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On a New Type of Eisenstein Series
in Clifford Analysis

R. S. Kraußhar

Abstract. In this paper we deduce a recursion formula for the partial derivatives of the funda-
mental solution of the generalized Cauchy-Riemann operator in Rk+1 in terms of permutational
products. These functions generalize the classical negative power functions to Clifford analysis.
We exploit them to introduce a new generalization of the classical complex analytic Eisenstein
series on the half-plane to higher dimensions satisfying the generalized Cauchy-Riemann dif-
ferential equation. Under function-theoretical and number-theoretical aspects we investigate
their Fourier series expansion in which multiple divisor sums and certain generalizations of the
Riemann zeta function play a crucial role.

Keywords: Eisenstein series, Clifford analysis, Riemann zeta function, multiple divisor sums,
permutational products

AMS subject classification: 30G35

1. Introduction

In the twentieth century several generalizations of the classical Eisenstein series (cf. [7,
33])

Gn(z) =
∑

(c,d)∈Z×Z\{(0,0)}

1
(cz + d)n

(
n ≥ 4, Im(z) > 0

)
(1)

to higher dimensional spaces have been discussed by several authors related to a rich
number of different aspects in function and number theory. C. L. Siegel (cf. [20])
considered generalizations of these series in Ck×k being endowed with the regularity
concept of analyticity of functions in several complex variables. H. Maaß introduced in
[26] also non-analytic Eisenstein series in C by

Es(z) =
1
2

∑

gcd(c,d)=1

( Im(z)
‖cz + d‖2

)s (
s ∈ C, Re(s) > 1, Im(z) > 0

)
.

These non-analytic Eisenstein series are eigenfunctions of the Laplace-Beltrami operator
attached to the upper half-plane. Generalizations of them to higher dimensions with
respect to certain discrete subgroups of Vahlen’s group acting on hyperbolic spaces are
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discussed, for example, by J. Elstrodt, F. Mennicke and J. Grunewald (cf. [8, 10]) in the
eighties and nineties and by A. Krieg in 1988 in [24, 25]. The generalization presented
there, are not hypercomplex analytic in the sense of [3, 6, 13, 19, 30]. However, they
are eigenfunctions of the higher dimensional Laplace-Beltrami operator attached to the
upper half-space.

In this paper we deal with a generalization of the classical complex analytic Eisen-
stein series to hypercomplex analysis which are null-solutions of the generalized Cauchy-
Riemann operator and therefore hypercomplex analytic. The crucial idea is to re-
place the usual negative power functions by the fundamental solution of the general-
ized Cauchy-Riemann operator q0(z) = z

‖z‖k+1 and by its partial derivatives qn(z) =
∂|n|
∂xn q0(z), respectively.

In Section 3 we deduce a recursion formula for the functions qn in terms of per-
mutational products in analogy to H. Malonek’s approach for the Fueter polynomials
in [28, 29]. Then, in Section 4, we consider summations of these functions over lat-
tices in Rk+1 which lead to generalizations of the Riemann zeta function. With the
help of the recursion formula deduced in the previous section, we establish relations to
certain Epstein zeta functions. In Section 5 we introduce a generalization of the series
Gn on a half-space, starting from the Laurent expansion of the generalized monogenic
℘-function (see [6, 16 - 18, 22, 23, 31]) and study basic properties of them. In Section 6
the Fourier expansion of the generalized Eisenstein series is determined explicitly. The
first Fourier coefficient turns out to be one of the generalized Riemann zeta functions
discussed in Section 4. The other Fourier coefficients are composed by divisor sums.
Using multi index notation, the Fourier expansion can be written in a similar form as
in the classical complex case. We discuss the influence of monogenicity and compare
the monogenic Eisenstein series with the generalizations of Eisenstein series to higher
dimensions described in [8, 10, 24, 25].

2. Preliminaries

We introduce the most important notions. For detailed information about Clifford
algebras and their function theory we refer, for example, to [1, 5, 17].

By {e1, e2, . . . , ek} we denote the canonical basis of the Euclidean vector space Rk.
The attached real Clifford algebra Cl0k is the free algebra generated by Rk modulo the
relation

x2 = −‖x‖2e0

where x ∈ Rk and e0 is the neutral element with respect to multiplication of the Clifford
algebra Cl0k. In the Clifford algebra Cl0k the multiplication rules

eiej + ejei = −2δije0 (i, j = 1, . . . , k)

hold where δij is the Kronecker symbol. A basis for the Clifford algebra Cl0k is given
by the set

{
eA : A ⊆ {1, . . . , k}} with eA = el1el2 · · · elr , where 1 ≤ l1 < . . . < lr ≤ k

and e∅ = e0 = 1. Every a ∈ Cl0k can be written in the form

a =
∑

A

aAeA (aA ∈ R).
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Two examples for real Clifford algebras are the complex number field C and the Hamil-
tonian skew field H. The conjugation anti-automorphism in the Clifford algebra Cl0k is
defined by

a =
∑

A

aAeA

where eA = elrelr−1 · · · el1 with ej = −ej for j = 1, . . . , k and e0 = e0 = 1. By

Ak+1 = spanR{1, e1, . . . , ek} = R⊕ Rk ⊂ Cl0k

we denote the space of hypercomplex numbers

z = x0 + x1e1 + x2e2 + · · ·+ xkek

often called para-vectors. A para-vector consists only of a scalar part and a vector part.

In this paper we denote pure vectors by a bold face letter, and scalars, para-vectors
or Clifford numbers by a normal letter. In this notation the hypercomplex number z is
represented in the form z = x0 + x with Sc(z) = x0 and Vec(z) = x.

We introduce the right half-space of Ak+1 as the set of numbers

H+(Ak+1) =
{
z ∈ Ak+1| Sc(z) > 0

}

and similarly the left half-space. The left and the right half-space are separated by the
dividing hyperplane

T =
{
z ∈ Ak+1| Sc(z) = 0

}
.

