behaviour, as ε → 0, of the solution uε of
problem (2). The main difficulty is due to the fact that the amplitude of the oscillations
of the boundary is large.

Problems involving rough boundaries, in the case where the frequency and the am-
plitude of the oscillations of the boundary are of the same order ε, have been addressed
by many authors. In [2], Y. Achdou, O. Pironneau and F. Valentin consider a laminar
flow over a rough wall with periodic roughness elements. Using asymptotic expansions
and corresponding boundary layer correctors, the authors derive first and second order
effective boundary conditions. In [1], an approximation at O(ε

3
2 ) order for the H1-norm

is derived and analyzed for Laplace equation, using a domain decomposition argument.
In [3], G. Allaire and M. Amar give a non-oscillating approximation at O(ε

3
2 ) order for

the H1-norm for Laplace equation. In [10], W. Jäger and A. Mikelić consider a laminar
viscous channel flow, with the lateral surface of the channel containing surface irregu-
larities. The fluid satisfies a no-slip boundary condition on the rugose surface and it is
supposed that a uniform pressure gradient is maintained in the longitudinal direction
in the channel. So the limit flow is a Hagen-Poiseuille flow. Using the corresponding
boundary layers, the authors derive a wall law which gives an approximation of the
tangential drag force at order O(ε

3
2 ). For a flow governed by problem (1) in the domain

Oε corresponding to l′3 = l3, it is proved that, outside a neighbourhood of the rugose
zone, the flow behaves asymptotically as a Couette flow, up to an exponentially small
error (see [4]). Laplace equation in a domain with very rapidly oscillating locally peri-
odic boundary, the amplitude of the oscillations being ε and the frequency εα (α > 1)
is considered by G. A. Chechkin, A. Friedman, and A. L. Piatniski [7]. In this paper,
the authors analyze a first order approximation in the H1-norm. Asymptotic limits of
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boundary-value problems in oscillating domains, in the case where the amplitude of the
oscillations does not vanish as ε → 0, are studied in [6, 18]. Problems in domains with
fragmented boundaries are treated in [11, 15]. For boundary-value problems in thick
periodic junctions, see [16, 17].

In the present paper, we study the asymptotic behaviour, as ε → 0, of the solution
uε of problem (2) in the case of large amplitude. We assume that

η(y1) > 0 ∀ y1 ∈ (0, l1).

This assumption is made for the sake of technical simplicity; the case where η vanishes
over a subinterval of S can be treated with slight modifications. The Hausdorff limit
of the sequence (Ωε)ε>0 is the closed set Ω0, with Ω0 = (0, l1)× (0, l′3). We prove that,
up to an exponentially decreasing error, uε can be approximated by a non-oscillating
(that is independent of x1

ε ) explicit function for x3 < l3 − ε, and that uε ≈ 0 for
x3 > l3 + ε. The approximation is derived from asymptotic expansions of uε (for
x3 < l3 and x3 > l3) connected at the interface {x ∈ R2|x3 = l3}. The proof relies on a
kind of de Saint-Venant estimates, that is decay properties for the solution of Laplace
equation in semi-infinite domains. This result generalizes the one given in [5] which
deals with the case l′3 = l3 in which the amplitude of the oscillations of ηε vanishes as
ε → 0.

The paper is organized as follows. In Section 2 we establish a convergence result
for the solutions of problem (2). Section 3 is devoted to the asymptotic approximation
result. We first state the main result. Starting from formal asymptotic expansions of
uε, for x3 < l3 and x3 > l3, we derive a non-oscillating explicit approximation. We then
give decay estimates at infinity for the solution of Laplace equations in semi-infinite
domains. We finally prove the main result.

2. Convergence result

Let uε be the unique solution in H1
per(Ωε) of (2). We denote

Ω̃ = (0, l1)× (0, l′3(1 + η̄))

η̄ = supx1
η(x1)

Ω− = (0, l1)× (0, l3)

Ω+ = Ω̃ \ Ω−.

Clearly, Ωε ⊂ Ω̃ for any ε ∈ (0, 1). Let then ũε denote the extension of uε into Ω̃ by 0
and let ũ0 be the function defined on Ω̃ by

ũ0(x) =
{ (

1− x3
l3

)
g if x ∈ Ω−

0 elsewhere.
(3)

We have the following result.
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Proposition 1. The sequence (ũε)ε>0 converges in H1(Ω̃) towards ũ0 as ε → 0.

