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Iteration Procedures of Shuttle Iteration Type
in

Continuous Non-Monotone Problems

D. Rachinskii

Abstract. We suggest and study iteration procedures converging from below and above to
robust stable solutions and to robust stable continuous branches of solutions for quasilinear
boundary-value problems with continuous non-monotone non-linearities. The iterations are
constructed by modifications of the shuttle iteration method, which is used in problems with
monotone operators leaving invariant a cone interval.
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1. Introduction

Consider the equation x = Tx in a Banach space with cone semiordering [4, 11]. If
the operator T is monotone and maps some cone interval into itself, then in general
situations this equation has a solution in the cone interval. Moreover, under natural
conditions, there are solutions possessing important additional properties: robust stable
solutions of equations with continuous operators, regular solutions of equations with
discontinuous operators (a solution is called regular if it is a robust stable continuity
point of the discontinuous operator T ), robust stable continuous curves and continuous
branches of solutions. The existence of such solutions is proved in [5, 8, 9, 14, 15] (see
also references therein). Some other methods and results can be found, e.g., in [13].

In [8], the authors suggested a special iteration procedure called the shuttle iteration
method to construct robust stable and regular solutions of equations with monotone
continuous and discontinuous operators. The iteration procedure converges to such
solutions and contains their upper and lower estimates.

In this paper, we consider problems with continuous, but non-monotone operators.
The problem can be reduced to the Hammerstein type equation x = Bf̂x with linear
positive compact operator B and nonlinear non-monotone superposition operator f̂ .
By modification of the shuttle iteration method, we construct iteration procedures that
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converge from below and above either to a robust stable solution of the problem, or to
a robust stable continuum of solutions.

We use the iterations

xn+1 = Tnxn := (I + αnB)−1B(f̂n + αnI)xn,

where f̂n are Lipschitz continuous approximations of the non-linearity f̂ . The numbers
αn are sufficiently large (generally speaking, αn →∞), the operators Tn are monotone
for all n.

2. Problem statement

Consider a bounded closed domain Ω in the space RN (N ≥ 1) and the differential
expression

Lx =
N∑

i,j=1

aij(t)
∂2x

∂ti∂tj
+

N∑

i=1

bi(t)
∂x

∂ti
+ c(t)x (2.1)

where t = {t1, . . . , tN} ∈ Ω and the coefficients aij satisfy the ellipticity condition

−
N∑

i,j=1

aij(t)ξiξj ≥ a

N∑

i=1

ξ2
i (a > 0, t ∈ Ω).

Let us use the same notation L for the linear differential operator defined by differential
expression (2.1) and the zero boundary condition

x(t) = 0 (t ∈ ∂Ω). (2.2)

This operator is considered in the space C(Ω). The coefficients aij , bi, c and the bound-
ary ∂Ω of the domain Ω are supposed to be sufficiently smooth, which guarantees the
following classical properties of the operator L (see, e.g., [1, 12]).

(i) The resolvent set of the operator L contains an interval (−∞,−α0). Every
operator A[α] = (L+αI)−1 with α > α0 (here I is the identity) is completely continuous
in the space C(Ω) and positive with respect to the semiordering generated by the cone 1)

K+ =
{

x ∈ C(Ω) : x(t) ≥ 0 for all t ∈ Ω
}

of non-negative functions, i.e. A[α]x ∈ K+ for every x ∈ K+.

In this paper, we study the quasilinear boundary-value problem

Lx = f(t, x) (2.3)

1) The general theory of Banach spaces with cone semiordering can be found in [4, 11]. We
only use some notation and simple facts.
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where the nonlinear function f : Ω×R→ R is continuous with respect to the set of its
arguments. By property (i), problem (2.3) is equivalent to the equation

x = F [α]x := A[α](f̂x + αx) (x ∈ C(Ω)) (2.4)

for every α > α0, where f̂ : C(Ω) → C(Ω) is the superposition operator (f̂x)(t) =
f(t, x(t)) generated by the function f . Everywhere it is assumed that the non-linearity
f satisfies the estimates

h(t, x) < f(t, x) < g(t, x) (t ∈ Ω, x ∈ R) (2.5)

and the problems
Lx = h(t, x)

Lx = g(t, x)
(2.6)

have solutions x−, x+ ∈ C(Ω) such that

x−(t) ≤ x+(t) (t ∈ Ω). (2.7)

The functions h and g are supposed to be continuous with respect to the set of their
arguments; the existence of solutions (2.7) is discussed in Section 6.