A scalar product between two Clifford numbers a, b ∈ Cl0k is further defined by

〈a, b〉 = Sc(ab)

and the Clifford norm of an arbitrary a =
∑

A aAeA is

‖a‖ =
( ∑

A

|aA|2
) 1

2

.

Any element z ∈ Ak+1\{0} has an inverse element in Ak+1 given by z−1 = z
‖z‖2 .

Further, we recall that the permutational product of arbitrary Clifford numbers
a1, . . . , an is defined by

a1 × a2 × · · · × an =
1
n!

∑

perm(i1,...,in)

ai1 · ai2 · · · · · ain .

For details we refer to [28, 29]. One further uses the abbreviation

a1 × · · · × a1︸ ︷︷ ︸
k1 times

× · · · × an × · · · × an︸ ︷︷ ︸
kn times

= [a1]k1 × [a2]k2 × · · · × [an]kn .
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In order to distinguish powers in terms of the permutational product from powers in
the usual sense, one sets brackets when meaning ordinary powers. One has to write for
example [a1]2 × a2 = a1 × a1 × a2, but (a1)2 × a2 = (a1 · a1)× a2.

In this paper we also deal with complex Clifford algebras. In the same way as a real
Clifford algebra is constructed, one can construct a complex Clifford algebra starting
from the canonical basis in the complex vector space Ck. For details we refer, for
example, to [5]. The complex Clifford algebra can be represented by the tensor product
Cl0k ⊗R C. Thus, every element a in the complex Clifford algebra Cl0k ⊗R C can be
represented in the form a =

∑
A aAeA, where A ⊆ {1, . . . , k} and aA ∈ C. The elements

aA ∈ C itselves will be written in the form aA = aA0 + iaA1 with aA0 , aA1 ∈ R.

In order to present many calculations in a more suggestive way, the following no-
tations will be used, where n = (n1, . . . , nk) ∈ Nk

0 and j = (j1, . . . , jk) ∈ Nk
0 are

k-dimensional multi-indices:

xn = xn1
1 · · ·xnk

k , n! = n1! · · ·nk! , |n| = n1 + . . . + nk(n
j

)
=

(n1

j1

)
· · ·

(nk

jk

)

j ≤ n ⇔ j1 ≤ n1, . . . , jk ≤ nk.

By τ(i) we denote the multi-index (n1, . . . , nk) with nj = δij for 1 ≤ j ≤ k.

A. C. Dixon [6], R. Fueter [17], G. C. Moisil and N. Theodorescu [30], V. Iftimie
[19] and R. Delanghe [3] are some of the most important creators of a function theory
in Clifford algebras. In Ak+1 one considers the generalized Cauchy-Riemann operator

D =
∂

∂x0
+

k∑

i=1

∂

∂xi
ei.

Suppose U ⊂ Ak+1 is open. Then a real differentiable function f : U → Cl0k is called
left (right) monogenic at a point z0 ∈ U if Df(z0) = 0 or fD(z0) = 0, respectively. The
notion of left (right) monogenicity in Ak+1 provides a generalization of the concept of
complex analyticity to Clifford analysis in the sense of the Cauchy-Riemann approach.
This concept is often called hypercomplex analyticity.

Many classical theorems from complex analysis could be generalized to higher di-
mensions by this approach. We refer, e.g., to [1, 17]. However, because of the non-
commutativity in Clifford algebras, the positive and negative powers of the hypercom-
plex variable z are not monogenic. In hypercomplex function theory the positive powers
are substituted by the following polynomials, mentioned first in [14] and therefore often
called Fueter polynomials:

Vn(z) =
1
|n|!

∑

π∈perm(n)

zπ(n1)zπ(n2) · · · zπ(nk)

where perm(n) denotes the set of all permutations of the sequence (n1, . . . , nk) and
zi = xi−x0ei for i = 1, . . . , k and V0(z) = 1. H. Malonek has shown in [28, 29] that one



Eisenstein Series in Clifford Analysis 1011

can write the Fueter polynomials in terms of permutational products of the variables
zi, more precisely

Vn1,...,nk
(z) =

1
n!

[z1]n1 × · · · × [zk]nk .

The negative powers are substituted (cf. [4, 14]) by the function

q0(z) =
z

‖z‖k+1
and qn(z) =

∂|n|

∂xn
q0(z) (|n| ≥ 1).

In the next section we will show that we can also write the functions qn in terms of
permutational products.

It is important to mention that the set of left (right) monogenic functions forms just
a Clifford right (left) module for k > 1. The product, the quotient or the composition
of two monogenic functions gives in general no monogenic function for k > 1. However,
supposed that f is a left (right) monogenic function and if further ω ∈ Ak+1 and
c ∈ R\{0}, then F (z) = f(cz + ω) is a left (right) monogenic function in the variable z.

3. A recursion formula for the qn-functions

In this section we deduce a recursion formula for the functions qn in terms of permu-
tational products. The representation of the qn-functions that we will obtain in this
section provides an analogy to H. Malonek’s representation of the Fueter polynomials
Vn in [28, 29].

We first prove

Lemma 1. Suppose n ∈ N. Then

∂n

∂xn
1

q0(z) =
n−1∑

j=0

(n− 1
j

)
j! q(n−(j+1))τ(1)(z)

·
[(k − 1

2

)
(z−1e1)j+1 + (−1)j+1

(k + 1
2

)
(e1z

−1)j+1

]

Proof. We prove this lemma by induction. By a direct computation, we obtain

qτ(1)(z) = − e1

‖z‖k+1
+

k + 1
2

e1

‖z‖k+1
− k + 1

2
ze1z

‖z‖k+3

= q0(z)
[
k − 1

2
z−1e1 − k + 1

2
e1z

−1

]
.

Thus, the assertion is true for n = 1.