Proof. Let h = s(x3) g, with s ∈ C2(R), s(0) = 1 and s(x3) = 0 for x3 > l3
2 . We

have ∫

Ωε

∇uε · (∇uε −∇h) = 0 (4)

whence
∫
Ωε
|∇uε|2 ≤ C where C is a number independent of ε. Then, by the Poincaré-

Friedrichs inequality, the sequence (ũε) is bounded in H1(Ω̃). Therefore, up to the
extraction of a subsequence, (ũε) converges weakly in H1(Ω̃) and strongly in L2(Ω̃) to
some function v ∈ H1(Ω̃). By the continuity of the trace from H1(Ω̃) onto H

1
2 (P ) and

the compact imbedding of H
1
2 (P ) into L2(P ), (ũε|P ) converges in L2(P ) to v|P so that

v = g on P. (5)
For any ϕ ∈ D(Ω−) we have

0 =
∫

Ω−
∇ũε · ∇ϕ −→

∫

Ω−
∇v · ∇ϕ = 0,

hence
∆v = 0 in Ω−. (6)

For any x = (x1, x3) ∈ Ωε ∩ Ω+ we can write

ũε(x1, x3) = uε(x) = uε(x̃1, x3) +
∫ x1

x̃1

∂x1uε(t, x3) dt =
∫ x1

x̃1

∂x1uε(t, x3) dt

where x̃1 is such that (x̃1, x3) ∈ Rε. Using this expression, the Cauchy-Schwarz inequal-
ity and then integrating over Ω+, we obtain∫

Ω+
|ũε|2 ≤ Cε2

where C is a number independent of ε. Letting ε → 0 it follows that v vanishes in Ω+

and, in particular,
v = 0 for x3 = l3. (7)

Hence, from (5) - (7) and the fact that v ∈ H1
per(Ω

−), v = ũ0 in Ω− and then v = ũ0 in
Ω̃.

Let us now prove the strong convergence in H1(Ω̃) which will be done by proving
that

‖∇ũε‖(L2(Ω̃))3
−→ ‖∇ũ0‖(L2(Ω̃))3

. (8)

First we have from (4) and integration by parts∫

Ω̃

|∇ũε|2 = −
∫

Ω̃

ũε∆h −→ −
∫

Ω̃

v ∆h.

Multiplying (6) by v and integrating by parts we get∫

Ω̃

∇v · (∇v −∇h) = 0

from which ∫

Ω̃

|∇v|2 = −
∫

Ω̃

v ∆h

follows. Hence (8) is established
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3. Asymptotic approximation

In the sequel our purpose will be to construct an approximation of uε with an expo-
nentially decreasing error with respect to ε. Let Λ be the infinite vertical domain in R2

defined by
Λ = Λ1 ∪ Λ2 ∪ Γ

with
Λ1 =

{
y = (y1, y3) ∈ R2

∣∣∣ 0 < y1 < l1 and y3 < 0
}

Λ2 =
{

y = (y1, y3) ∈ R2
∣∣∣ a1 < y1 < b1 and y3 > 0

}

∪
{

y = (y1, y3) ∈ R2
∣∣∣ 0 < y1 < l1 and 0 < y3 < l3η(y1)

}

Γ =
{

y = (y1, y3) ∈ R2
∣∣∣ 0 < y1 < l1 and y3 = 0

}
.

We denote
Λ̃ =

{
y = (y1, y3) ∈ R2

∣∣∣ a1 < y1 < b1 and y3 > 0
}

Γ̃ =
{

y = (y1, y3) ∈ R2
∣∣∣ a1 < y1 < b1 and y3 = 0

}
.

