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On Bernis’ Interpolation Inequalities in
Multiple Space Dimensions

G. Grün

Abstract. In spatial dimensions d < 6, we derive estimates of the form

Z

Ω

un−4|∇u|6 +

Z

Ω

un−2|∇u|2|D2u|2 ≤ C

Z

Ω

un|∇∆u|2

for functions u ∈ H2(Ω) with vanishing normal derivatives on the boundary ∂Ω. These inequal-

ities imply that
R
Ω
|∇∆u

n+2
2 |2 can be controlled by

R
Ω

un|∇∆u|2. This observation will be a
key ingredient for the proof of certain qualitative results – e.g. finite speed of propagation or
occurrence of a waiting time phenomenon – for solutions to fourth order degenerate parabolic
equations like the thin film equation. Our result generalizes – in a slightly modified way –
estimates in one space dimension which were obtained by F. Bernis.
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1. Introduction and statement of the result

In recent years, fourth order degenerate parabolic equations arising in hydrodynamics
(cf. the thin film equation) or in materials sciences (cf. the Cahn-Hilliard equation)
were the subject of a number of analytical and numerical studies (cf. [1 - 4, 6 - 12, 15 -
17, 19, 20] and the references therein). A model problem is given by

ut + div(|u|n∇∆u) = 0 in R+ × Ω ⊂ Rd+1

∂

∂ν
u =

∂

∂ν
∆u = 0 on R+ × ∂Ω



 (1.1)

and describes the surface tension driven evolution of the height u of a thin film of viscous
liquid that spreads on a horizontal surface. The qualitative behavior of solutions strongly
depends on the positive real exponent n. For 0 < n < 3, there exist so called strong
solutions (for more details, cf. – for instance – [11]) to initial data with compact support
which converge for t → ∞ to a solution constant in time given by the spatial mean of
initial data (see [10]). For n ≥ 3 it is conjectured (and in space dimension d = 1 proven
for n ≥ 4) that the solution’s support is constant with respect to time.
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In space dimension d = 1, many results on the qualitative behavior of strong so-
lutions could be obtained. For instance, Bernis proved in [3, 4] that strong solutions
have the property of finite speed of propagation. If initial data are sufficiently smooth,
a waiting time phenomenon occurs (see [11]). Moreover, it was possible to construct
solutions to measure valued initial data (cf. [9]).

However, the techniques used in the parameter range n ∈ (0, 2) differ from those
applied in the range n ∈ [2, 3). In the former case, the reasoning is based on the so
called α-entropy estimate which reads as follows:

A positive constant C = C(α, n) exists such that for arbitrary t > 0 and arbitrary
ζ ∈ C2(Ω) with supp(ζx) ⊂⊂ Ω

1
α(α+1)

∫

Ω

ζ4uα+1(t) + C−1

∫ t

0

∫

Ω

ζ4
[
|(uα+n+1

4 )x|4 + |(uα+n+1
2 )xx|2

]

≤ 1
α(α+1)

∫

Ω

ζ4uα+1
0 + C

∫ t

0

∫

{ζ>0}
uα+n+1

(|ζx|4 + ζ2|ζxx|2
)
.

(1.2)

In contrast, when 2 ≤ n < 3, weighted versions of the basic energy estimate

1
2 sup

t∈R+

∫

Ω

|ux|2 +
∫ ∞

0

∫

Ω

unu2
xxx ≤ 1

2

∫

Ω

|(u0)x|2 (1.3)

are used.
In the multi-dimensional case, Dal Passo, Garcke and the author of this paper

succeeded in deriving an analogue of the entropy estimate (see [10]). As a consequence,
for 0 < n < 2 results on finite speed of propagation, on the occurrence of a waiting
time phenomenon and on the existence of solutions of problem (1.1) to measure valued
initial data could be established in higher space dimensions as well (see [8, 9, 11]).

However, in the parameter range 2 ≤ n < 3 – which is probably more important
with respect to applications (cf. [18]) – it turned out to be much more difficult to
generalize results of one spatial dimension to higher dimensions. In fact, the questions
whether strong solutions have the property of finite speed of propagation or whether a
waiting time phenomenon occurs, are still open.

