
Zeitschrift für Analysis und ihre Anwendungen
Journal for Analysis and its Applications

Volume 20 (2001), No. 4, 999–1006

L1-Norms of Exponential Sums
and the Corresponding Additive Problem

M. Z. Garaev and Ka-Lam Kueh

Abstract. In this note, a new estimate of L1-norm of certain exponential sum is obtained. At
the same time, we establish a sharp lower bound for the cardinality of corresponding sumsets.
In some cases this lower bound gives the true order of the cardinality.
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1. Introduction

Throughout the text the following notation will be used:
A ¿ B means |A| ≤ cB with some absolute constant c
A ¿a,b,... B means |A| ≤ cB with some constant c depending on a, b, ... only
B À A means the same as A ¿ B.

The problem of obtaining lower bound estimations of the L1-norm of exponential sums
is of great interest in Functional Analysis, Analytic Number Theory and other topics
of Mathematics. In this connection we would like to stress the Littlewood conjecture
which reads as follows:

There exists an absolute constant c > 0 such that for any sequence of integers
f(1) < f(2) < ... < f(n) the inequality

∫ 1

0

∣∣∣∣∣
n∑

x=1

e2πiβf(x)

∣∣∣∣∣ dβ > c log n

holds.

This conjecture was proved in 1981 by S. V. Konyagin in [4] and by O. C. McGehee,
L. Pigno and B. Smith in [6].

A. A. Karatsuba [3] noticed that the problem of lower bound estimations of a wide
class of exponential sums is closely connected with the arithmetical problem of finding
upper bounds for the number of solutions of the corresponding Diophantine Equations.
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Let f(1) < f(2) < ... < f(n) be a sequence of integers, J = J(n) – the number of
solutions of the equation

f(x) + f(y) = f(u) + f(v) (1 ≤ x, y, u, v ≤ n).

Theorem [3]. For any coefficients γ(x), |γ(x)| = 1, the inequality

I = I(n) :=
∫ 1

0

∣∣∣∣∣
n∑

x=1

γ(x)e2πiβf(x)

∣∣∣∣∣ dβ ≥ n
3
2 J−

1
2 (1)

is valid.

Note that

I ≤
( ∫ 1

0

∣∣∣∣
n∑

x=1

e2πiβf(x)

∣∣∣∣
2

dβ

) 1
2

= n
1
2 .

S. V. Konyagin [5], using methods of combinatorial geometry, proved that if 0 < f(2)−
f(1) < f(3) − f(2) < ... < f(n) − f(n − 1), then J ¿ n

5
2 . It means that for this

sequence I À n
1
4 . A new proof of Konyagin’s theorem was given in our work [2], and

in the case f(x) = [Axα] (A > 0, α > 2) we obtained the bound J ¿ n
5
2 + n4−α log2 n

where n ≥ n1(α, A) > 0.
In the present paper we obtain the following results.

Theorem 1. Let f(x) = [F (x)] where the real-valued function F is three times
continuously differentiable on the segment [1, n] with F ′(x) > 0, F ′′(x) > 0 and F ′′′(x) <
0. Then

n4

F (n) + 1
¿ J ¿ (F ′(1)−1 + 1)n

5
2 +

n2 log n

F ′′(n)
.

Note that in Theorem 1 f is not necessarily strictly convex. The lower bound
estimation is easy enough. Indeed,

n2 =
∫ 1

0

( n∑
x=1

e2πiβf(x)

)2( 2f(n)∑

λ=0

e−2πiβλ

)
dβ

≤
( ∫ 1

0

∣∣∣∣
n∑

x=1

e2πiβf(x)

∣∣∣∣
4

dβ

) 1
2
( ∫ 1

0

∣∣∣∣
2f(n)∑

λ=0

e−2πiβλ

∣∣∣∣
2

dβ

) 1
2

=
(
2f(n) + 1

) 1
2 J

1
2

from which the desired inequality follows. The upper bound we will obtain in Sections
3 - 4.

Corollary 1. Under the assumption of Theorem 1 and F ′(1) ≥ 1 we have

I À min
(
n

1
4 , (nF ′′(n))

1
2 (log n)−

1
2
)

where I is defined as in (1).

