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On a New Type of Eisenstein Series
in Clifford Analysis

R. S. Krauf3har

Abstract. In this paper we deduce a recursion formula for the partial derivatives of the funda-
mental solution of the generalized Cauchy-Riemann operator in R¥*! in terms of permutational
products. These functions generalize the classical negative power functions to Clifford analysis.
We exploit them to introduce a new generalization of the classical complex analytic Eisenstein
series on the half-plane to higher dimensions satisfying the generalized Cauchy-Riemann dif-
ferential equation. Under function-theoretical and number-theoretical aspects we investigate
their Fourier series expansion in which multiple divisor sums and certain generalizations of the
Riemann zeta function play a crucial role.
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1. Introduction

In the twentieth century several generalizations of the classical Eisenstein series (cf. [7,
33))

1
n(z) = ) B > 4,1 1
Gn(2) CETL (n >4, Im(z) > 0) (1)
(c,d)€ZXZ\{(0,0)}

to higher dimensional spaces have been discussed by several authors related to a rich
number of different aspects in function and number theory. C. L. Siegel (cf. [20])
considered generalizations of these series in C*** being endowed with the regularity
concept of analyticity of functions in several complex variables. H. Maaf§ introduced in
[26] also non-analytic Eisenstein series in C by

Ey(z) = % Z (%)S (s € C,Re(s) > 1,Im(z) > 0).
ged(c,d)=1

These non-analytic Eisenstein series are eigenfunctions of the Laplace-Beltrami operator
attached to the upper half-plane. Generalizations of them to higher dimensions with
respect to certain discrete subgroups of Vahlen’s group acting on hyperbolic spaces are
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discussed, for example, by J. Elstrodt, F. Mennicke and J. Grunewald (cf. [8, 10]) in the
eighties and nineties and by A. Krieg in 1988 in [24, 25]. The generalization presented
there, are not hypercomplex analytic in the sense of [3, 6, 13, 19, 30]. However, they
are eigenfunctions of the higher dimensional Laplace-Beltrami operator attached to the
upper half-space.

In this paper we deal with a generalization of the classical complex analytic Eisen-
stein series to hypercomplex analysis which are null-solutions of the generalized Cauchy-
Riemann operator and therefore hypercomplex analytic. The crucial idea is to re-
place the usual negative power functions by the fundamental solution of the general-
ized Cauchy-Riemann operator go(z) = H,ZHL’CH and by its partial derivatives gn(z) =

%QO(Z‘), respectively.

In Section 3 we deduce a recursion formula for the functions ¢, in terms of per-
mutational products in analogy to H. Malonek’s approach for the Fueter polynomials
in [28, 29]. Then, in Section 4, we consider summations of these functions over lat-
tices in R¥*! which lead to generalizations of the Riemann zeta function. With the
help of the recursion formula deduced in the previous section, we establish relations to
certain Epstein zeta functions. In Section 5 we introduce a generalization of the series
G, on a half-space, starting from the Laurent expansion of the generalized monogenic
p-function (see [6, 16 - 18, 22, 23, 31]) and study basic properties of them. In Section 6
the Fourier expansion of the generalized Eisenstein series is determined explicitly. The
first Fourier coefficient turns out to be one of the generalized Riemann zeta functions
discussed in Section 4. The other Fourier coefficients are composed by divisor sums.
Using multi index notation, the Fourier expansion can be written in a similar form as
in the classical complex case. We discuss the influence of monogenicity and compare
the monogenic Eisenstein series with the generalizations of Eisenstein series to higher
dimensions described in [8, 10, 24, 25].

2. Preliminaries

We introduce the most important notions. For detailed information about Clifford
algebras and their function theory we refer, for example, to [1, 5, 17].

By {e1,ea,...,e,} we denote the canonical basis of the Euclidean vector space R*.
The attached real Clifford algebra Clgy, is the free algebra generated by R* modulo the

relation

x* = —|x|*eo

where x € R* and e is the neutral element with respect to multiplication of the Clifford
algebra Clgi. In the Clifford algebra Clg, the multiplication rules

€i€j +€j€i = _25ij60 (Z,j = 1,,k>

hold where 6;; is the Kronecker symbol. A basis for the Clifford algebra Clyy is given
by the set {eA A C {1,...,k}} with eq = ej, e, ---€;,, where 1 <y < ... <[, <k
and ey = ey = 1. Every a € Cly, can be written in the form

a:ZaAeA (aa € R).
A
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Two examples for real Clifford algebras are the complex number field C and the Hamil-
tonian skew field H. The conjugation anti-automorphism in the Clifford algebra Clgyy is

defined by
a = Z aA€s
A

where e4 =¢;,€, ,---¢€, withe; = —e; for j =1,...,k and ¢y = eg = 1. By

A1 = spang{l,e1,...,ex} =R® R*  Clog
we denote the space of hypercomplex numbers
2 =xg+x1€1 + T2€o + -+ TgeL

often called para-vectors. A para-vector consists only of a scalar part and a vector part.