Let us briefly discuss the reason for this. The argumentation in the one-dimensional
setting strongly relies on Bernis’ inequalities (see [5])

∫

Ω

vn−4v6
x ≤ C

∫

Ω

vn−1|vxx|3 (1.4)
∫

Ω

vn−1|vxx|3 ≤ C

∫

Ω

vnv2
xxx. (1.5)

These inequalities hold in the parameter range 1
2 < n < 3 for functions v : Ω → R+

such that vx|∂Ω ≡ 0. They imply in particular an estimate of the form
∫

Ω

(
v

n+2
2

)2

xxx
≤ C

∫

Ω

vnv2
xxx. (1.6)
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This is the crucial estimate to apply Gagliardo-Nirenberg-type methods in the course
of the proofs for the aforementioned qualitative results on problem (1.1).

The multi-dimensional analogue of the energy estimate (1.3) provides an L1(Ω×R+)-
estimate on un|∇∆u|2. For this reason, higher dimensional versions of (1.6) with right-
hand side given by

∫
Ω

vn|∇∆v|2 would be desirable. But unfortunately, until now
nobody succeeded in proving an appropriate multi-dimensional analogue of the Bernis
inequalities (1.4) - (1.5). In fact, there are some doubts that an inequality of the form

∫

Ω

vn−1|D2v|3 ≤
∫

Ω

vn|∇∆v|2

holds in general.
It is the purpose of this paper to overcome these difficulties and to demonstrate

that the multi-dimensional equivalent of estimate (1.6) is true. The main idea is to
substitute inequalities (1.4) - (1.5) by estimates of the form

∫

Ω

vn−4|∇v|6 ≤ C

∫

Ω

vn−2|D2v|2|∇v|2 (1.7)
∫

Ω

vn−2|D2v|2|∇v|2 ≤ C

∫

Ω

vn|∇∆v|2. (1.8)

More precisely, we will prove the following theorem.

Theorem 1.1. Let Ω ⊂ Rd (d < 6) be a bounded convex domain with a smooth
boundary. Assume that u ∈ H2(Ω) is strictly positive and satisfies

• ∂
∂ν u|∂Ω ≡ 0

• ∫
Ω

un|∇∆u|2 < ∞.

Moreover, suppose that 2−
√

1− d
8+d < n < 3. Then, a positive constant C which only

depends on d and n exists such that
∫

Ω

un−4|∇u|6dx +
∫

Ω

un−2|D2u|2|∇u|2dx +
∫

∂Ω

un−2|∇u|2II(∇u,∇u) dΓ

≤ C(n, d)
∫

Ω

un|∇∆u|2.
(1.9)

Here, II(·, ·) denotes the second fundamental form of ∂Ω.

Remark.
1. Note that for Ω convex, II(·, ·) is positive semi-definite and symmetric.
2. If 2 < n < 3, the constant C can be chosen independently of the dimension d.
3. In the physically relevant dimensions d = 2, 3, the lower bounds on n are given

by real numbers which are approximately equal to 1.05 or 1.106, respectively. For d = 5,
we get a lower bound smaller than 1.216.

4. It is still an open problem whether the lower bound on n given in Theorem 1.1 is
optimal. For the upper bound n < 3, however, optimality follows by similar arguments
as in the case of the one-dimensional Bernis inequalities (1.4) - (1.5) (cf. [5]).

Theorem 1.1 implies the following corollary.
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Corollary 1.2. Under the assumptions of Theorem 1.1, positive constants C1, C2

depending only on d and n exist such that

∫

Ω

|∇∆u
n+2

2 |2 ≤ C1(d, n)
∫

Ω

un|∇∆u|2 (1.10)

∥∥u
n+2

6 ‖Cα(Ω) ≤ C2(d, n)
{( ∫

Ω

un|∇∆u|2
) 1

6

+
(∫
−

Ω

u

)n+2
6

}
(1.11)

for 0 ≤ α < (1− d
6 ).