In the case F (x) = Axα (A > 0, 1 < α ≤ 3
2 ) Corollary 1 improves the main theorem

of [2] a bit by (log n)
1
2 and Theorem 1 gives

n4−α ¿α,A J ¿α,A n4−α log n.

In fact we also have established the following theorem.
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Theorem 2. Under the assumption of Theorem 1 and F ′(1) ≥ 1, let |2S| denote
the cardinality of the set of all integers of the form [F (x)] + [F (y)] where x and y are
integers with 1 ≤ x, y ≤ n. Then

n2 ¿ n|2S| 23 +
n

F ′′(n)
+ n

( |2S|
F ′′(n)

) 1
2
.

Theorem 2 is a particular case of the direct additive problem. On this topic we refer
readers to the work of G. Elekes, M. B. Nathanson and I. Z. Rusza [1].

Corollary 2. For a fixed A > 0 and 1 < α ≤ 3
2 let |2S| denote the cardinality

of the set of all integers of the form [Axα] + [Ayα] where x and y are integers with
1 ≤ x, y ≤ n. Then

nα ¿α,A |2S| ¿α,A nα.

Corollary 2 establishes the exact order of the cardinality of |2S| for this special case.

2. Preliminary remarks

For a given strictly increasing sequence of integers f(1), ..., f(n) we denote by J0 = J0(n)
the number of solutions in the positive integers of the equation

f(x) + f(y) = f(u) + f(v) (1 ≤ x ≤ y ≤ n, 1 ≤ u ≤ v ≤ n).

Obviously, J ≤ 4J0. Therefore, in order to obtain an upper bound for J it is sufficient
to obtain an upper bound for J0.

Let s1, s2, ..., sω be distinct numbers of the form f(x) + f(y) (1 ≤ x ≤ y ≤ n) and
denote by mj the number of solutions of the equation sj = f(x)+f(y) (1 ≤ x ≤ y ≤ n).
Without loss of generality we may suppose that

m1 ≥ m2 ≥ ... ≥ mω. (2)

Obviously,

J0 =
∑

j≤ω

m2
j

(
1 ≤ mj ≤ n, ω ≤ n2

)
(3)

J ≤ 4
∑

j≤ω

m2
j

(∑
j≤ωmj = 1

2n(n + 1)
)
. (4)

Let s1, s2, ..., sk be those of sj , for which m1 ≥ ... ≥ mk ≥ 2. Then J ≤ 4
∑

j≤k m2
j +4n2.

Under the conditions of Theorem 1 and F ′(1) ≥ 1 our aim is to obtain the estimate

m1 + ... + mr ≤ C1

(
nr

2
3 +

n

F ′′(n)
+ n

( r

F ′′(n)

) 1
2
)

(5)

for any r with 1 ≤ r ≤ ω where C1 is an absolute constant. Theorems 1 and 2 will
follow from (2) - (5). Obviously, in order to establish (5) it is enough to consider only
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those r for which r ≤ k. Therefore we will suppose that k ≥ 1. We need the condition
F ′(1) ≥ 1 in order the sequence [F (x)] (1 ≤ x ≤ n) being strictly increasing. The case
F ′(1) < 1 will be reduced to the previous one.

For a given l with 1 ≤ l < n we denote by Jl = Jl(n) the number of solutions of the
Diophantine equation

f(x) + f(y) = f(x + l) + f(z)
(
1 ≤ x ≤ y ≤ n, x + l ≤ z ≤ n

)
.

We need the following result from [2].

Lemma. Suppose Φl = Φl(n) (1 ≤ l < n) is a sequence of real numbers such that
Jl ≤ Φl for all l. Then for any positive integer r with 1 ≤ r ≤ k there exist a real
number a and positive integers q and l1, ..., lq, lq+1 such that either

Φl1 ≥ 1
2 (m1 + ... + mr), l1 ≤ 2nr(m1 + ... + mr)−1

or
l1 < ... < lq < lq+1 < n, 0 < a ≤ Φlq+1

Φl1 + ... + Φlq + a = (m1 − 1) + ... + (mr − 1)

l1Φl1 + ... + lqΦlq + lq+1a ≤ nr

hold.