In this paper we denote pure vectors by a bold face letter, and scalars, para-vectors
or Clifford numbers by a normal letter. In this notation the hypercomplex number z is
represented in the form z = z¢ + x with Sc(z) = z¢ and Vec(z) = x.

We introduce the right half-space of A1 as the set of numbers
H+(Ak+1) = {Z S Ak+1| SC(Z) > O}

and similarly the left half-space. The left and the right half-space are separated by the
dividing hyperplane
T = {z € Apy1| Sc(z) = 0}.

A scalar product between two Clifford numbers a,b € Clg is further defined by
{a,b) = Sc(ab)

and the Clifford norm of an arbitrary a =) 4, asea is

la]l = (; eal?)

1
2

1 _

Any element z € Ag1\{0} has an inverse element in A given by 27" = —sz“z-

Further, we recall that the permutational product of arbitrary Clifford numbers
ai,...,an is defined by

1
alxagx---xan:ﬁ g @iy - Qi = o0 Gy
" perm(iq,... in)

For details we refer to [28, 29]. One further uses the abbreviation

a1><---><a1><---><an><-~-Xan:[al]kl X[CLQ]kQX"'X[an]kn~
———

N—_—— —

k1 times k, times
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In order to distinguish powers in terms of the permutational product from powers in
the usual sense, one sets brackets when meaning ordinary powers. One has to write for
example [a1]? X az = a1 X a1 X ag, but (a1)? X as = (ay - a1) x as.

In this paper we also deal with complex Clifford algebras. In the same way as a real
Clifford algebra is constructed, one can construct a complex Clifford algebra starting
from the canonical basis in the complex vector space CF. For details we refer, for
example, to [5]. The complex Clifford algebra can be represented by the tensor product
Clox ®r C. Thus, every element a in the complex Clifford algebra Cly; ®r C can be
represented in the form a = ) , asea, where A C {1,... ,k} and ay € C. The elements
ay € C itselves will be written in the form a4 = a4, +ia4, with as,,a4, € R.

In order to present many calculations in a more suggestive way, the following no-
tations will be used, where n = (n1,...,n;) € N and j = (j1,...,jx) € N§ are
k-dimensional multi-indices:

n n
x* =z xt, o nl =ng! ool Inl=ng 4+ 40y

(5) =0 ()
J J1 Jk
i<n & ji<ng,..., 0k <ng.

By 7(i) we denote the multi-index (nq,...,ng) with n; = d;; for 1 < j <k.

A. C. Dixon [6], R. Fueter [17], G. C. Moisil and N. Theodorescu [30], V. Iftimie
[19] and R. Delanghe [3] are some of the most important creators of a function theory
in Clifford algebras. In A1 one considers the generalized Cauchy-Riemann operator

0 =0

Suppose U C Ag1 is open. Then a real differentiable function f : U — Clgg is called
left (right) monogenic at a point zg € U if Df(z9) = 0 or fD(z9) = 0, respectively. The
notion of left (right) monogenicity in A1, provides a generalization of the concept of
complex analyticity to Clifford analysis in the sense of the Cauchy-Riemann approach.
This concept is often called hypercomplex analyticity.

Many classical theorems from complex analysis could be generalized to higher di-
mensions by this approach. We refer, e.g., to [1, 17]. However, because of the non-
commutativity in Clifford algebras, the positive and negative powers of the hypercom-
plex variable z are not monogenic. In hypercomplex function theory the positive powers
are substituted by the following polynomials, mentioned first in [14] and therefore often
called Fueter polynomials:

Vn<Z) = |T|' Z Zr(ny)*m(ng) " " Fmw(nyg)

wEperm(n)

where perm(n) denotes the set of all permutations of the sequence (ni,...,nx) and
zi = x; —xoe; for i = 1,... k and Vp(z) = 1. H. Malonek has shown in [28, 29] that one
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can write the Fueter polynomials in terms of permutational products of the variables
zi, more precisely

1
an,...,nk(z) = E[zl]nl X X 2]

The negative powers are substituted (cf. [4, 14]) by the function

z oinl
QO(Z) = “,Z‘H—k_H and qn(z) = Oxn qo(z) (|Il| > 1).

In the next section we will show that we can also write the functions ¢, in terms of
permutational products.

It is important to mention that the set of left (right) monogenic functions forms just
a Clifford right (left) module for £ > 1. The product, the quotient or the composition
of two monogenic functions gives in general no monogenic function for £ > 1. However,
supposed that f is a left (right) monogenic function and if further w € Aiy; and
c € R\{0}, then F(z) = f(cz +w) is a left (right) monogenic function in the variable z.