Under the assumptions above, property (i) implies that for every sufficiently large
α > α0 the operator F [α] maps the convex closed set 2)

〈x−, x+〉 =
{

x ∈ C(Ω) : x−(t) ≤ x(t) ≤ x+(t) for all t ∈ Ω
}

into itself (the details are in the next section). By the Schauder principle, there is at
least one solution of equation (2.4) or, which is the same, of problem (2.3) in 〈x−, x+〉.

We are interested in solutions possessing additional properties.
A solution x∗ = x∗(t) of (2.3) is called robust stable if for every ε > 0 there is a

δ > 0 such that any problem
Lx = f1(t, x) (2.8)

with a continuous non-linearity f1 satisfying

|f1(t, x)− f(t, x)| < δ (t ∈ Ω, x ∈ R) (2.9)

has at least one solution x̃∗ satisfying ‖x̃∗−x∗‖C < ε. In other words, problem (2.8) has
a solution in arbitrary small vicinity of the robust stable solution of problem (2.3) when-
ever perturbation of the nonlinearity is uniformly sufficiently small 3). In particular,
any isolated solution of (2.3) with a non-zero topological index [10] is robust stable.

In the Sections 3 - 5 we construct and study a number of iteration procedures that
converge either a to a robust stable solution of problem (2.3), or to a robust stable
continuum of solutions (see the exact formulations below). Section 6 contains some
discussion of the results and examples. Further, Sections 7 - 8 contain the proofs.

2) This set is called a cone interval.
3) We consider perturbations of the non-linearity only. Also, it is possible to consider pertur-

bations both of the linear and nonlinear parts of the problem.
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3. Existence of robust stable solutions

Set ρ = max{‖x−‖C , ‖x+‖C}+ 1. We use a fixed increasing sequence of functions hn,

h(t, x) ≤ h1(t, x) < h2(t, x) < . . . < hn(t, x) < . . . (t ∈ Ω, |x| ≤ ρ) (3.1)

and a decreasing sequence of functions gn,

g(t, x) ≥ g1(t, x) > g2(t, x) > . . . > gn(t, x) > . . . (t ∈ Ω, |x| ≤ ρ) (3.2)

that converge uniformly to the function f from below and above:

lim
n→∞

max
t∈Ω,|x|≤ρ

|hn(t, x)− f(t, x)| = lim
n→∞

max
t∈Ω,|x|≤ρ

|gn(t, x)− f(t, x)| = 0. (3.3)

All the functions gn, hn are continuous in t and Lipschitz continuous in x:

|hn(t, x)− hn(t, y)| ≤ αn|x− y|
|gn(t, x)− gn(t, y)| ≤ βn|x− y| (t ∈ Ω; |x|, |y| ≤ ρ). (3.4)

Evidently, sequences (3.1) and (3.2) can be constructed for any estimates (2.5) (possibly,
it should be that αn, βn →∞). The functions g, gn, h, hn generate continuous bounded
superposition operators ĝ, ĝn, ĥ, ĥn in the space C(Ω).

Without loss of generality, suppose that the sequences of the Lipschitz coefficients
αn, βn are non-decreasing and α1, β1 > α0, therefore the operators A[αn] = (L+αnI)−1

and A[βn] = (L + βnI)−1 are defined and positive for all n. Set

Hn = A[αn](ĥn + αnI)

Gn = A[βn](ĝn + βnI).