In the sequel we assume n ≥ 1. For n ∈ N we get by induction

∂n

∂xn
1

{z−1} = n! (z−1e1)nz−1 and
∂n

∂xn
1

{z−1} = (−1)nn! z−1(e1z
−1)n.
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Hence, we obtain

q(n+1)τ(1)(z) =
∂

∂x1

n−1∑

j=0

(n− 1
j

)
j! q(n−(j+1))τ(1)(z)

·
[(k − 1

2

)
(z−1e1)j+1 + (−1)j+1

(k + 1
2

)
(e1z

−1)j+1

]

=
n−1∑

j=0

(n− 1
j

)
j!

{
q(n−j)τ(1)(z)

·
[(k − 1

2

)
(z−1e1)j+1 + (−1)j+1

(k + 1
2

)
(e1z

−1)j+1

]

+ q(n−(j+1))τ(1)(z)

·
[(k − 1

2

)
(j + 1)(z−1e1)j+2 + (−1)j+2

(k + 1
2

)
(j + 1)(e1z

−1)j+2

]}

=
n−1∑

j=0

(n− 1
j

)
j! q(n−j)τ(1)(z)

·
[(k − 1

2

)
(z−1e1)j+1 + (−1)j+1

(k + 1
2

)
(e1z

−1)j+1

]

+
n∑

j=1

(n− 1
j − 1

)
j! q(n−j)τ(1)(z)

·
[(k − 1

2

)
(z−1e1)j+1 + (−1)j+1

(k + 1
2

)
(e1z

−1)j+1

]

=
n∑

j=0

(n

j

)
j! q(n−j)τ(1)(z)

·
[(k − 1

2

)
(z−1e1)j+1 + (−1)j+1

(k + 1
2

)
(e1z

−1)j+1

]

and the proof is finished

Analogously we may proceed for the determination of
∂ni

∂xni
i

q0

for i = 2, . . . , k. We get the same recursion formula replacing simply e1 by ei.

Now we want to establish a recursion formula, where n is a general multi-index of
Nk

0\{0}. As soon as we deal with mixed derivatives, permutational products appear.
We will illustrate this by the following examples.

We assume i, j ∈ {1, . . . , k} to be distinct. Then we get
∂

∂xj

∂

∂xi
q0(z) = qτ(j)(z)

[(k − 1
2

)
(z−1ei)−

(k + 1
2

)
(eiz

−1)
]

+ q0(z)
[(k − 1

2

)
(z−1ej)(z−1ei) +

(k + 1
2

)
(eiz

−1)(ejz
−1)

]
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and further

∂3q0(z)
∂xj∂x2

i

= qτ(j)+τ(i)(z)
[(k − 1

2

)
(z−1ei)−

(k + 1
2

)
(eiz

−1)
]

+ qτ(i)(z)
[(k − 1

2

)
(z−1ej)(z−1ei) +

(k + 1
2

)
(eiz

−1)(ejz
−1)

]

+ qτ(j)(z)
[(k − 1

2

)
(z−1ei)2 +

(k + 1
2

)
(eiz

−1)2
]

+ 2q0(z)
[(k − 1

2

)
[z−1ej ]× [z−1ei] · (z−1ei)

−
(k + 1

2

)
(eiz

−1) · [eiz
−1]× [ejz

−1]
]

.

For the iteration of this procedure we deduce by a simple induction proof the following
formulas:

∂

∂xj

{
[z−1ei]ni × [z−1ej ]nj · (z−1ei)

}

= (ni + nj + 1)[z−1ei]ni × [z−1ej ]nj+1 · (z−1ei)
∂

∂xj

{
(eiz

−1) · [eiz
−1]ni × [z−1ej ]nj

}

= −(ni + nj + 1)(eiz
−1) · [eiz

−1]ni × [ejz
−1]nj+1.

With these formulas we can show finally the following theorem using the notation

∑

0≤j≤n

=
n1∑

j1=0

n2∑

j2=0

· · ·
nk∑

jk=0

.

Theorem 1 (Representation of the qn-functions in terms of permutational prod-
ucts). Let n = (n1, n2, n3, . . . , nk) ∈ Nk

0 . Then

qn+τ(1)(z) =
∑

0≤j≤n

(n
j

)
|j|! qn−j(z)

·
[(k − 1

2

)
[z−1ek]jk × · · · × [z−1e1]j1 · (z−1e1)

+ (−1)|j|+1
(k + 1

2

)
(e1z

−1) · [e1z
−1]j1 × · · · × [ekz−1]jk

]
.

Proof. For multi-indices of the form n = (n1, 0, . . . , 0) with n1 ∈ N0, the statement
is true according to Lemma 1. Suppose now n to be a multi-index of the form n =
(n1, n2, 0, . . . , 0) where n2 ∈ N0. For n2 = 0 the statement is true according to Lemma
1. By a direct computation one verifies immediately that the assertion holds also for
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n2 = 1. In the sequel we assume n2 ≥ 1 and compute

∂

∂x2
qn1+1,n2,0,...,0(z)

=
∑

0≤j≤n

(n
j

)
|j|! qn1−j1,n2+1−j2,0,...,0(z)

·
[(k − 1

2

)
[z−1e2]j2 × [z−1e1]j1 · (z−1e1)

+ (−1)|j|+1
(k + 1

2

)
(e1z

−1) · [e1z
−1]j1 × [e2z

−1]j2
]

+
∑

0≤j≤n

(n
j

)
|j|! qn1−j1,n2−j2,0,...,0(z)

· (|j|+ 1)
[(k − 1

2

)
[z−1e2]j2+1 × [z−1e1]j1 · (z−1e1)

+ (−1)|j|+2
(k + 1

2

)
(e1z

−1) · [e1z
−1]j1 × [e2z

−1]j2+1

]

=
∑

0≤j≤n

(n
j

)
|j|! qn1−j1,(n2+1)−j2,0,...,0(z)

·
[(k − 1

2

)
[z−1e2]j2 × [z−1e1]j1 · (z−1e1)

+ (−1)|j|+1
(k + 1

2

)
(e1z

−1) · [e1z
−1]j1 × [e2z

−1]j2
]

j2←j2+1
+

∑

τ(2)≤j≤n+τ(2)

( n
j− τ(2)

)
|j|! qn1−j1,n2+1−j2,0...,0(z)

·
[(k − 1

2

)
[z−1e2]j2 × [z−1e1]j1 · (z−1e1)

+ (−1)|j|+1
(k + 1

2

)
(e1z

−1) · [e1z
−1]j1 × [e2z

−1]j2
]

=
∑

0≤j≤n+τ(2)

(n + τ(2)
j

)
|j|! qn1−j1,(n2+1)−j2,0,...,0(z)

·
[(k − 1

2

)
[z−1e2]j2 × [z−1e1]j1 · (z−1e1)

+ (−1)|j|+1
(k + 1

2

)
(e1z

−1) · [e1z
−1]j1 × [e2z

−1]j2
]

.