3. A recursion formula for the g,-functions

In this section we deduce a recursion formula for the functions ¢, in terms of permu-
tational products. The representation of the g,-functions that we will obtain in this
section provides an analogy to H. Malonek’s representation of the Fueter polynomials
Vi in [28, 29].

We first prove
Lemma 1. Suppose n € N. Then

8n n—1 n—1 .
a—ﬂqo(ZPZ( i )J!Q<n—(j+1>m1>(z)

(e (o]

Proof. We prove this lemma by induction. By a direct computation, we obtain

. €1 k—l—l €1 k—l—l zZe1z
(&) = T T T R T 2 [

k—1__ k+1 _
ZQO(Z)[ 5 Z 161— ez 1]

Thus, the assertion is true for n = 1.

In the sequel we assume n > 1. For n € N we get by induction

—{z7 '} =n! (7 le)"z 7! and o

—1:_1n!—1 —ln.
5ur e C B O
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Hence, we obtain

0 X n—1
Unt1)r(1)(2) = Ere > ( , )J Un—(j+1))7(1)(2)
]:

k E+1

__161)j+1 n (_1)j+1(T>(612—1)j+1]

(n_l) {qw Hr()(2)
k41

+_q<n—(j+1>>7<1>( z)
) _(E)(jJrl)( -1 )j+2+(_1)j+2<

l\.'J

M'ﬁ
AO

E+1
2

2 )+ DGer=p] |

=2 (n;1>3 G(n—j)r(1)(2)
, [(’f 1)(——16 )t (—1)3'“(%)(61;;_1)”1]

)J d(n— j)T(l)( )

— . . +1 .
)(2*161)J+1 ( 1)]+1<k : >(€121)J+1:|
and the proof is finished i

Analogously we may proceed for the determination of
o™i
oz 1o

for e =2,..., k. We get the same recursion formula replacing simply e; by e;.

Now we want to establish a recursion formula, where n is a general multi-index of
NE\{0}. As soon as we deal with mixed derivatives, permutational products appear.
We will illustrate this by the following examples.

We assume i, j € {1,...,k} to be distinct. Then we get

3%3'81 q0(2) = qr(j)(2) [<%)(716i) - (%yeiz_l)]

Faoe) [ (F5) e e + (Fh ) e e )
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and further
qo(2) k—1y\ __, k1 »
dx,;0x2 Gr(j)+r(i) (2) [(T)(z €;) — (T)(eiz )]
k 1 Ny k+1 _ -
(S5 E e+ (S5 e e )

+ ¢r (i) (2) [
Farn@ |(F5 ) E e+ (B s
(

2
oo |

— (%)(eizl) . [eizfl] X [ejzl]} )

For the iteration of this procedure we deduce by a simple induction proof the following
formulas:

= —(ni + n; -+ 1)(612’_1) . [eiz—l]”i % [ejz—l]nj—kl'

With these formulas we can show finally the following theorem using the notation

0<j<n  j1=072=0 Je=0

Theorem 1 (Representation of the gu-functions in terms of permutational prod-

ucts). Let n = (ny,ng,ns,...,n) € NE. Then
ny .
tnrr(2) = > (5 )liltan—5(2)
0<j<n J
kE—1 , .
| [<T)[Tlek]”“ X [l - (5 e)
ik +1 -1 —17j —17j
+ (—1)Y (T> (e1277) - lerz7 Pt x -+ X [egz™ 7 )F
Proof. For multi-indices of the form n = (n1,0,...,0) with n; € Ny, the statement
is true according to Lemma 1. Suppose now n to be a multi-index of the form n =
(n1,m2,0,...,0) where ny € Ny. For ny = 0 the statement is true according to Lemma

1. By a direct computation one verifies immediately that the assertion holds also for
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ng = 1. In the sequel we assume no > 1 and compute

0
8_mqn1+1’n2’0""’0(z>

n
( >|J\ Anqy—ji1,n2+1—352,0,.. ,O(Z)
i<n J

{ 1 e x 7Tl (27 )
+ (—1)liHt (%)(elzl) erz7 1P x [6221]j2:|

+ Z ( )‘Jl'in —Jj1,m2—j2,0,..., 0(2)

0<j<n
) [ e e (e
+ (_1)|.i|+2 (%)(elz—l) . [elz_l]jl « [622—1]j2+1:|

ny .
=D <j >|J“ Gy~ (na+1)—j2.0,....0(2)

0<j<n

| {(%)[i—lezw x 7 e}t - (27 V)

+ (—1)Ul+1($)(elz—l) Jerz" 1 x [eQZ—l]Jé}

J2—=Jj2+1 n .
+ > ( >|.]“ Qny—j1 na+1—ja,0...,0(2)

@iz 3 T
k—1 . .
: k+1 . .
(DI () (e - fers I x []]
n+7(2)\,.
= Z ( . ( )>|J|' Gny —j1 ,(n2+1)—ja,0,...,0(2)
0<j<n+7(2) J
k—1 ,

+ (—1)liHt (%)(elzl) erz7 1P x [6221]j2:| .