Since the functions hn(t, x)+αnx and gn(t, x)+βnx increase in x for t ∈ Ω and |x| ≤ ρ,
it follows that each of the operators Hn, Gn is monotone on the cone interval 〈x−, x+〉,
i.e.

x<<y, x, y ∈ 〈x−, x+〉 =⇒ Hnx<<Hny, Gnx <<Gny; (3.5)

here and henceforth we write 4) x<<y, or y >>x, whenever y − x ∈ K+.
The estimates h(t, x) ≤ hn(t, x) ≤ gn(t, x) ≤ g(t, x) imply the relations

x− = A[αn](ĥx− + αnx−)<<Hnx−<<Hnx+ <<A[αn](ĝx+ + αnx+) = x+

x− = A[βn](ĥx− + βnx−)<<Gnx−<<Gnx+ <<A[βn](ĝx+ + βn)x+ = x+,

hence each of the operators Hn and Gn maps the cone interval 〈x−, x+〉 into itself 5).
Therefore for every x0, x̃0 ∈ 〈x−, x+〉 and every n the sequences

y
(n)
0 = x0, y

(n)
k = Hny

(n)
k−1 (k ≥ 1) (3.6)

z
(n)
0 = x̃0, z

(n)
k = Gnz

(n)
k−1 (k ≥ 1) (3.7)

4) The relation x << y is the semiordering generated by the cone K+ in the space C(Ω).
5) This implies that the operator F [α] also maps the set 〈x−, x+〉 into itself whenever α is

sufficiently large. Indeed, one can take α1 = β1 = α. Then the estimates h1(t, x) ≤ f(t, x) ≤
g1(t, x) imply H1x << F [α]x << G1x and therefore the inclusions H1x, G1x ∈ 〈x−, x+〉 imply
F [α]x ∈ 〈x−, x+〉 for all x ∈ 〈x−, x+〉.
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are contained in 〈x−, x+〉.
We use sequences (3.6), (3.7) with initial values x0, x̃0 ∈ 〈x−, x+〉 such that

x0 >>Hnx0

x̃0 <<Gnx̃0.
(3.8)

Relations (3.5) and (3.8) imply that sequences (3.6) and (3.7) decreases and increases,
respectively:

y
(n)
0 >>y

(n)
1 >> . . . >>y

(n)
k >> . . . (3.9)

z
(n)
0 <<z

(n)
1 << . . . <<z

(n)
k << . . . . (3.10)

Since the operators Hn, Gn are completely continuous, it follows that monotone bounded
sequences (3.9), (3.10) are compact and converge to solutions y∗, z∗ ∈ 〈x−, x+〉 of the
equations x = Hnx, x = Gnx, which are equivalent to the problems Lx = hn(t, x), Lx =
gn(t, x).

For every n denote by un the limit of the decreasing sequence

y
(n)
0 = x+, y

(n)
k = Hny

(n)
k−1 (k ≥ 1). (3.11)

Lemma 1. The sequence of solutions un ∈ 〈x−, x+〉 of the problems Lx = hn(t, x)
increases and converges uniformly to a solution u∗ ∈ 〈x−, x+〉 of problem (2.3).

By Lemma 1,
u∗(t) = lim

n→∞
lim

k→∞
((Hn)kx+)(t) = sup

n
inf
k

((Hn)kx+)(t). (3.12)

Now, for every n consider the sequence

z
(n)
0 = u∗, z

(n)
k = Gnz

(n)
k−1 (k ≥ 1) (3.13)

with initial value (3.12). Since u∗ = A[βn](f̂u∗ + βnu∗) <<Gnu∗, sequence (3.13) in-
creases and converges uniformly. Denote its limit by vn.

Lemma 2. The sequence of solutions vn ∈ 〈x−, x+〉 of the problems Lx = gn(t, x)
decreases and converges uniformly to a solution v∗ ∈ 〈x−, x+〉 of problem (2.3).

By construction,
v∗(t) = lim

n→∞
lim

k→∞
((Gn)ku∗)(t) = inf

n
sup

k
((Gn)ku∗)(t) (3.14)

and u∗<<v∗, the cone interval
〈u∗, v∗〉 =

{
x ∈ C(Ω) : u∗<<x <<v∗

}

is included in 〈x−, x+〉. Simple examples show that the points u∗ and v∗ can be different
(see Section 6), or they can coincide.