So, the assertion is also true for n2 + 1. Thus, the formula is proved for all indices n of
the form (n1, n2, 0, . . . , 0) with (n1, n2) ∈ N2

0.

Next we assume n to have the form n = (n1, n2, n3, 0, . . . , 0) with (n1, n2, n3) ∈ N3
0.

For multi-indices n = (n1, n2, n3, 0, . . . , 0) with n3 = 0 the validity of the formula
has been shown by the previous induction step. With induction over n3 one verifies
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analogously to the previous induction procedure that the formula holds for all multi-
indices of the form (n1, n2, n3, 0, · · · , 0). Successively one proceeds to consider then
multi-indices n of the form (n1, n2, n3, n4, 0, . . . , 0), proves the formula by induction
over n4 analogously as we have shown in the second step, and proceeds with further
induction steps until one finally obtains the validity of the formula for all multi-indices
(n1, n2, . . . , nk) ∈ Nk

0

For the sake of completeness, it remains to derive a formula for the functions qm
where m := (m1, . . . , mk) is a multi-index with m1 = 0. In this case one chooses an
α ∈ {2, . . . , k} with mα 6= 0. In the associated formula for the function qm the index
α plays then the role of the index 1 in Theorem 1. The following corollary provides a
more precise formulation and furthermore a correction of [22: Lemma 1.2]:

Corollary 1. Let α ∈ {1, . . . , k} and n ∈ Nk
0 . Then

qn+τ(α) =
∑

0≤j≤n

(n
j

)
|j|! qn−j(z)

·
[(k − 1

2

)
[z−1ek]jk × · · · × [z−1e1]j1 · (z−1eα)

+ (−1)|j|+1
(k + 1

2

)
(eαz−1) · [e1z

−1]j1 × · · · × [ekz−1]jk

]
.

As a first application of this recursion formula we get the following estimates on
qn-functions.

Proposition 1. For all multi-indices n ∈ Nk
0 the estimate

∥∥∥ ∂|n|

∂xn
q0(z)

∥∥∥ ≤ k(k + 1) · · · (k + |n| − 1)
‖z‖k+|n| (2)

holds for all z ∈ Ak+1.

Proof. We first restrict ourselfes to the case where n = (n, 0, . . . , 0). A simple
calculation shows that the estimate holds for n = 0 and n = 1. In the sequel we assume
n ≥ 1 and consider

∥∥∥ ∂n+1

∂xn+1
1

q0(z)
∥∥∥ =

∥∥∥∥
n∑

j=0

(n

j

)
j! q(n−j)τ(1)(z)

·
[(k − 1

2

)
(z−1e1)j+1 + (−1)j+1

(k + 1
2

)
(e1z

−1)j+1

] ∥∥∥∥

≤ k

‖z‖k+n+1
n!

[ n∑

j=0

((k − 1) + (n− j))!
(k − 1)! (n− j)!

]

=
k

‖z‖k+n+1
n!

[ n∑

j=0

( (k − 1) + n− j

n− j

)]
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=
k

‖z‖k+n+1
n!

(k + n

n

)

=
k

‖z‖k+n+1

(k + n)!
k!

= k(k + 1) · · · (k + n)
1

‖z‖k+n+1
.

Thus, the assertion holds for indices of the form n = (n, 0, . . . , 0).

With the estimates
∥∥(e1z

−1) · [e1z
−1]j1 × · · · × [ekz−1]jk

∥∥ ≤ ‖e1z
−1‖|j|+1

∥∥[z−1ek]jk × · · · × [z−1e1]j1 · (z−1e1)
∥∥ ≤ ‖z−1e1‖|j|+1

and the formula ∑

j∈Nk
0

|j|=j

(n1

j1

)
· · ·

(nk

jk

)
=

( |n|
j

)

in combination with the statement of Theorem 1 or Corollary 1, respectively, we get
further, applying a simple induction argument, that

‖qn(z)‖ ≤ ‖q|n|,0,···,0(z)‖ (n ∈ Nk
0)

and the assertion is shown

Remarks.

1. Since the functions qn are R-homogeneous polynomials of degree −(k + |n|) (see
[1]) one obtains directly an inequality of the general type

‖qn(z)‖ ≤ C(n)‖z‖−(k+|n|)

with a constant C(n) ∈ R>0 being dependent on n. As a direct consequence one gets

lim
z→∞

qn(z) = 0. (3)

2. In [15, 17] R. Fueter proved for the quaternionic case that

‖qn(z)‖ ≤ (|n|+ 2)! ‖z‖−(|n|+3). (4)

He used a different method to obtain this inequality. His proof is based on the formula

qn(ζ) = ζ−1 ∂|n|

∂xn

[
∆z{(zζ−1)n+2}] (z ∈ H, ζ ∈ H\{0}) (5)

where ∆z denotes the Laplace operator with respect to the variable z. We observe
that the estimate in Proposition 1 for the quaternionic case is stronger than R. Fueter’s
estimate.
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4. The generalized Riemann zeta function associated
with the qn-functions

Now we proceed in the direction to consider summations of the functions qn(ω) over a
lattice in Ak+1 which leads to a generalization of the Riemann zeta function.