So, the assertion is also true for ny + 1. Thus, the formula is proved for all indices n of
the form (ny,ns,0,...,0) with (ny,n2) € N2.

Next we assume n to have the form n = (n1,n2,n3,0,...,0) with (n1,n2,n3) € N3.
For multi-indices n = (ny,n2,n3,0,...,0) with ng = 0 the validity of the formula
has been shown by the previous induction step. With induction over nz one verifies
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analogously to the previous induction procedure that the formula holds for all multi-
indices of the form (nq,ns,ns3,0,---,0). Successively one proceeds to consider then
multi-indices n of the form (n1,nq,ns,n4,0,...,0), proves the formula by induction
over n4 analogously as we have shown in the second step, and proceeds with further
induction steps until one finally obtains the validity of the formula for all multi-indices
(n1,n2,...,n;) € NER

For the sake of completeness, it remains to derive a formula for the functions ¢u,
where m := (my,...,my) is a multi-index with m; = 0. In this case one chooses an
a € {2,...,k} with m, # 0. In the associated formula for the function ¢, the index
a plays then the role of the index 1 in Theorem 1. The following corollary provides a
more precise formulation and furthermore a correction of [22: Lemma 1.2]:

Corollary 1. Let a € {1,...,k} and n € NE. Then

nir@) = Y (?)\j!!qn_j(z)

0<j<n

{( >[——1 W7 x e x [E e ] - (27 )

E+1

+ (_1)Ij\+1( ;

)(eaz_l) Jerz 7 x e x [epz T )R

As a first application of this recursion formula we get the following estimates on
gn-functions.

Proposition 1. For all multi-indices n € NE the estimate

olnl _k(k+1)-(k+n[—1)
H no(2)]| = [z [E+a] (2)
holds for all z € Ag41.
Proof. We first restrict ourselfes to the case where n = (n,0,...,0). A simple

calculation shows that the estimate holds for n = 0 and n = 1. In the sequel we assume
n > 1 and consider

”;n:;% H i(?)j A(n—j)7(1)(2)
{( . 161)]‘“—1—(—1)”1(%)(@121)3'“} '
S ((k=1) + (n—j))!
< e | 2 T

k (k—1)+n—j
——
e LZO< n-j )}
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k | <k+n)
= —nl
|| ]|+t n

B k (k+n)!
zllFEE R

Thus, the assertion holds for indices of the form n = (n,0,...,0).

With the estimates

[(e1271) - [erz7 17" x -+ x [epz 1% || < Jlerz BT

[E 7 erl™ x - x B et - (77 )| < 77 eV

>0 0=(5)

and the formula

in combination with the statement of Theorem 1 or Corollary 1, respectively, we get
further, applying a simple induction argument, that

lgn ()]l < gm0, 02 (n € Ng)

and the assertion is shown i
Remarks.

1. Since the functions gy, are R-homogeneous polynomials of degree —(k + |n|) (see
[1]) one obtains directly an inequality of the general type

lgn(2)|] < C(m) 2|~ *+mD
with a constant C(n) € R”Y being dependent on n. As a direct consequence one gets

lim ¢n(z) =0. (3)

zZ— 00

2. In [15, 17] R. Fueter proved for the quaternionic case that
lgn ()]l < (] +2)t [l =2, (4)

He used a different method to obtain this inequality. His proof is based on the formula

In|
w(Q) = ILALC)Y] (e H,C e H\)) o)

where A, denotes the Laplace operator with respect to the variable z. We observe
that the estimate in Proposition 1 for the quaternionic case is stronger than R. Fueter’s
estimate.
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4. The generalized Riemann zeta function associated

with the ¢,-functions

Now we proceed in the direction to consider summations of the functions gy, (w) over a
lattice in A1 which leads to a generalization of the Riemann zeta function.

The general form of a p-dimensional lattice in Ay,1 can be presented by
Qp=Zw1+ ...+ Zw, (1<p<k+1). (6)

where wi,...,w, € Ai41 are supposed to be R-linear independent para-vectors. For
the following applications we need G. Eisenstein’s lemma formulated in the para-vector
formalism:

Lemma 2 (cf. [7, 31]). Suppose ag,ay,...,as are R-linear independent para-vectors
in Ax41. Then the series

Z |moao +miay —l—...—i—mtatH*(t*a) (7)
(mo,m1,...,m¢)€EZ+1I\{0}

converges if and only if o > 2.
We further split the lattice into a positive and negative part.