3. The case F ′(1) ≥ 1

In this case f(1) < f(2) < ... < f(n) and we may apply the Lemma. In order to apply
it we estimate Jl which is the number of solutions of the equation

[F (x)] + [F (y)] = [F (x + l)] + [F (z)] (1 ≤ x < x + l ≤ z < y ≤ n).

Let us prove that y − z ≤ 3 l. If y = z + l + δ0, then

2 + F (x + l)− F (x) ≥ F (z + l + δ0)− F (z)

= F (z + l) + δ0F
′(z + l + θδ0)− F (z)

≥ F (x + l)− F (x) + δ0

whence δ0 ≤ 2, i.e. y − z ≤ 3 l. We may fix z = z0 such that Jl ≤ nJ ′l where J ′l is the
number of solutions of the equation

[F (x + l)]− [F (x)] = [F (z0 + δ)]− [F (z0)]

in the variables x and δ subject to δ ≤ 3 l and x + l ≤ n. Then

Jl ≤ n
∑

0<δ≤3l

J ′l (δ) (6)
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where J ′l (δ) is the number of solutions of the equation

[F (x + l)]− [F (x)] = [F (z0 + δ)]− [F (z0)]

but now in one variable x subject to the condition x + l ≤ n. If x0 is the least solution
of this equation, then we have

(
F (x + l)− F (x)

)− (
F (x0 + l)− F (x0)

) ≤ 2

whence using F ′′′(x) < 0 we have

l(x− x0)F ′′(n) ≤
∫ x

x0

∫ l

0

F ′′(φ + ψ) dφdψ ≤ 2.

Thus x− x0 ≤ 2
lF ′′(n) + 1 and therefore J ′l (δ) ≤ 2

lF ′′(n) + 1. From (6) it follows that

Jl ≤ 6n

F ′′(n)
+ 3ln.

We apply the Lemma with Φl = 6( n
F ′′(n) + ln). The aim is to obtain inequality (5)

for any r with 1 ≤ r ≤ k. According to the Lemma two cases are possible. In the first
case we have

6
(
l1n +

n

F ′′(n)

)
≥ 1

2
(m1 + ... + mr), l1 ≤ 2nr(m1 + ... + mr)−1

from which inequality (5) follows. Now, assume the second case holds, i.e. for a given
r there exists a real number a and positive integers q and l1, ..., lq such that

l1 < ... < lq < lq+1 < n, 0 < a ≤ 6
(
nlq+1 +

n

F ′′(n)

)

6
(
nl1 +

n

F ′′(n)

)
+ ... + 6

(
nlq +

n

F ′′(n)

)
+ a = (m1 − 1) + ... + (mr − 1)

6 l1

(
nl1 +

n

F ′′(n)

)
+ ... + 6 lq

(
nlq +

n

F ′′(n)

)
+ lq+1a ≤ nr.

If (m1 − 1) + ... + (mr − 1) ≤ 60n
F ′′(n) , then inequality (5) holds. Suppose now that

(m1 − 1) + ... + (mr − 1) > 60n
F ′′(n) . If a < 12n

F ′′(n) , then a < (m1−1)+...+(mr−1)
5 and

therefore we have the system

l1 < ... < lq < lq+1 < n

6
(
nl1 +

n

F ′′(n)

)
+ ... + 6

(
nlq +

n

F ′′(n)

)
>

1
3
(m1 + ... + mr)

6 l1

(
nl1 +

n

F ′′(n)

)
+ ... + 6 lq

(
nlq +

n

F ′′(n)

)
≤ nr

q ≤ (m1 + m2 + ... + mr)
1
2 n−

1
2





. (7)
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If a > 12n
F ′′(n) , then lq+1 ≥ a

12n and we would get the system

l1 < ... < lq < lq+1 < n

6
(
nl1 +

n

F ′′(n)

)
+ ... + 6

(
nlq +

n

F ′′(n)

)
+ a >

1
3
(m1 + ... + mr)

6 l1

(
nl1 +

n

F ′′(n)

)
+ ... + 6 lq

(
nlq +

n

F ′′(n)

)
+

a2

12n
≤ nr

q ≤ (m1 + m2 + ... + mr)
1
2 n−

1
2





. (8)

Now note that if in (8) we take a = 0, then we would get system (7). Therefore, it is
sufficient to obtain (5) by using system (8) for a ≥ 0. So, let (8) be true for some a ≥ 0.
Among l1, ..., lq some may be less than 1