A set M ⊂ C(Ω) is called a continuous branch connecting the points u∗ and v∗ if
u∗, v∗ ∈ M and M ∩ ∂U 6= ∅ for any bounded open domain U ⊂ C(Ω) such that either
u∗ ∈ U, v∗ 6∈ U or u∗ 6∈ U, v∗ ∈ U ; here ∂U is the boundary of U .

Denote by Π0 the set of all the solutions of problem (2.3). A non-empty subset Π
of the set Π0 is said to be robust stable if any ε-vicinity

Πε =
{

x ∈ C(Ω) : inf
y∈Π

‖x− y‖C < ε
}

(ε > 0)

of Π contains at least one solution of every problem (2.8) such that estimate (2.9) holds
for a sufficiently small δ = δ(ε) > 0.
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Theorem 1. Let u∗, v∗ be solutions (3.12), (3.14) of problem (2.3). The following
statements are valid:

1. If u∗ = v∗, then u∗ is a robust stable solution of problem (2.3).
2. If u∗ is an isolated solution, then u∗ = v∗ and for every α > α0 the function u∗

is a singular point of the topological index 1 for the completely continuous vector field

x−A[α](f̂ + αI)x, x ∈ C(Ω). (3.15)

3. If u∗ 6= v∗, then the set of all solutions of problem (2.3) that lie in the cone
interval 〈u∗, v∗〉 is a robust stable continuous branch connecting the points u∗ and v∗.

By statement 3 of Theorem 1, problem (2.3) has a continuum of solutions in 〈u∗, v∗〉
if u∗ 6= v∗.

If problem (2.3) has at most a countable number of solutions, then by statement
1, at least one of them is robust stable. If the number of the solutions is finite, then
statement 2 is applicable, hence there is a robust stable solution of the topological index
1.

4. Approximation of solutions

In this section, we construct some iteration procedures converging to solution (3.12) of
problem (2.3). At every iteration, the linear problem

Ly + αy = ϕ (4.1)

should be solved for given ϕ ∈ C(Ω) and α > α0.

Lemma 3. Suppose that for some n sequences (3.6), (3.7) are contained in the cone
interval 〈x−, x+〉 and relations (3.9), (3.10) hold. Suppose

hn(t, x) < φ(t, x) < gn(t, x) (t ∈ Ω, |x| ≤ ρ) (4.2)

where the function φ is continuous in t and Lipschitz continuous in x:

|φ(t, x)− φ(t, y)| ≤ c |x− y| (t ∈ Ω; |x|, |y| ≤ ρ). (4.3)

Set (φ̂x)(t) = φ(t, x(t)) (x ∈ C(Ω)). Then for any fixed α > α0 the estimates

A[α](φ̂y
(n)
k + αy

(n)
k ) >>y

(n)
k

A[α](φ̂z
(n)
k + αz

(n)
k ) <<z

(n)
k

(4.4)

are valid for all sufficiently large k.

By Lemma 3, the elements of sequence (3.11) satisfy

Hn+1y
(n)
k >>y

(n)
k (4.5)

for all sufficiently large k. Recall that y
(n)
k → un.
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Theorem 2. Let {s(n)} be an arbitrary sequence of indices such that for every n

the element y
(n)
s(n) of sequence (3.11) satisfies (4.5), i.e. Hn+1y

(n)
s(n) >>y

(n)
s(n). Then the

relations
u1 <<y

(1)
s(1) <<u2 <<y

(2)
s(2) << . . . <<un <<y

(n)
s(n) <<un+1 << . . .

are valid. Therefore the sequence {ȳn} = {y(n)
s(n)} (n ≥ 1) converges uniformly from

below to solution (3.12) of problem (2.3).