Definition 1. To a given p-dimensional lattice (6) in A1, the positive semi-lattice
Q; is defined by

QF = Nwy + Zwy + Zws + . .. + Zwy,
U Nwsy + Zws + . .. + Zw),

U Nw,,.

The negative part (), of the lattice €2, is defined by

Q, = (2 \{0})\2]

Remarks. We observe that
zeQf & —zeQy and  QFUQ U{0}=Q,.
In particular, for £k =1 and w; = 1 one gets
QOF =N, Q7 =N, O =NU-NU{0} =Z.

With this notation we introduce
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Definition 2 (Generalized Riemann zeta function of Clifford analysis in Agy1).

Let p € Nwith 1 < p < k+ 1. Let further 1 € N§ be a multi-index and suppose for

= k that 1] > 1 and for p = kK + 1 that |1| > 2. Then the generalized Riemann zeta
function of Clifford analysis in A1 is defined by

Gr =" aw). 8)

wEQ;

The series converges absolutely which follows by Lemma 2 after having applied
Proposition 1. Note that in the case |1| = 1(2) we obtain

207 = Y aw).

weQ,\{0}

Now we want to discuss a simple example of the generalized Riemann zeta function
which illustrates that these functions are closely related to Epstein zeta functions. For
convenience we recall (cf. [21]) that the Epstein zeta function associated with a given
(p X p) positive definite symmetric matrix S is said to be

(s(s)= > (g"8g)"  (s€C,Re(s)>5). (9)
gez7\ {0}

In the sequel we consider a p-dimensional lattice with p < k and Sc¢(€,) = 0. The
simplest non-trivial example for the generalized Riemann zeta function related to this
lattice is

=5 X ww).

wep\{0}

According to Lemma 1, we know
E—1N,__ k+1 _
Gr(i)(2) = qo(2) [(T>(z tei) — (T)(eiz 1)} :

Therefore, we obtain the representation

Grew =y X e () e (e

wep\{0}
1 Z (k—1)e; (k+1)wew
4 ]|+ ][+
wep\{0}
k—1 1 k+1 we;w
CE e () < B wei
4 eilw W<2( +1)+ 4 Z ][5
weN,\{0}
where W = (wy, ..., wp) since the series
RN R D
][ ][+
wep\{0} wep\{0}
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converge both absolutely.

In particular, one obtains for the quaternionic case

Q, 1. wiw
Gre0) = jiGwew@ 4 > g
wep\{0}
where 7; denotes the [-th imaginary unit in the quaternionic skew field with [ = 1,2, 3.

From this representation we can deduce immediately that in particular for the
quaternionic case

1657 (rDI < G Gwerw () + G (2) = S (2

and for the more general (k + 1)-dimensional case

k— kE+1

e r@nll < o cweow (B2 +

E+1
4

k+1 1 kE+1

Gwerw (T3 ) = ghawew (S5 ).

With Proposition 1 we infer that for any arbitrary index n € NF\{0}

In|—1

el < TT &+ méwew (504 In))).

pn=0

The next step is to show that we actually deal with non-trivial series. For p < k we
consider the p-fold periodic monogenic cotangent function associated with the lattice
Q, (for details see [22] and the forthcoming paper [23]) which is defined by

cot® (z) = { qo(2) + ZwEQk\{O}[qO(’Z +w)—qo(w)] ifp=k 10)

> wen, do(z +w) if p < k.

By a direct computation we obtain the Laurent expansion around the origin which reads

cot®(z)=qo(z)+2 > V2)Gr ). (11)

[11>0,1]=1(2)

We observe that there must be some 1 € N¥ for which Clg\lf (1) # 0, otherwise cotP) —gq
would be the zero function, which is a contradiction.

For p = k+1 we consider the monogenic (k4 1)-fold periodic generalized p-function,
introduced by A. C. Dixon in [6] for the three-dimensional case, by R. Fueter [16] for
the quaternionic case, and by J. Ryan [31] for the (k + 1)-dimensional case.

Forani € {1,...,k} the generalized p-function associated with a (k+1)-dimensional
lattice Q1 denoted by @y : Ax1\Qrt1 — Agy1, is given by

or)(2) =@+ D (@ (z+w) = g (W), (12)
wEE+1\{0}
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Its Laurent expansion around the origin turns out to be

Q 1 .
pr(2) =) +2 ) Va(2)Cy ™ (04 7(4)) (13)
(In[>0,In[=0(2))

and with a similar argument we conclude that there must exist some indices 1 for which

Js\zf“ (1) does not vanish.