Remark. Also in this case, the constants can be chosen independently of the di-
mension d provided 2 < n < 3.

In the subsequent section, we will prove Theorem 1.1 first for smooth functions. In
fact, we will follow two different strategies – one for the case 2 < n < 3, the other for
the case 2−

√
1− d

8+d < n ≤ 2. In a forthcoming work, we intend to apply these new
interpolation inequalities to prove finite speed of propagation, occurrence of a waiting
time phenomenon and existence of solutions to measure valued initial data in multiple
space dimensions in the parameter range 2 ≤ n < 3. Not only for this purpose, we state
a weighted version of the inequality proven in Theorem 1.1 at the end of Section 2.

Throughout the paper, we use the standard notation for Sobolev spaces. D2u
denotes the tensor of second order derivatives of a function u ∈ H2(Ω), ~ν stands for
the outer normal vector to the domain Ω. Sometimes, we write 〈u, v〉 for the Euclidean
scalar product of two vectors u, v ∈ Rd. To avoid clumsy notation, | · | always denotes
the Euclidean norm on spaces R, Rd or Rd×d.

2. Proof of the Interpolation Inequalities

The first ingredient for the proof of Theorem 1.1 is the following lemma.

Lemma 2.1. Let Ω ⊂ Rd be a bounded domain with a smooth boundary. Assume
that the function u ∈ C∞(Ω̄) is positive and that its normal derivative vanishes on ∂Ω.
Then the identity

∫

Ω

un−2|D2u∇u|2

= − 1
2

∫

Ω

un−2|∇u|2|D2u|2 − 1
2

∫

∂Ω

un−2|∇u|2II(∇u,∇u) dΓ

− n−2
2

∫

Ω

un−3|∇u|2〈∇u,D2u∇u〉 − 1
2

∫

Ω

un−2|∇u|2∇u∇∆u

(2.1)

holds.
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Proof. The formula follows by integration by parts:
∫

Ω

un−2|D2u∇u|2 = 1
4

∫

Ω

un−2〈∇|∇u|2,∇|∇u|2〉

= −n−2
4

∫

Ω

un−3|∇u|2〈∇u,∇|∇u|2〉

− 1
4

∫

Ω

un−2|∇u|2∆|∇u|2

+ 1
4

∫

∂Ω

un−2|∇u|2 〈∇|∇u|2, ~ν〉︸ ︷︷ ︸
=2〈∇u,D2u·~ν〉

dΓ.

Observe that ∇u|∂Ω is a tangential vector field. This allows to apply the subsequent
Lemma 2.2 to obtain (D2u · ~ν)‖ = −d~ν · ∇u. As a consequence (cf. [13]),

〈∇u,D2u · ~ν〉 = −II(∇u,∇u).

In addition, we have the identity

∆|∇u|2 = 2(|D2u|2 +∇u∇∆u).

Together, this proves identity (2.1)

Lemma 2.2. Let Ω ⊂ Rd be a domain with piecewise smooth boundary of class
C0,1. For every vector field η ∈ H2(Ω;RN ) which is tangential on ∂Ω we have

(Dη · ~ν)‖ = −d~ν · η

a.e. on ∂Ω.

Proof. It can be found in [10: Lemma B.1]

Let us now establish a result in the spirit of Theorem 1.1 for smooth functions in
the parameter range 2 < n < 3.

Lemma 2.3. Let Ω ⊂ Rd be a bounded convex domain with a smooth boundary.
Assume that the function u ∈ C∞(Ω̄) is positive and that its normal derivative vanishes
on ∂Ω. If 2 < n < 3, the estimates

∫

Ω

un−4|∇u|6 ≤ (
5

(n−3)(n−2)

)2
∫

Ω

un|∇∆u|2 (2.2)

and ∫

Ω

un−2|∇u|2|∆u|2 + 8
∫

Ω

un−2|∇u|2|D2u|2 + 12
∫

Ω

un−2|D2∇u|2

+ 8
∫

∂Ω

un−2|∇u|2II(∇u,∇u) dΓ

≤ 25
2(n−2)(3−n)

∫

Ω

un|∇∆u|2

(2.3)
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hold true.