The general form of a p-dimensional lattice in Ak+1 can be presented by

Ωp = Zω1 + . . . + Zωp (1 ≤ p ≤ k + 1). (6)

where ω1, . . . , ωp ∈ Ak+1 are supposed to be R-linear independent para-vectors. For
the following applications we need G. Eisenstein’s lemma formulated in the para-vector
formalism:

Lemma 2 (cf. [7, 31]). Suppose a0, a1, . . . , at are R-linear independent para-vectors
in Ak+1. Then the series

∑

(m0,m1,...,mt)∈Zt+1\{0}

∥∥m0a0 + m1a1 + . . . + mtat

∥∥−(t+α) (7)

converges if and only if α ≥ 2.

We further split the lattice into a positive and negative part.

Definition 1. To a given p-dimensional lattice (6) inAk+1, the positive semi-lattice
Ω+

p is defined by

Ω+
p = Nω1 + Zω2 + Zω3 + . . . + Zωp

∪ Nω2 + Zω3 + . . . + Zωp

...

∪ Nωp.

The negative part Ω−p of the lattice Ωp is defined by

Ω−p =
(
Ωp\{0}

)\Ω+
p .

Remarks. We observe that

z ∈ Ω+
p ⇔ −z ∈ Ω−p and Ω+

p ∪ Ω−p ∪ {0} = Ωp.

In particular, for k = 1 and ω1 = 1 one gets

Ω+
1 = N, Ω−1 = −N, Ω1 = N ∪ −N ∪ {0} = Z.

With this notation we introduce
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Definition 2 (Generalized Riemann zeta function of Clifford analysis in Ak+1).
Let p ∈ N with 1 ≤ p ≤ k + 1. Let further l ∈ Nk

0 be a multi-index and suppose for
p = k that |l| ≥ 1 and for p = k + 1 that |l| ≥ 2. Then the generalized Riemann zeta
function of Clifford analysis in Ak+1 is defined by

ζ
Ωp

M (l) =
∑

ω∈Ω+
p

ql(ω). (8)

The series converges absolutely which follows by Lemma 2 after having applied
Proposition 1. Note that in the case |l| ≡ 1(2) we obtain

2ζ
Ωp

M (l) =
∑

ω∈Ωp\{0}
ql(ω).

Now we want to discuss a simple example of the generalized Riemann zeta function
which illustrates that these functions are closely related to Epstein zeta functions. For
convenience we recall (cf. [21]) that the Epstein zeta function associated with a given
(p× p) positive definite symmetric matrix S is said to be

ζS(s) =
∑

g∈Zp\{0}
(gtrSg)−s (s ∈ C,Re(s) > p

2 ). (9)

In the sequel we consider a p-dimensional lattice with p ≤ k and Sc(Ωp) = 0. The
simplest non-trivial example for the generalized Riemann zeta function related to this
lattice is

ζ
Ωp

M (τ(i)) =
1
2

∑

ω∈Ωp\{0}
qτ(i)(ω).

According to Lemma 1, we know

qτ(i)(z) = q0(z)
[(k − 1

2

)
(z−1ei)−

(k + 1
2

)
(eiz

−1)
]

.

Therefore, we obtain the representation

ζ
Ωp

M (τ(i)) =
1
2

∑

ω∈Ωp\{0}

ω

‖ω‖k+1

[(k − 1
2

)
ω−1ei +

(k + 1
2

)
eiω

−1

]

=
1
4

∑

ω∈Ωp\{0}

[
(k − 1)ei

‖ω‖k+1
+

(k + 1)ωeiω

‖ω‖k+3

]

=
k − 1

4
eiζW trW

(1
2
(k + 1)

)
+

k + 1
4

∑

ω∈Ωp\{0}

ωeiω

‖ω‖k+3

where W = (w1, ..., wp) since the series

∑

ω∈Ωp\{0}

1
‖ω‖k+1

and
∑

ω∈Ωp\{0}

ωeiω

‖ω‖k+3
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converge both absolutely.

In particular, one obtains for the quaternionic case

ζ
Ωp

M (τ(l)) =
1
2
ilζW trW (2) +

∑

ω∈Ωp\{0}

ωilω

‖ω‖6

where il denotes the l-th imaginary unit in the quaternionic skew field with l = 1, 2, 3.

From this representation we can deduce immediately that in particular for the
quaternionic case

‖ζΩp

M (τ(l))‖ ≤ 1
2
ζW trW (2) + ζW trW (2) =

3
2
ζW trW (2)

and for the more general (k + 1)-dimensional case

∥∥ζ
Ωp

M (τ(i))
∥∥ ≤ k − 1

4
ζW trW

(k + 1
2

)
+

k + 1
4

ζW trW

(k + 1
2

)
=

1
2
kζW trW

(k + 1
2

)
.

With Proposition 1 we infer that for any arbitrary index n ∈ Nk
0\{0}

‖ζΩp

M (n)‖ ≤
|n|−1∏
µ=0

(k + µ)ζW trW

(1
2
(k + |n|)

)
.

The next step is to show that we actually deal with non-trivial series. For p ≤ k we
consider the p-fold periodic monogenic cotangent function associated with the lattice
Ωp (for details see [22] and the forthcoming paper [23]) which is defined by

cot(p)(z) =
{

q0(z) +
∑

ω∈Ωk\{0}[q0(z + ω)− q0(ω)] if p = k∑
ω∈Ωp

q0(z + ω) if p < k. (10)

By a direct computation we obtain the Laurent expansion around the origin which reads

cot(p)(z) = q0(z) + 2
∑

|l|>0,|l|≡1(2)

Vl(z)ζΩp

M (l). (11)

We observe that there must be some l ∈ Nk
0 for which ζ

Ωp

M (l) 6= 0, otherwise cot(p)−q0
would be the zero function, which is a contradiction.

For p = k+1 we consider the monogenic (k+1)-fold periodic generalized ℘-function,
introduced by A. C. Dixon in [6] for the three-dimensional case, by R. Fueter [16] for
the quaternionic case, and by J. Ryan [31] for the (k + 1)-dimensional case.