This type of generalization of the Riemann zeta function to higher dimension plays a
crucial role in the theory of monogenic generalizations of the classical complex analytic
Eisenstein series to Clifford analysis.

5. Generalized Eisenstein series in Clifford analysis

One approach to arrive at the Eisenstein series (G,, in the complex plane is the Laurent
expansion of Weierstrafy’ p function associated with a two-dimensional lattice 2 =
Zw1 + Zwo around the origin, reading precisely

1

0(2) = 5 + 3@+ DGanpa():

in which the Eisenstein series

1
Gn(Q2) = Z per (n > 2,n even)
weQ\{0}

appear naturally. They are absolutely convergent if and only if n > 2. Without loss of
generality we can restrict ourselfes on considering the special lattice

O =Z+2Zr  with Im(r) > 0

since it can be transformed by a simple rotation and dilatation into a general one.
Regarding the associated series G, (2*) as a function series in the upper half-plane
variable 7, one arrives at the classical complex analytic Eisenstein series (1).

In order to generalize the Eisenstein series G,, to Clifford analysis we proceed in a
similar way. We consider the Laurent coefficients of the generalized monogenic Weier-
strassian function @, ;). They read 26\24’““ (n+7(i)) as mentioned in the previous section.

Without loss of generality we restrict ourselves on considering a special lattice
7t + Qp
with
Sc(r) >0, and Qp =Zw1 + ...+ Zwy, Sc(w;)) =0 Vi=1,...,k

since any arbitrary lattice (2541 can be transformed by a rotation into this special lattice.
Then we consider the series C%J + (n) as a function in the hypercomplex variable 7 on
the right half-space H*(Ag1). This motivates to introduce the following definition (cf.

[22]):
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Definition 3 (Generalization of the classical Eisenstein G). Let n € NE be a
multi-index with [n| > 2. Then the Eisenstein series of type Gy : HT (Ag+1) — Ags1
are defined by

Gn(7) = > gn(aT +m)  (Sc(r) > 0). (14)
(a,m)€Zx 0, \{(0,0)}

We proceed to show that these series represent actually well-defined monogenic
functions.

Proposition 2. The series Gy, defined in (14) converge normally on the right half-
space HY (Aky1) if and only if |n| > 2. Furthermore, they represent left and right
monogenic functions on H'(Agt1) -

Proof. As a direct consequence of Lemma 2 in combination with Proposition 1 we
infer that the series Gy, converge absolutely if and only if [n| > 2. With any compact
set K € HY(Agy1) we can associate an arbitrary real € > 0 such that K is strictly
contained in the strip

Vo(H (A1) = {T € HY(Ags1) : |[[Vee(r)] < é and Sc(r) > 5}.
These strips are subsets of H'(Agy1) with
lim Vo(H Y (A1) = H (Agepa).
Next we show that there is a real p > 0 with

ler +dl| = pllc + d (15)

for all 7 € V.(H* (A1) and (¢,d) € R x Rk, For (¢,d) = (0,0) the inequality is
trivially satisfied. In the sequel we assume (¢,d) # (0,0). We further observe that

ler +dll 2 plle+dll < [ler+d| = p

o~ ¢ 5 d
with ¢ = Tetd] and d = Tetd]” We observe that
2 2
B ~ c d
62 + HdH2 — H H —1.

2+ df* e+ d]?

For 7 = zg + x we obtain

&7 + d| = ||ézo + éx + d| = \/6%3 +[lex +d|? > \/6262 + [lex + dlf2.

The set 1
K:{(x,é,&)ekaRka: x| < = and 52+|\&\|2:1}
g
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is compact. The function

6K R, (x,6,d) (/@22 4 ox + d|?

is obviously continuous on K. Therefore, ¢ takes a minimum in /C.

If ¢ = 0, then ¢(x,é,d) =1 > 0. If ¢ # 0, then ¢(x,éd) > |é| > 0. Thus, the
validity of (15) is shown.

Next we apply (15) in combination with Proposition 1 under the condition that
7 € Vo.(H" (Ag41)) on the expression

> lgn (a7 + m)|

(a,m)€Zx QL \{(0,0)}

<C 3 Jar+m|T0nE
(a,m)€Zx 2 \{(0,0)}
< Cp~(Inl+k) Z | + m|~(RI+F)

(ee,m)€Zx 2, \{(0,0)}
—(|n r r —3(In|+k

g€eZF1\{0}

= Cp~ PO iy (3 (] + k)

< o0

where C' denotes a positive real constant and (y ¢y the Epstein zeta function associated
with the matrix W' W where W = (eg,ws,...,wg). Thus, the series G, converge
normally in H(A,1). As a consequence of Weierstrafy’ convergence theorem we can
infer, provided |n| > 2, that the series G, represent left and right monogenic functions
in H*(Ag41), since the functions g, (a7 + m) are left and right monogenic on the right
half-space H (A1) for (a,m) € Z x Q\{(0,0)}

Further elementary properties :
1. The functions Gy, take all their values in A 1.