Remark. Note that this result does not depend on the dimension d.

Proof of Lemma 2.3. Integration by parts yields

∫

Ω

un−4|∇u|6 = − 1
n−3

∫

Ω

un−3|∇u|4∆u

− 4
n−3

∫

Ω

un−3|∇u|2〈∇u, D2u∇u〉

+ 1
n−3

∫

∂Ω

un−3|∇u|4〈∇u, ~ν〉 dΓ
︸ ︷︷ ︸

=0

= − 4
n−3

∫

Ω

un−3|∇u|2〈∇u,D2u∇u〉

+ 1
(n−3)(n−2)

∫

Ω

un−2|∇u|2|∆u|2

+ 1
(n−3)(n−2)

∫

Ω

un−2|∇u|2∇u∇∆u

+ 2
(n−3)(n−2)

∫

Ω

un−2∆u〈∇u,D2u∇u〉

− 1
(n−3)(n−2)

∫

∂Ω

un−2|∇u|2∆u〈∇u, ~ν〉 dΓ
︸ ︷︷ ︸

=0

=: I1 + I2 + I3 + I4.

(2.4)

We use identity (2.1) for I1 and obtain

∫

Ω

un−4|∇u|6 = 5
(n−3)(n−2)

∫

Ω

un−2|∇u|2∇u∇∆u

+ 2
(n−3)(n−2)

∫

Ω

un−2∆u〈∇u,D2u∇u〉

+ 1
(n−3)(n−2)

∫

Ω

un−2|∇u|2|∆u|2

+ 4
(n−3)(n−2)

∫

Ω

un−2|∇u|2|D2u|2

+ 8
(n−3)(n−2)

∫

Ω

un−2|D2u∇u|2

+ 4
(n−3)(n−2)

∫

∂Ω

un−2|∇u|2II(∇u,∇u) dΓ.
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By use of Young’s inequality, we may estimate
∫

Ω

un−4|∇u|6 ≤ 5
(n−3)(n−2)

∫

Ω

un−2|∇u|2∇u∇∆u

+ 1
2(n−3)(n−2)

∫

Ω

un−2|∇u|2|∆u|2

+ 4
(n−3)(n−2)

∫

Ω

un−2|∇u|2|D2u|2

+ 6
(n−3)(n−2)

∫

Ω

un−2|D2u∇u|2

+ 4
(n−3)(n−2)

∫

∂Ω

un−2|∇u|2II(∇u,∇u) dΓ.

(2.5)

By convexity of Ω, II(·, ·) is positive semi-definite, and the fact n ∈ (2, 3) entails
∫

Ω

un−4|∇u|6 ≤ 5
(n−3)(n−2)

∫

Ω

un−2|∇u|2∇u∇∆u

≤ 5
|(n−3)(n−2)|

( ∫

Ω

un−4|∇u|6
) 1

2
( ∫

Ω

un|∇∆u|2
) 1

2

.

(2.6)

This proves (2.2). To establish (2.3), we rewrite (2.5) as
∫

Ω

un−2|∇u|2|∆u|2 + 8
∫

Ω

un−2|∇u|2|D2u|2 + 12
∫

Ω

un−2|D2u∇u|2

+ 2|n− 2| |n− 3|
∫

Ω

un−4|∇u|6

+ 8
∫

∂Ω

un−2|∇u|2II(∇u,∇u) dΓ

≤ 10
∣∣∣∣
∫

Ω

un−2|∇u|2∇u∇∆u

∣∣∣∣

≤ 5ε

∫

Ω

un−4|∇u|6 + 5ε−1

∫

Ω

un|∇∆u|2.