Let ȳn be the first element satisfying (4.5) in sequence (3.11), i.e. ȳn = y
(n)
s(n) with

s(n) = min
{
k : Hn+1y

(n)
k >>y

(n)
k

}
. (4.6)

By Theorem 2, the functions ȳn monotonically and uniformly approximate the function
u∗ from below. To find the approximation ȳn of order n, one needs to construct a
finite number of elements y

(n)
k of sequence (3.11), the initial element is always x+. The

required number (4.6) of iterations (3.11) is not known a priori, therefore the function
Hn+1y

(n)
k should be also constructed and compared with y

(n)
k for each k ∈ N. The

calculations for a given n are complete as soon as relation (4.5) is valid, this means that
k = s(n) and y

(n)
k = ȳn. Then, one can proceed to the construction of the approximation

of next order.
Now consider the situation when the functions x−, x+ are not known. Instead,

suppose we are given the function x̃0 = x̃0(t) ∈ 〈x−, x+〉 such that G1x̃0 >> x̃0. By
Lemma 3, the increasing sequence

z0 = x̃0, zm = G1zm−1 (m ≥ 1) (4.7)

contains a subsequence {zmn} such that Hnzmn <<zmn (n ≥ 1); it is natural to select
this subsequence by the rule

m0 = 0, mn = min
{
m > mn−1 : Hnzm <<zm

}
(n ≥ 1).

For every n one can construct the elements y
(n)
1 , . . . , y

(n)
s(n) of the decreasing sequence

y
(n)
0 = zmn , y

(n)
k = Hny

(n)
k−1 (k ≥ 1) (4.8)

where s(n) is given by (4.6).

Theorem 3. The sequence {dn} = {y(n)
s(n)} increases. If

g = g1, x+ = z∗ := lim
m→∞

zm, (4.9)

then the sequence {dn} converges uniformly from below to solution (3.12) of problem
(2.3).

Relations (4.9) are not an additional restriction. Indeed, if they are not satisfied
originally, we can consider them as a new definition of the functions g and x+. This
definition is correct, since the limit z∗ of sequence (4.7) is a solution of the problem
Lx = g1(t, x) and the inequalities

h(t, x) < f(t, x) < g1(t, x), x−<<z∗

are valid, i.e. both our main hypotheses (2.5) and (2.7) are satisfied for the new functions
(4.9) and the original functions h, x−. Also note that x̃0 ∈ 〈x−, z∗〉.
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5. Two-sided approximations

Here we construct iteration procedures that converge to a robust stable solution 6) of
problem (2.3) (or to a robust stable continuum of solutions) and contain both upper and
lower estimates of the solution (the continuum of solutions, respectively). Everywhere
x̃0 ∈ 〈x−, x+〉 is a given function such that x̃0 <<G1x̃0.

The first iteration procedure is a simple modification of the shuttle iteration method
of [8]. Set ũ0 = x̃0 and define the sequences ũn and ṽn by induction as follows. Suppose
the function ũn−1 is already constructed; then ṽn is an element of the sequence

z0 = ũn−1, zk = Gnzk−1 (k ≥ 1), (5.1)

namely, it is the first element such that

Gn+1zk <<zk, Hnzk <<zk. (5.2)

The function ũn is the first element satisfying

Hn+1yk >>yk, Gn+1yk >>yk (5.3)

in the sequence
y0 = ṽn, yk = Hnyk−1 (k ≥ 1). (5.4)

The existence of the functions ṽn, ũn for each n follows from Lemma 3. If α1 ≤ β2 ≤
α2 ≤ β3 ≤ . . ., then the first relation implies the second one in (5.2) and (5.3).

Theorem 4. The sequences {ũn} and {ṽn} converge uniformly to solutions u? and
v? of problem (2.3), respectively, and the relations

ũ1 << ũ2 << . . . << ũn << . . . <<u? <<v? << . . . << ṽn << . . .<< ṽ2 << ṽ1 (5.5)

hold. The set of all solutions of problem (2.3) contained in the cone interval 〈u?, v?〉 is
robust stable (if u? = v?, then u? is a robust stable solution).