2. If |n| = 0(2), then the series Gy, vanish identically, since the functions ¢, are odd
in this case.

3. If |n| = 1(2), then the series Gy, are even, because in this case the functions gy
are even. In the next section we will observe by means of the Fourier expansion that
for [n| = 1(2) these functions are really non-trivial.

4. The functions Gy, have singularities of the order (|n|+ k) precisely in the rational
points with respect to the basis {wy,...,w} of the dividing hyperplane

T = {zEAkﬂ‘ Sc(z)zO}, ie. in Qwq + ...+ Qug.
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5. The series Gy, are k-fold periodic functions with respect to the lattice {25 which
follows directly by rearrangement of the series.

6. For |n| > 2 the series Gy, contain the monogenic Eisenstein series of type 551’“)

described in [22, 23] with respect to the lattice Q) which read

eV (z) =) galz+w) (16)

weN

as a subseries or, in other words, partial derivatives of the k-fold periodic monogenic

cotangent. The series 6£1k) generalize the complex analytic Eisenstein series of type

en(2) =) (z4m)™  (n22) (17)

MEZL

to Clifford analysis.

7. For any arbitrary u € Z\{0} we get

Gn(ur) = Z Gn(uaT + m)

(a,m)€Zx 2, \{(0,0)}
i Z an (a7 +2)
(oe,m)€Zx QL \{(0,0)}
= u MG (2 Q)

where , denotes the lattice u=1Q; which obviously contains the original lattice 2.
To obtain this formula, we have exploited the R-homogeneity of the functions gy.

8. The set of singularities of Gy, (7), which in the sequel will be denoted by S, is
invariant under transformations of the form

s—s+m (meQseS)

s+ s L,

The group which is generated by these types of transformations acts discontinuously
on H*(Ags+1) and can be regarded as a generalization of the classical modular group
SL(2,Z) for the (k + 1) dimensional case (compare, e.g., with [9]).
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6. The Fourier expansion of the generalized Eisenstein series

Since the series GG, are k-fold periodic and twice continuously real differentiable on the
right half-space, they can be represented there by a normally convergent Fourier series

of the form
Z CYf(I‘,ZL‘()) 627rz'(r,x>
rEQZ

where 27 denotes the dual lattice of §2;,. Furthermore, monogenicity provides the special
Fourier series representation

ap(0)+ > ap(r)Pr(2mr,2)
reQy\{0}

on the right half-space where

P+(I', Z) = <]- + iﬁ)e_”rumoeiﬁ‘,x)
r

is the monogenic plane wave function from [5].

We will determine the Fourier expansion on H'(Ag41) of the Eisenstein series of
type Gn(7) associated with the orthonormal lattice

Ly =7Zei + ...+ Ze, C RF.

In the sequel we assume |n| = 1(2).

Complex function theory provides several methods to determine the Fourier expan-
sion of the Eisenstein series of type G,. A classical method is to determine first the
Fourier expansion of the Eisenstein series ¢, being a subseries of G,,, which admits
a more direct conclusion about the Fourier series representation of G,. We refer for
example to [11, 32]. In [32] there are also given methods how to compute the Fourier
series of GG, directly without determining the Fourier series of ¢,,. However, the methods
applied there are still not available in Clifford analysis.

Thus, we first expand the series eglk)(z) associated with the orthonormal lattice Ly,
in R* for |n| > 2 into a Fourier series of the form

Z o (I‘, x0)627ri<r,x)

I'ELk

on the right half-space. Without loss of generality we assume n; > 0. For the sake of
illustrating the integration mechanism leading to recursion formulas we will not use the
multi-index notation within the following computations. For the first Fourier coefficient
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we obtain

1 11
ayr(0,z) :/ / / ( Z qnl,m,_,mk(z+m)>dw1dx2---dack
0 o Jo

1 k
(/ dni,na,...,ny (lEo + {Z 6)\1’)\} + m) dx1>dx2 e odxy,
0
k

A=1

k
—Adni;—1,na,...,ny (330 + |:Z 6/\.I‘)\:| + m) }dm2 coodxg

A=2

similarly to the classical complex case.