Let ψ1 and ψ2 be the functions defined by

ψ1 ∈ H1
loc,per(Λ1),

∫
Λ1
|∇ψ1|2 < +∞

ψ2 ∈ H1(Λ2)

}
(9)

and
∆ψi = 0

ψ2 = 0

ψ1 = ψ2

∂y3ψ1 = 1 + ∂y3ψ2

in Λi (i = 1, 2)

on ∂Λ2 \ Γ

on Γ

on Γ





. (10)

The existence of ψ1 and ψ2 can be proved by passing to the limit, as m → +∞, on the
solutions of problem (10) posed in the bounded domains

Λm
1 =

{
y = (y1, y3) ∈ Λ1

∣∣ y3 > −m
}

Λm
2 =

{
y = (y1, y3) ∈ Λ2

∣∣ y3 < m
}

and which vanish for y3 = −m and y3 = m, respectively. Let then ψ be the function
defined in Λ as

ψ|Λi = ψi (i = 1, 2) (11)

where ψ1 and ψ2 are defined by (9) and (10). We call β the mean of ψ over an horizontal
section of Λ1, i.e.

β = β(δ) = 1
l1

∫ l1

0

ψ1(y1,−δ) dy1 (δ > 0). (12)

Indeed,we will see later that β does not depend on δ. We now define the function u0ε

in Ωε by

u0ε =
{ (

1− x3
l3+εβ

)
g for 0 < x3 < l3

0 for x3 > l3.
(13)

The main result of the paper is the following one.



Boundary Layer Correctors 935

Theorem 1. There exists θε ∈ H1
per(Ωe) such that

uε = u0ε + θε (14)

with, for any α ∈ N2 and any x such that |x3 − l3| ≥ ε,

|∂αθε(x)| ≤ Cl,α exp
(
− cl

|x3 − l3
ε

)
(15)

where cl > 0.

The correcting term θε is defined in Ωε by

θε(x) =

{ εg
l3+εβ

(
ψ

(
x1
ε , x3−l3

ε

)− β
)

+ ζε(x) for 0 < x3 < l3
εg

l3+εβ ψ
(

x1
ε , x3−l3

ε

)
+ ζε(x) for x3 > l3

where ψ is given by (9) - (11) and β is given by (12). The residue ζε is the solution in
H1

per(Ωe) of the problem

∆ζε = 0 in Ωε

ζε = − εg

l3 + εβ

(
ψ

(x1

ε
,
−l3
ε

)
− β

)
on P

ζε = − εg

l3 + εβ
ψ

(x1

ε
,
l′3 − l3

ε
+ l′3η

(x1

ε

))
for x ∈ R̃ε

ζε = 0 for x ∈ Rε \ R̃ε





(17)

where
R̃ε =

{
x ∈ R2

∣∣∣ a1 < x1 < b1 and x3 = ηε(x1)
}

.

Let us emphasize that u0ε and θε do not belong to H1(Ωε) but, due to the interface
conditions in (10), u0ε + θε ∈ H1

per(Ωe) and ∆(u0ε + θε) = 0 in Ωε.

In the theorem and in the sequel we denote l = (l1, l3) and the constants are indexed
with parameters which they depend on. The proof of Theorem 1 will be given in the
final subsection, and relies on a property of exponential decay of the function ψ. Let us
remark that this result generalizes to the Laplace equation in higher space dimension.

3.1 Formal asymptotic expansion. The expression of uε given by (14) is derived
from a formal asymptotic expansion. Let us seek an expansion of uε in Ωε in the form

uε(x1, x3) =



(
1− x3

l3
dε

)
g + g

l3
ε

∞∑

k=0

εk
(
ψk

(
x1
ε , x3−l3

ε

)− βk

)
+ ζε(x1, x3) if 0 < x3 < l3

(1− dε)g + g
l3

ε

∞∑

k=0

εk
(
ψk

(
x1
ε , x3−l3

ε

)− βk

)
+ ζε(x1, x3) if x3 > l3

(18)
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with

dε =
∞∑

k=0

αk εk (αk ∈ R)

where (ψk)k≥0 is a sequence of functions defined in the infinite domain Λ, and βk is
the mean of ψk over an horizontal section of Λ1. We are going to identify the functions
ψk, the sequence (αk)k≥0 and the residual term ζε in order to obtain (14). First we
impose ∆ζε = 0 in Ωε. Thus the difference uε − ζε given by (18) has to be harmonic,
too. Its derivative with respect to x3 must have no jump at the points where x3 = l3.
As x3 → l3, the value of the derivative is

− g

l3
dε +

g

l3

∑

k≥0

εk∂y3
ψk

(x1

ε
, 0

)
as x3 < l3

g

l3

∑

k≥0

εk∂y3
ψk

(x1

ε
, 0

)
as x3 > l3.