Now, consider sequences {ūn}, {v̄n} that converge to a robust stable continuous
branch of solutions of problem (2.3). Together with the sequences {ūn}, {v̄n}, we con-
struct an auxiliary sequence of functions wn, ūn <<wn << v̄n, and sequences of indices

1 = i0 < i1 < . . . < in < . . .

1 = j0 < j1 < . . . < jn < . . .

such that
ūn <<Hjn ūn, v̄n >>Gin v̄n, wn <<Ginwn (n ≥ 0). (5.6)

Set w0 = x̃0, ū0 = x− and v̄0 = x+. Then relations (5.6) are valid for n = 0 (the
functions x−, x+ can be unknown, we do not need to construct them). Further elements
of the sequences {wn}, {ūn}, {v̄n} are defined by induction.

6) The solutions constructed in this section can differ from the solutions u∗ and v∗ defined
in Lemmas 1 and 2.
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Suppose that for some n relations (5.6) hold and the function wn is already con-
structed. Lemma 3 implies that the increasing sequence

z0 = wn, zm = Gin
zm−1 (m ≥ 1) (5.7)

contains a subsequence {zmk
} such that

Hjn+kzmk
<<zmk

, Gin+1zmk
<<zmk

. (5.8)

For every k ≥ 1 consider the decreasing sequence

y
(k)
0 = zmk

, y
(k)
` = Hjn+ky

(k)
`−1 (` ≥ 1) (5.9)

and denote by d̃k the first of its elements satisfying y
(k)
` <<Hjn+k+1y

(k)
` . The functions

d̃1, d̃2, . . . can be constructed in the same way as the functions d1, d2, . . . in Theorem 3.

Lemma 4. The sequence {d̃k} increases, converges to a solution of problem (2.3),
and

d̃k+1 <<Gin+1d̃k (5.10)

for all sufficiently large k.

Suppose the functions d̃1, . . . , d̃k0 , d̃k0+1 are constructed, where k0 is the smallest of
the indices k, for which relation (5.10) holds. Define

ūn+1 = d̃k0 , jn+1 = jn + k0 + 1.

By construction, d̃k0+1 >>Hjn+1 d̃k0+1. Therefore the sequence

y0 = d̃k0+1, ym = Hjn+1ym−1 (m ≥ 1) (5.11)

decreases and contains a subsequence {ymk
} such that

Hjn+1+1ymk
>>ymk

, Gin+kymk
>>ymk

(k ≥ 1).

Every function ymk
determines the increasing sequence

z
(k)
0 = ymk

, z
(k)
` = Gin+kz

(k)
`−1 (` ≥ 1); (5.12)

denote by d̄k the first of its elements satisfying z
(k)
` >>Gin+k+1z

(k)
` .

Lemma 5. The sequence {d̄k} decreases, converges to a solution of problem (2.3),
and

d̄k+1 >>Hjn+1+1d̄k. (5.13)

for every sufficiently large k.

Set
v̄n+1 = d̄k1 , wn+1 = d̄k1+1, in+1 = in + k1 + 1

where k1 is the smallest k, for which (5.13) holds. This completes the definition of the
sequences {ūn} and {v̄n}.

Theorem 5. The sequences {ūn} and {v̄n} converge uniformly to solutions u? and
v? of problem (2.3), respectively, and the relations

ū1 << ū2 << · · ·<< ūn << · · ·<<u? <<v? << · · ·<< v̄n << · · ·<< v̄2 << v̄1 (5.14)

are valid. If u? = v?, then u? is a robust stable solution. If u? 6= v?, then the set of
all solutions of problem (2.3) contained in the cone interval 〈u?, v?〉 is a robust stable
continuous branch connecting the points u? and v?.
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6. Remarks