For an i ∈ {1, . . . , k} the generalized ℘-function associated with a (k+1)-dimensional
lattice Ωk+1 denoted by ℘τ(i) : Ak+1\Ωk+1 → Ak+1, is given by

℘τ(i)(z) = qτ(i)(z) +
∑

ω∈Ωk+1\{0}

(
qτ(i)(z + ω)− qτ(i)(ω)

)
. (12)
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Its Laurent expansion around the origin turns out to be

℘τ(i)(z) = qτ(i)(z) + 2
∑

(|n|>0,|n|≡0(2))

Vn(z)ζΩk+1
M (n + τ(i)) (13)

and with a similar argument we conclude that there must exist some indices l for which
ζ
Ωk+1
M (l) does not vanish.

This type of generalization of the Riemann zeta function to higher dimension plays a
crucial role in the theory of monogenic generalizations of the classical complex analytic
Eisenstein series to Clifford analysis.

5. Generalized Eisenstein series in Clifford analysis

One approach to arrive at the Eisenstein series Gn in the complex plane is the Laurent
expansion of Weierstraß’ ℘ function associated with a two-dimensional lattice Ω =
Zω1 + Zω2 around the origin, reading precisely

℘(z) =
1
z2

+
∞∑

n=1

(2n + 1)G2n+2(Ω)z2n

in which the Eisenstein series

Gn(Ω) =
∑

ω∈Ω\{0}

1
wn

(n > 2, n even)

appear naturally. They are absolutely convergent if and only if n > 2. Without loss of
generality we can restrict ourselfes on considering the special lattice

Ω∗ = Z+ Zτ with Im(τ) > 0

since it can be transformed by a simple rotation and dilatation into a general one.
Regarding the associated series Gn(Ω∗) as a function series in the upper half-plane
variable τ , one arrives at the classical complex analytic Eisenstein series (1).

In order to generalize the Eisenstein series Gn to Clifford analysis we proceed in a
similar way. We consider the Laurent coefficients of the generalized monogenic Weier-
strassian function ℘τ(i). They read 2ζ

Ωk+1
M (n+τ(i)) as mentioned in the previous section.

Without loss of generality we restrict ourselves on considering a special lattice

Zτ + Ωk

with

Sc(τ) > 0, and Ωk = Zw1 + . . . + Zwk, Sc(wi) = 0 ∀ i = 1, . . . , k

since any arbitrary lattice Ωk+1 can be transformed by a rotation into this special lattice.
Then we consider the series ζZτ+Ωk

M (n) as a function in the hypercomplex variable τ on
the right half-space H+(Ak+1). This motivates to introduce the following definition (cf.
[22]):
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Definition 3 (Generalization of the classical Eisenstein Gn). Let n ∈ Nk
0 be a

multi-index with |n| ≥ 2. Then the Eisenstein series of type Gn : H+(Ak+1) → Ak+1

are defined by

Gn(τ) =
∑

(α,m)∈Z×Ωk\{(0,0)}
qn(ατ + m) (Sc(τ) > 0). (14)

We proceed to show that these series represent actually well-defined monogenic
functions.

Proposition 2. The series Gn defined in (14) converge normally on the right half-
space H+(Ak+1) if and only if |n| ≥ 2. Furthermore, they represent left and right
monogenic functions on H+(Ak+1) .

Proof. As a direct consequence of Lemma 2 in combination with Proposition 1 we
infer that the series Gn converge absolutely if and only if |n| ≥ 2. With any compact
set K ∈ H+(Ak+1) we can associate an arbitrary real ε > 0 such that K is strictly
contained in the strip

Vε(H+(Ak+1)) =
{

τ ∈ H+(Ak+1) : ‖V ec(τ)‖ ≤ 1
ε

and Sc(τ) ≥ ε
}

.

These strips are subsets of H+(Ak+1) with

lim
ε→0

Vε(H+(Ak+1)) = H+(Ak+1).

Next we show that there is a real ρ > 0 with

‖cτ + d‖ ≥ ρ‖c + d‖ (15)

for all τ ∈ Vε(H+(Ak+1)) and (c,d) ∈ R × Rk. For (c,d) = (0,0) the inequality is
trivially satisfied. In the sequel we assume (c,d) 6= (0,0). We further observe that

‖cτ + d‖ ≥ ρ‖c + d‖ ⇐⇒ ‖c̃τ + d̃‖ ≥ ρ

with c̃ = c
‖c+d‖ and d̃ = d

‖c+d‖ . We observe that

c̃2 + ‖d̃‖2 =
c2

c2 + ‖d‖2 +
‖d‖2

c2 + ‖d‖2 = 1.

For τ = x0 + x we obtain

‖c̃τ + d̃‖ = ‖c̃x0 + c̃x + d̃‖ =
√

c̃2x2
0 + ‖c̃x + d̃‖2 ≥

√
c̃2ε2 + ‖c̃x + d̃‖2.

The set
K =

{
(x, c̃, d̃) ∈ Rk × R× Rk : ‖x‖ ≤ 1

ε
and c̃2 + ‖d̃‖2 = 1

}
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is compact. The function

φ : K → R≥0, (x, c̃, d̃) 7→
√

c̃2ε2 + ‖c̃x + d̃‖2

is obviously continuous on K. Therefore, φ takes a minimum in K.

If c = 0, then φ(x, c̃, d̃) = 1 > 0. If c 6= 0, then φ(x, c̃, d̃) ≥ |c̃ε| > 0. Thus, the
validity of (15) is shown.