We then impose
∂y3

ψk|y3=0+ = ∂y3
ψk|y3=0− + αk (k ≥ 0).

Therefore, the coefficients αk temporarily assumed to be known, it suffices to choose

ψk = αk ψ (k ≥ 0)

where ψ is defined by (9) - (11). Thus βk = αkβ. Then, for x3 > l3, we impose the
constant term of expansion (18) to vanish. Thus

(1− dε)g − g

l3
ε

∞∑

k=0

βkεk = 0,

that is (1− dε) g − g
l3

εβdε = 0 from which

dε =
∞∑

k=0

αk εk =
l3

l3 + βε
for βε < l3

and
∞∑

k=0

εk(ψk − βk) =
∞∑

k=0

εk(αkψ − αkβ) =
l3

l3 + βε
(ψ − β)

follow. Putting these expressions together with (18) we get formally the asymptotic
expansion (14).

3.2 Decay estimates. Here we give a property of exponential decay of ψ as |y3| → +∞.
We begin with the following result.
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Lemma 1. The mean β defined by (12) does not depend on δ.

Proof. Integrating the equation ∆ψ1 = 0 with respect to y1 (0 < y1 < l1) and
taking the periodicity into account we get, for y3 < 0,

d2

dy2
3

∫ l1

0

ψ1(y1, y3) dy1 = 0,

hence ∫ l1

0

ψ1(y1, y3) dy1 = ay3 + b

where a and b are constants. Since ∇ψ1 ∈
(
L2(Λ1)

)3, we have a = 0 which proves the
result

Proposition 2. Let ψ be defined by (9)− (11) and β be given by (12) with δ > 0.
Then:

(i) For any α ∈ N2, 0 < y1 < l1 and y3 ≤ −δ,

|∂α(ψ − β)(y1, y3)| ≤ Cl,δ,α exp (cl y3). (19)

(ii) For any α ∈ N2, a1 < y1 < b1 and y3 ≥ (1 + η),

|∂αψ(y1, y3)| ≤ Cl,α exp (−cl y3). (20)

Here cl > 0.

The proof will follow from the next two lemmas.

Lemma 2. Let ϕ ∈ H1
loc,per(Λ1) be such that ∇ϕ ∈ (

L2(Λ1)
)3 and

∆ϕ = 0 in Λ1∫
Γ
ϕ = 0

}
.

Then, for any α ∈ N2, for any 0 < y1 < l1 and y3 ≤ t < 0,

|∂αϕ(y1, y3)| ≤ Cl,t,α‖ϕ‖L2(Γ) exp (cl y3) (21)

with cl > 0.

Lemma 3. Let ϕ ∈ H1(Λ̃) be such that

∆ϕ = 0 in Λ̃

ϕ = 0 on ∂Λ̃ \ Γ̃

}
.

Then, for any α ∈ N2, for any a1 < y1 < b1 and y3 ≥ t > 0,

|∂αϕ(y1, y3)| ≤ Cl,t,α ‖ϕ‖L2(Γ̃)
exp (−cl y3) (22)

with cl > 0.

Estimates (21) and (22) are of the so-called de Saint-Venant type. Such estimates
occur in many problems (see [19: pp. 67 – 97] for elasticity and [9: pp. 260 – 262] for
fluids). Lemma 2 is proved in [14: pp. 49 – 58] by means of a Tartar’s lemma. Other
proofs are given in [3, 12, 13]. The proof of Lemma 3 can be done by adapting that of
Lemma 2. One can also adapt the proof given for the case of Stokes equations in [8:
pp. 319 – 320].
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Proof of Proposition 2. Applying Lemma 2 to ϕ(y1, y3) = ψ(y1, y3− δ
2 )−β with

t = − δ
2 in Λ1, and taking Lemma 1 into account yields

|∂α(ψ − β)(y1, y3)| ≤ Cl,δ,α‖ψ − β‖L2(Γδ
1)

exp (cl y3) (y3 ≤ −δ)

where Γδ
1 = {y ∈ Λ1 : y3 = − δ

2}. Moreover, we have

|β| ≤ 1
l1

∫ l1

0

∣∣∣ψ
(
y1,−δ

2

)∣∣∣dy1 ≤ Cl‖ψ‖L2(Γδ
1)

.