(2.7)

The choice ε = 2|n−2| |n−3|
5 gives (2.3)

Observe that the constants occurring in Lemma 2.3 blow up when n approaches two
from above. Moreover, the strategy of proof fails for values of n < 2. In that regime,
we need another method which will be presented in the proof of the following lemma.
That lemma extends results in the spirit of Lemma 2.3 to values of n slightly smaller
two. It reads as follows:

Lemma 2.4. Let Ω ⊂ Rd be a bounded convex domain with a smooth boundary.
Assume that the function u ∈ C∞(Ω̄) is positive and that its normal derivatives vanish
on ∂Ω. If n satisfies

2−
√

1− d
8+d < n < 2 + 2

4+
√

8+d
2

,
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then a positive constant C which only depends on n and d exists such that
∫

Ω

un−4|∇u|6dx +
∫

Ω

un−2|D2u|2|∇u|2dx +
∫

∂Ω

un−2|∇u|2II(∇u,∇u) dΓ

≤ C(n, d)
∫

Ω

un|∇∆u|2.
(2.8)

Remark. Note that we do not impose further restrictions on the dimension d.

Proof of Lemma 2.4. The argument essentially consists of two steps. Let us first
prove the estimate

( ∫

Ω

un−4|∇u|6
) 1

2

≤
√

d
|n−3|

( ∫

Ω

un−2|∇u|2|D2u|2
) 1

2

+ 4
|n−3|

( ∫

Ω

un−2|D2u∇u|2
) 1

2

.

(2.9)

Indeed,
∫

Ω

un−4|∇u|6 = − 1
n−3

∫

Ω

un−3|∇u|4∆u

− 4
n−3

∫

Ω

un−3|∇u|2〈∇u,D2u∇u〉

+ 1
n−3

∫

∂Ω

un−3|∇u|4〈∇u, ~ν〉 dΓ
︸ ︷︷ ︸

=0

≤ 1
|n−3|

( ∫

Ω

un−4|∇u|6
) 1

2
( ∫

Ω

un−2|∇u|2|∆u|2
) 1

2

+ 4
|n−3|

( ∫

Ω

un−4|∇u|6
) 1

2
( ∫

Ω

un−2|D2u∇u|2
) 1

2

.

Together with the trace-type estimate |∆u|2 ≤ d |D2u|2, the asserted estimate (2.9)
follows.

The second ingredient in the proof is an estimate of terms involving products of first
and second order derivatives. Starting point is the identity (2.1):

∫

Ω

un−2|D2u∇u|2 = − 1
2

∫

Ω

un−2|∇u|2|D2u|2

− 1
2

∫

∂Ω

un−2|∇u|2II(∇u,∇u) dΓ

− n−2
2

∫

Ω

un−3|∇u|2〈∇u,D2u∇u〉

− 1
2

∫

Ω

un−2|∇u|2∇u∇∆u.
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Introducing the abbreviations

J1 =
∫

Ω

un−2|D2u∇u|2 (2.10)

J2 =
∫

Ω

un−2|∇u|2|D2u|2 (2.11)

B =
∫

∂Ω

un−2|∇u|2II(∇u,∇u) dΓ, (2.12)

we may estimate by use of Schwarz inequality

J1 + 1
2J2 + 1

2B

≤ |n−2|
2

√
J1

( ∫

Ω

un−4|∇u|6
) 1

2

+ 1
2

( ∫

Ω

un−4|∇u|6
) 1

2
( ∫

Ω

un|∇∆u|2
) 1

2

.

Inserting estimate (2.9) and using Young’s inequality yields

2J1 + J2 + B ≤ |n−2|
|n−3|

(√
d
√

J2 + 4
√

J1

)√
J1

+ ε1

(√
d
√

J2 + 4
√

J1

)2 + Cε1

∫

Ω

un|∇∆u|2

≤ |n−2|
|n−3|

((√
d

2ε2
+ 4

)
J1 + ε2

√
d

2 J2

)

+ ε1

(√
d
√

J2 + 4
√

J1

)2 + Cε1

∫

Ω

un|∇∆u|2.