Next we apply (15) in combination with Proposition 1 under the condition that
τ ∈ Vε(H+(Ak+1)) on the expression

∑

(α,m)∈Z×Ωk\{(0,0)}
‖qn(ατ + m)‖

≤ C
∑

(α,m)∈Z×Ωk\{(0,0)}
‖ατ + m‖−(|n|+k)

≤ Cρ−(|n|+k)
∑

(α,m)∈Z×Ωk\{(0,0)}
‖α + m‖−(|n|+k)

= Cρ−(|n|+k)
∑

g∈Zk+1\{0}

(
gtr(W trW )g

)− 1
2 (|n|+k)

= Cρ−(|n|+k)ζW trW

(
1
2 (|n|+ k))

< ∞

where C denotes a positive real constant and ζW trW the Epstein zeta function associated
with the matrix W trW where W = (e0, w1, . . . , wk). Thus, the series Gn converge
normally in H+(Ak+1). As a consequence of Weierstraß’ convergence theorem we can
infer, provided |n| ≥ 2, that the series Gn represent left and right monogenic functions
in H+(Ak+1), since the functions qn(ατ +m) are left and right monogenic on the right
half-space H+(Ak+1) for (α,m) ∈ Z× Ωk\{(0,0)}

Further elementary properties :

1. The functions Gn take all their values in Ak+1.

2. If |n| ≡ 0(2), then the series Gn vanish identically, since the functions qn are odd
in this case.

3. If |n| ≡ 1(2), then the series Gn are even, because in this case the functions qn
are even. In the next section we will observe by means of the Fourier expansion that
for |n| ≡ 1(2) these functions are really non-trivial.

4. The functions Gn have singularities of the order (|n|+k) precisely in the rational
points with respect to the basis {w1, . . . , wk} of the dividing hyperplane

T =
{
z ∈ Ak+1

∣∣ Sc(z) = 0
}
, i.e. in Qω1 + . . . +Qωk.
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5. The series Gn are k-fold periodic functions with respect to the lattice Ωk which
follows directly by rearrangement of the series.

6. For |n| ≥ 2 the series Gn contain the monogenic Eisenstein series of type ε
(k)
n

described in [22, 23] with respect to the lattice Ωk which read

ε(k)
n (z) =

∑

ω∈Ωk

qn(z + ω) (16)

as a subseries or, in other words, partial derivatives of the k-fold periodic monogenic
cotangent. The series ε

(k)
n generalize the complex analytic Eisenstein series of type

εn(z) =
∑

m∈Z
(z + m)−n (n ≥ 2) (17)

to Clifford analysis.

7. For any arbitrary u ∈ Z\{0} we get

Gn(uτ) =
∑

(α,m)∈Z×Ωk\{(0,0)}
qn(uατ + m)

= u−k−|n| ∑

(α,m)∈Z×Ωk\{(0,0)}
qn

(
ατ + m

u

)

= u−k−|n|Gn(z; Ω̃k)

where Ω̃k denotes the lattice u−1Ωk which obviously contains the original lattice Ωk.
To obtain this formula, we have exploited the R-homogeneity of the functions qn.

8. The set of singularities of Gn(τ), which in the sequel will be denoted by S, is
invariant under transformations of the form

s 7→ s + m (m ∈ Ωk, s ∈ S)

s 7→ s−1.

The group which is generated by these types of transformations acts discontinuously
on H+(Ak+1) and can be regarded as a generalization of the classical modular group
SL(2,Z) for the (k + 1) dimensional case (compare, e.g., with [9]).



1024 R. S. Kraußhar

6. The Fourier expansion of the generalized Eisenstein series

Since the series Gn are k-fold periodic and twice continuously real differentiable on the
right half-space, they can be represented there by a normally convergent Fourier series
of the form ∑

r∈Ωσ
k

αf (r, x0) e2πi〈r,x〉

where Ωσ
k denotes the dual lattice of Ωk. Furthermore, monogenicity provides the special

Fourier series representation

αf (0) +
∑

r∈Ωσ
k
\{0}

αf (r)P+(2πr, z)

on the right half-space where

P+(r, z) =
(
1 + i

r
‖r‖

)
e−‖r‖x0ei〈r,x〉

is the monogenic plane wave function from [5].

We will determine the Fourier expansion on H+(Ak+1) of the Eisenstein series of
type Gn(τ) associated with the orthonormal lattice

Lk = Ze1 + . . . + Zek ⊂ Rk.

In the sequel we assume |n| ≡ 1(2).

Complex function theory provides several methods to determine the Fourier expan-
sion of the Eisenstein series of type Gn. A classical method is to determine first the
Fourier expansion of the Eisenstein series εn being a subseries of Gn, which admits
a more direct conclusion about the Fourier series representation of Gn. We refer for
example to [11, 32]. In [32] there are also given methods how to compute the Fourier
series of Gn directly without determining the Fourier series of εn. However, the methods
applied there are still not available in Clifford analysis.

Thus, we first expand the series ε
(k)
n (z) associated with the orthonormal lattice Lk

in Rk for |n| ≥ 2 into a Fourier series of the form

∑

r∈Lk

αf (r, x0)e2πi〈r,x〉

on the right half-space. Without loss of generality we assume n1 > 0. For the sake of
illustrating the integration mechanism leading to recursion formulas we will not use the
multi-index notation within the following computations. For the first Fourier coefficient
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we obtain

αf (0, x0) =
∫ 1

0

· · ·
∫ 1

0

∫ 1

0

( ∑

m∈Lk

qn1,n2,...,nk
(z + m)

)
dx1dx2 · · · dxk

=
∫ 1

0

· · ·
∫ 1

0

∑

m∈Lk

( ∫ 1

0

qn1,n2,...,nk

(
x0 +

[ k∑

λ=1

eλxλ

]
+ m

)
dx1

)
dx2 · · · dxk

=
∫ 1

0

· · ·
∫ 1

0

∑

m∈Lk

{
qn1−1,n2,...,nk

(
x0 + e1 +

[ k∑

λ=2

eλxλ

]
+ m

)

− qn1−1,n2,...,nk

(
x0 +

[ k∑

λ=2

eλxλ

]
+ m

)}
dx2 · · · dxk

= 0

similarly to the classical complex case.

In the sequel we assume r 6= 0 and compute

αf (r, x0) =
∫

[0,1]k

( ∑

m∈Lk

qn1,n2,...,nk
(z + m)e−2πi〈r,x〉

)
dx1dx2 · · · dxk

=
∫

Rk

(
qn1,n2,...,nk

(z) e−2πi〈r,x〉)dx1dx2 · · · dxk.