To prove (19), it then suffices to prove that

‖ψ‖L2(Γδ
1)
≤ Cl,δ. (23)

From the variational formulation of (10) we deduce that

∫

Λ

|∇ψ|2 =
∫

Γ

ψ ≤ Cl‖ψ‖L2(Γ).

Then, using the Poincaré inequality and the trace theorem we get ‖ψ‖L2(Γ) ≤ Cl and
‖∇ψ‖(L2(Λ))3 ≤ Cl. Since

‖ψ‖L2(Γδ
1)
≤ Cl,δ‖ψ‖H1(Λδ

1)
≤ Cl,δ

(‖ψ‖L2(Γ) + ‖∇ψ‖(L2(Λ))3
)

where Λδ
1 =

{
y ∈ Λ1 : − δ

2 < y3 < 0
}

we obtain therefore (23). Employing Lemma 3 in
Λ̃ to ϕ(y1, y3) = ψ(y1, y3 + l3η̄) with t = l3 and proceeding to similar computations we
prove (20)

3.3 Proof of Theorem 1. The functions ψ, u0ε, ζε, θε and the real β being defined
respectively by (9) - (11), (13), (17), (16) and (12), we denote

u∗ε = u0ε + θε.

By construction, and in particular due to the jump condition in (10), the function u∗ε
belongs to H1

per(Ωe) and is harmonic in Ωε; it satisfies the boundary conditions

u∗ε =
{

0 on Rε

g on P

since θε = 0 on P ∪Rε. Then u∗ε is the solution in H1
per(Ωe) of problem (2) and therefore

u∗ε = uε which proves (14).
Let us now prove (15). From (17) and Proposition 2 we have, for any α1 ∈ N,

|∂α1ζε(x)| ≤ Cl,α1 exp
(
−cl

ε

)
on P ∪ R̃ε (24)



Boundary Layer Correctors 939

with cl > 0. The maximum principle then implies

|ζε(x)| ≤ Cl,α1 exp
(
−cl

ε

)
in Ωε. (25)

Now let α = (α1, α3) ∈ N2 be fixed. Letting δ = 1 in Proposition 2 we have, for
x = (x1, x3) ∈ Ωε such that x3 ≤ l3 − ε,

∣∣∣∂α(ψ − β)
(x1

ε
,
x3 − l3

ε

)∣∣∣ ≤ Cl,α exp
(
− cl

l3 − x3

ε

)
(26)

and for x = (x1, x3) ∈ Ωε such that x3 ≥ l3 + ε,

∣∣∣∂αψ
(x1

ε
,
x3 − l3

ε

)∣∣∣ ≤ Cl,α exp
(
− cl

x3 − l3
ε

)
. (27)

Then estimate (15) for |α| = 0 follows readily from (14) and (25) - (27). Now, from
the local regularizing properties of the Laplace equation and the Sobolev imbedding
theorem, we have for any x = (x1, x3) ∈ Ωε such that x3 ≤ l3 − ε,

|∂αζε(x)| ≤ Cl,ε,α

(
‖ζε‖L2(S×(0,l3− ε

2 )) + ‖∂α1ζε‖L2(P )

)
.

Hence, from (24) and (25), |∂αζε(x)| ≤ Cl,ε,α exp
( − cl

l3−x3
ε

)
. It can be checked that

the dependence of Cl,ε,α on ε is of order 1
ε|α| . Then we can choose new constants

independent of ε to get |∂αζε(x)| ≤ Cl,α exp
( − cl

l3−x3
ε

)
. Using this inequality and

(26), we obtain estimate (15) for x = (x1, x3) ∈ Ωε such that x3 ≤ l3 − ε. Arguing as
before and using (27) we get estimate (15) for x = (x1, x3) ∈ Ωε such that x3 ≥ l3 + ε

Remark. In industrial applications the walls are not plane. For a flow in a domain
limited by a smooth (and not plane) wall and a rugose wall, with asperities of large
height, the velocity and the pressure of the fluid are not Sε-periodic, and the study
of the asymptotic behaviour is more complicated. For a longitudinal flow in a such
domain, we are now studying a first order approximation for the H1-norm. Our result
in the present paper may be considered as a first step in this direction.
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