F ′′(n) . Let

l1 < ... < lt <
1

F ′′(n)
≤ lt+1 ≤ ... ≤ lq < n

(if such t does not exist or t = q, then the proof is analogous). From system (8) we have

12tn

F ′′(n)
+ 12n(lt+1 + ... + lq) + a >

1
3
(m1 + ... + mr)

6(l1 + ... + lt)n
F ′′(n)

+ 6n(l2t+1 + ... + l2q) +
a2

12n
≤ nr

t < q ≤ (m1 + m2 + ... + mr)
1
2 n−

1
2





. (9)

Therefore

t

F ′′(n)
+ lt+1 + ... + lq +

a

12n
>

m1 + ... + mr

36n
(10)

t2

F ′′(n)
+ l2t+1 + ... + l2q +

a2

72n2
≤ r

6
. (11)

If t
F ′′(n) > m1+...+mr

72n , then from (11)

r

6
≥ t2

F ′′(n)
> (m1 + ... + mr)2(72n)−2F ′′(n)

follows from which we derive (5). Let now t
F ′′(n) < m1+...+mr

72n . Then from (10) and (11)
we have

lt+1 + ... + lq +
a

12n
>

m1 + ... + mr

72n

l2t+1 + ... + l2q +
( a

12n

)2

≤ r

6
.

Taking into account (9) we have

r

6
≥ 1

q

(
lt+1 + ... + lq +

a

12n

)2

> (m1 + ... + mr)
3
2 n−

3
2 72−2
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and therefore m1 + ... + mr ≤ 100nr
2
3 . Thus, estimation (5) is proved for all r with

1 ≤ r ≤ k and therefore for all r ≤ ω.
Now, Theorem 2 follows from (5) by using (4) if we take r = ω. In order to prove

Theorem 1 we note that for any r

either m1 + ... + mr ≤ 3C1nr
2
3 (12)

or m1 + ... + mr ≤ 3C1n

F ′′(n)
(13)

or m1 + ... + mr ≤ 3C1n
( r

F ′′(n)

) 1
2
. (14)

Let B1 be the set of those r for which (12) takes place. Then for r ∈ B1 we have
mr ≤ 3C1nr−

1
3 . Therefore

∑

r∈B1

m2
r ≤

∑

r∈B1,r≤n
3
2

(3C1nr−
1
3 )2 +

∑

r∈B1,r>n
3
2

3C1n(n
3
2 )−

1
3 mr ¿ n

5
2 .

Let B2 be the set of those r for which (13) takes place. Then using mr ≤ n we easily
get ∑

r∈B2

m2
r ≤

3C1n
2

F ′′(n)
.

At last, let B3 be the set of those r for which (14) takes place. Then mr ≤ n(rF ′′(n))−
1
2

and therefore ∑

r∈B3

m2
r ≤

∑

r≤n2

n2

F ′′(n)
r−1 ¿ n2 log n

F ′′(n)
.

Now Theorem 1 follows from (4)

4. The case F ′(1) < 1

This case we easily reduce to the previous one. Let J be the number of solutions of the
equation

[F (x)] + [F (y)] = [F (u)] + [F (v)] (1 ≤ x, y, u, v ≤ n).

Then
F (x) + F (y) = F (u) + F (v) + 2θ

where θ is some function subject to |θ| ≤ 1. Taking g(x) = F (x)
F ′(1) we have

g(x) + g(y) = g(u) + g(v) +
2θ

F ′(1)
.

Therefore
− 2

F ′(1)
≤ (

[g(x)] + [g(y)]
)− (

[g(u)] + [g(v)]
) ≤ 2

F ′(1)
.
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If we denote by E(k) the number of solutions of the equation

[g(x)] + [g(y)] = [g(u)] + [g(v)] + k (1 ≤ x, y, u, v ≤ n),

then
J ≤

∑

|k|≤ 2
F ′(1)

E(k).

But E(k) ≤ E(0). Therefore

J ≤
(
1 +

2
F ′(1)

)
E(0).

Taking this into account and that g′(1) ≥ 1 we obtain the desired estimation of J by
estimating E(0) using the previous result in Section 3.
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