We first simplify this integral by applying the partial integration method successively:

αf (r, x0) =
∫

R
· · ·

∫

R

( ∫

R
qn1,n2,···,nk

(z)e−2πi〈r,x〉dx1

)
dx2 · · · dxk

=
∫

R
· · ·

∫

R

[
qn1−1,n2,...,nk

(z)e−2πi〈r,x〉
∣∣∣∣
x1=∞

x1=−∞

+ 2πir1

∫

R
qn1−1,n2,...,nk

(z) e−2πi〈r,x〉dx1

]
dx2 · · · dxk

= (2πi)r1

∫

R
· · ·

∫

R

[ ∫

R
qn1−1,n2,...,nk

(z) e−2πi〈r,x〉dx1

]
dx2 · · · dxk.

After having applied further n1 − 1 steps of partial integration with respect to x1, we
get

αf (r, x0) = (2πi)n1rn1
1

∫

Rk

q0,n2,...,nk
(z) e−2πi〈r,x〉dx1dx2 · · · dxk.

Now we apply the same procedure to the variables x2, . . . , xk which yields finally

αf (r, x0) = (2πi)|n|rn
∫

Rk

q0,0,...,0(z) e−2πi〈r,x〉dx1dx2 · · · dxk.
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For x0 > 0 one obtains applying the residue theorem (cf. for details [2, 22]) that
∫

Rk

q0(z) e−2πi〈r,x〉dx1dx2 · · · dxk =
Ak+1

2

(
1 + i

r
‖r‖

)
e−2π‖r‖x0

where Ak+1 denotes the surface of the (k + 1)-dimensional unit ball.

Finally, we get for ε
(k)
n (z) the following Fourier series representation on the right

half-space:
ε(k)
n (z) =

∑

r∈Lk\{0}
(2πi)|n|rnP+

N (2πr, z) (18)

where P+
N denotes the normalized monogenic exponential plane wave function which is

simply said to be
P+

N (2πr, z) = Ak+1P
+(2πr, z).

Using multi-index notation, the Fourier expansion can be presented in a similar form as
the Fourier expansion of the complex analytic Eisenstein series εn which reads precisely
(cf., e.g., [11])

εn(z) =
(−1)n

(n− 1)!

∑

r∈N
(2πi)nrn−1e2πirz. (19)

Furthermore, we observe that the coefficients αf (r) are pure C scalars.

The knowledge of the Fourier expansion of the series ε
(k)
n will admit an explicit

determination of the Fourier expansion of the series Gn. We consider

Gn(τ) =
∑

m∈Lk\{0}
qn(m) +

∑

α∈N

∑

m∈Lk

qn(ατ + m) +
∑

α∈N

∑

m∈Lk

qn(−ατ + m)

= 2ζLk

M (n) + 2
∑

α∈N

∑

m∈Lk

qn(ατ + m).

Now we apply result (18) on the series
∑

m∈Lk
qn(ατ + m) = εn(ατ). Thus,

Gn(τ) = 2ζLk

M (n)

+ 2
∑

α∈N

∑

r∈Lk\{0}
(2πi)|n|

(Ak+1

2

)
rn

(
1 + i

r
‖r‖

)
e2πi〈r,αx〉e−2π‖r‖αx0

= 2ζLk

M (n)

+ 2(2πi)|n|
(Ak+1

2

) ∑

α∈N

∑

r∈Lk\{0}
rn

(
1 + i

αr
‖αr‖

)
e2πi〈αr,x〉e−2π‖αr‖x0

= 2ζLk

M (n)

+ 2(2πi)|n|
(Ak+1

2

) ∑

l∈Lk\{0}

( ∑

r|l
rn

)(
1 + i

l
‖l‖

)
e2πi〈l,x〉e−2π‖l‖x0

where r|l means that there exists an α ∈ N such that αr = l.

We rewrite the result in the following way:
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Theorem 2. The Fourier expansion of the series Gn on the right half-space has
the representation

Gn(τ) = 2ζLk

M (n) + 2(2πi)|n|
∑

l∈Lk\{0}
σn(l)P+

N (2πl; τ) (20)

with
σn(l) = σn1,···,nk

(
(l1, . . . , lk)

)
=

∑

r|l
rn. (21)

Remarks.

1. By means of the Fourier series expansion, we observe that the series Gn do not
vanish in the case |n| ≡ 1(2) which implies that we actually deal with non-trivial series.

2. We can also rewrite the multiple divisor sum in the form of an ordinary divisor
sum

σn(l) =
∑

r|l
rn =

∑

α∈N,α|gcd(l1,...,lk)

( 1
α
l
)n

= lnσ−|n|
(
gcd(l1, . . . , lk)

)
.

3. Using multi-index notation, we observe once more a similarity of the form of the
Fourier expansion of Gn with the form of the Fourier expansion of the classical complex
analytic Eisenstein series Gn which reads (cf. [11])

Gn(z) = 2ζ(n) +
2(2πi)n

(n− 1)!

∑

l∈N
σn−1(l) e2πilz. (22)

4. With respect to the generalized non-analytic Eisenstein series discussed in [8,
24, 25] the series Gn have in common that their Fourier coefficients are composed by
divisor sums in the case r 6= 0 and by a variant of the Riemann zeta function in the
case r = 0. A significant difference concerning the structure of the Fourier expansion
is that in the monogenic case the first coefficient does not depend on x0 and that there
appear monogenic exponential plane wave functions instead of Bessel functions.

The reason for the appearance of Bessel functions in the Fourier series expansion
of the non-analytic Eisenstein series discussed in [8, 24, 25] is that those non-analytic
Eisenstein series are automorphic eigenfunctions of the Laplace-Beltrami operator (see
[27]). Monogenicity leads to a separation of the expression αf (r, x0) into an x0 free
coefficient part αf (r) and a pure exponential part.
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