In the sequel we assume r # 0 and compute

Oéf(r, 1130) = /[ k ( Z dni,na,...,ny (Z + m)€_27ri<r’x>)d$1d$2 cee dl‘k
0,1

meL;

= / (Gn1.ms,.. g (2) €72 X)) dy davs - - - day,.
Rk

We first simplify this integral by applying the partial integration method successively:

af(r,f]jo) = / .../ (/ thngy--.,nk(2)6_27ri(r’x>dx1)dw2.”dxk
R R R
Tr1 =00
= / .o ./ lqn1_17n2’...,nk (Z)e—2ﬂ1<r,x>
R R #1=—00

+ 2mirg / Qny—1,m9,...nx (2) e_2m<r’x>dac1} dxy -+ - dxy,
R

= (2ri)ry / / { / G —1ma e (2) 6_2”<r’x>d1’1] A - da.
R R R

After having applied further n; — 1 steps of partial integration with respect to xy, we
get

ayp(r,zg) = (2mi)"ry? /

qo,ng,.“,nk (Z) 6_27T1<r7x>dx1d1'2 ctt dxk.
Rk

Now we apply the same procedure to the variables s, ...,z which yields finally

af(r,zg) = (27?2')'“'1'“/ 90.0.....0(2) e~ 2mUeX) o dag - - - da.
Rk
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For xy > 0 one obtains applying the residue theorem (cf. for details [2, 22]) that
: A
/ do(2) =27 4o s - iy, = ﬂ(l n iL)e—szrnxo
RK 2 ]
where Ay11 denotes the surface of the (k 4 1)-dimensional unit ball.

Finally, we get for 5( )( ) the following Fourier series representation on the right
half-space:

eP(z)= > (@mi)"rPy(2nr,2) (18)

reL;\{0}

where PZ‘\," denotes the normalized monogenic exponential plane wave function which is
simply said to be
Py (27r,2) = Apy1 PT (271, 2).

Using multi-index notation, the Fourier expansion can be presented in a similar form as
the Fourier expansion of the complex analytic Eisenstein series ¢,, which reads precisely
(cf., e.g., [11])

en(z) = —( Z (27i)" " ez, (19)

(n—1)!
reEN
Furthermore, we observe that the coefficients af(r) are pure C scalars.

The knowledge of the Fourier expansion of the series 5( ) will admit an explicit
determination of the Fourier expansion of the series GG,,. We consider

Gn(T) = Z qn(m)—l—z Z qn(on'—i—m)—l—z Z qn(—aT + m)

meL\{0} aeNmeLy aceNmeLy
= 2(1F(n) 42 Z Z dn(aT + m).
aENmMELy

Now we apply result (18) on the series ) ., gn(aT +m) = en(at). Thus,
Gn(7) = 2G4 (n)
+2 Z Z n| (Ak2+1> (1 + Zm) 27m'<r,ax)e—27r||r||am0

aeNreL;\{0}
= 2(f (n)

+ 2(2mi) |n|< k+1> Z Z r" (1 + 73 ar >€27TZ'<(II‘7X>€*27THO¢I‘H33O
el rebin{o} o]

= 2(yF (n)

+2(2n )|n|<Ak2+1> Z <Z )(1+ZH1H) p2mi(Lx) =271z

leLi\{0} r|l

where r|l means that there exists an « € N such that ar = 1.

We rewrite the result in the following way:
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Theorem 2. The Fourier expansion of the series Gy on the right half-space has
the representation

Gn(7) = 204F (n) +227))™ >~ o () Py (2715 7) (20)
le L\ {0}
with
oa(D) = oy oy (s ) = D 1™ (21)
r(l
Remarks.

1. By means of the Fourier series expansion, we observe that the series G, do not
vanish in the case |n| = 1(2) which implies that we actually deal with non-trivial series.

2. We can also rewrite the multiple divisor sum in the form of an ordinary divisor
sum

oall) =3 1" = 3 (l )n = 10 (ged(ly, ... ).

(67
r|l a€N,alged(ly,...,lk)

3. Using multi-index notation, we observe once more a similarity of the form of the
Fourier expansion of GG, with the form of the Fourier expansion of the classical complex
analytic Eisenstein series G,, which reads (cf. [11])

Gn(2) =2¢(n) + % Z Opn_1(1) 2™, (22)

" leN

4. With respect to the generalized non-analytic Eisenstein series discussed in [8,
24, 25] the series Gy, have in common that their Fourier coefficients are composed by
divisor sums in the case r # 0 and by a variant of the Riemann zeta function in the
case r = 0. A significant difference concerning the structure of the Fourier expansion
is that in the monogenic case the first coefficient does not depend on zy and that there
appear monogenic exponential plane wave functions instead of Bessel functions.

The reason for the appearance of Bessel functions in the Fourier series expansion
of the non-analytic Eisenstein series discussed in [8, 24, 25| is that those non-analytic
Eisenstein series are automorphic eigenfunctions of the Laplace-Beltrami operator (see
[27]). Monogenicity leads to a separation of the expression ay(r,zo) into an z¢ free
coefficient part as(r) and a pure exponential part.
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