(2.13)

To absorb the terms on the right-hand side in an optimal way in the terms on the left-
hand side, we choose ε2 as the unique positive solution of the equation 8 +

√
dε−1

2 =

2
√

dε2. A straightforward calculation gives ε2 = 2√
d

+
√

8+d
2d . If

√
d ε2

|n−2|
|n−3| < 2, (2.14)

the first term on the right-hand side can be absorbed on the left-hand side. An ap-
propriate choice of ε1 allows to absorb the second term on the right-hand side, too.
Summing up, we obtain

J1 + J2 + B ≤ C(d, n)
∫

Ω

un|∇∆u|2,

and together with (2.9) the assertion of the lemma follows provided (d, n) satisfies con-

dition (2.14). Another calculation shows that this is the case as long as 2−
√

1− d
8+d <

n < 2 + 2

4+
√

8+d
2

Now, the proof of Theorem 1.1 follows by an approximation argument. It will be
sketched in what follows.
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Proof of Theorem 1.1. Let u ∈ H2(Ω) be given satisfying the assumptions of
the theorem. We may assume that u ≥ δ > 0 almost everywhere in Ω. Therefore,∫
Ω
|∇∆u|2 < ∞. Let us construct a sequence (uk)k∈N ⊂ C∞(Ω̄) with the following

properties:

• uk ≥ δ
2 for k ∈ N, k sufficiently large

• ∂
∂ν uk = 0 on ∂Ω

• uk → u strongly in H2(Ω) for k →∞
• ∇∆uk → ∇∆u strongly in L2(Ω) for k →∞.

For this purpose, we consider a sequence (fk)k∈N ⊂ C∞(Ω̄) (such a sequence exists due
to the boundary regularity of Ω, cf. [14]) such that

• ∫
Ω

fk = 0 for all k ∈ N
• fk → −∆u strongly in H1(Ω) for k →∞.

Associated with (fk)k∈N are functions (uk)k∈N which solve the Neumann problem

−∆uk = fk in Ω
∂

∂ν
uk = 0 on ∂Ω

∫
Ω
uk =

∫
Ω
u





.

By elliptic regularity theory, it follows that (uk)k∈N ⊂ C∞(Ω̄) strongly converges to
u in W 2,p(Ω) for 1 ≤ p < 2N

N−2 . By Sobolev’s imbedding theorem, (uk)k∈N strongly
converges to u in C0(Ω) for N < 6. Hence, the functions uk have the aforementioned
properties for indices k ∈ N sufficiently large. Moreover, they satisfy for k sufficiently
large the inequalities (2.2), (2.3) or (2.8), respectively. From Vitali’s theorem, we infer
that

lim
k→∞

∫

Ω

un
k |∇∆uk|2 =

∫

Ω

un|∇∆u|2.

Together with Fatou’s lemma, the assertion follows

It remains to sketch the proof of Corollary 1.2.

Proof of Corollary 1.2. Inequality (1.10) is a direct consequence of inequality
(1.9) and the identity

∇∆us+1 = s(s− 1)(s + 1)us−2|∇u|2∇u + 2s(s + 1)us−1D2u∇u

+ s(s + 1)us−1∇u∆u + (s + 1)us∇∆u

which holds for all s ∈ R. Finally, inequality (1.11) follows by the estimate
∫

Ω

|∇u
n+2

6 |6 = C(n)
∫

Ω

un−4|∇u|6

≤ C(d, n)
∫

Ω

un|∇∆u|2 (2.15)

and Sobolev’s imbedding theorem
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Eventually, let us mention the following weighted version of Theorem 1.1 which will
be of importance with respect to the applications mentioned in the introduction.

Theorem 2.5. Suppose in addition to the assumptions of Theorem 1.1 that φ ∈
C1(Ω̄) is non-negative. Then, there exists a positive constant C = C(d, n) such that for

values of n contained in (2−
√

1− d
8+d , 3) the estimate

∫

Ω

φ6un−4|∇u|6dx +
∫

Ω

φ6un−2|D2u|2|∇u|2dx +
∫

∂Ω

φ6un−2|∇u|2II(∇u,∇u) dΓ

≤ C(n, d)
{ ∫

Ω

φ6un|∇∆u|2 +
∫

[φ>0]

un+2|∇φ|6
}

holds.

The proof requires only minor modifications of the proof for Theorem 1.1. Therefore
we omit it here.
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