6.1 Smoothness of solutions. Throughout the paper we consider continuous solutions
of problem (2.3). If the boundary ∂Ω of the domain Ω and the coefficients of operator
(2.1) are sufficiently smooth (see, e.g., [12] for exact requirements on smoothness), then
for every ϕ ∈ C(Ω) and α > α0 the solution y = A[α]ϕ of linear problem (4.1) possesses
Hölder continuous first derivatives in Ω, i.e. y ∈ C(1,ε)(Ω) for some ε ∈ (0, 1). Moreover,
if ϕ is Hölder continuous, then y = A[α]ϕ is a classical regular solution of (4.1). This
implies that any continuous solution x∗ of nonlinear problem (2.3) with continuous
non-linearity f lies in C(1,ε)(Ω); if the function f satisfies the Hölder condition

|f(t, x)− f(τ, y)| ≤ c1|t− τ |ε + c2|x− y|ε (
t, τ ∈ Ω; x, y ∈ R; ε ∈ (0, 1)

)
,

then every solution x∗ is regular, i.e. x∗ ∈ C(Ω) ∩ C2(Ω\∂Ω).

Observe that solutions of linear problem (4.1) are defined by

y(t) = (A[α]ϕ)(t) =
∫

Ω

G(t, τ ; α)ϕ(τ) dτ

where G(·, · ; α) is the corresponding Green function. Therefore iterations (3.6), (3.7)
have the form

y
(n)
k (t) =

∫

Ω

G(t, τ ; αn)
(
hn(τ, y(n)

k−1(τ)) + αny
(n)
k−1(τ)

)
dτ

z
(n)
k (t) =

∫

Ω

G(t, τ ; βn)
(
gn(τ, z(n)

k−1(τ)) + βnz
(n)
k−1(τ)

)
dτ

(k ≥ 1).

In the simplest cases, the Green function of problem (4.1) is known explicitly. For
example, this is the case for the scalar problem

−y′′ + py′ + (q + α)y = ϕ

y(0) = y(1) = 0

}

with constant coefficients.

6.2 On the existence of upper and lower solutions. Given problem (2.3), an
important question is how to construct problems (2.6) that have solutions x−, x+ sat-
isfying (2.7). Consider two examples where we use the methods of one-sided estimates
[10] and potential bounds [6, 7]. We also refer to the variety of results on upper and
lower solutions (see, e.g., [2] and the references therein).

Below we denote by λ0 the smallest real eigenvalue of the operator L. This eigen-
value is simple and Reλ ≥ λ0 for every other eigenvalue λ of L (see, e.g., [4]). Suppose
that for some κ < λ0 the one-sided estimate

sign xf(t, x) ≤ κ|x|+ q (t ∈ Ω, x ∈ R) (6.1)
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holds, where q ≥ 0. Then bounds (2.5) can be defined by the formulas

h(t, x) = min
{
κx− q − 1, f(t, x)− 1

}

g(t, x) = max
{
κx + q + 1, f(t, x) + 1

}
.

Relation (6.1) implies that h(t, x) = κx − q − 1 for x ≤ 0 and g(t, x) = κx + q + 1 for
x ≥ 0. Denote by x−, x+ the solutions of the linear problems

Lx = κx− q − 1

Lx = κx + q + 1,

i.e. x+ = A[−κ](q + 1), x− = −x+. Since −κ > −λ0, the operator A[−κ] is positive, 7)

hence
x−<< 0 <<x+ (6.2)

and therefore the functions x−, x+ are solutions of problems (2.6). These solutions can
be used as initial values for the iteration procedures considered in Sections 4 and 5.

The next example is based on the method to study problems with self-adjoint posi-
tive operators by analyzing potential bounds of nonlinear terms. To be simple, consider
the scalar problem

x′′ + f(t, x) = 0

x(0) = x(π) = 0.

}
(6.3)

Here L = − d
dt2 and the smallest eigenvalue of L is λ0 = 1. Suppose that the primitive

of the function f (with respect to the variable x) satisfies the quadratic estimate
∫ x

0

f(t, ξ) dξ ≤ κx2 + q (t ∈ [0, π], x ∈ R) (6.4)

with some κ < λ0
2 = 1

2 ; by the Golomb theorem [3], estimate (6.4) implies the existence
of a classical solution of problem (6.3). Define bounds (2.5) of the function f by

h = f − c

g = f + c
(6.5)

where c > ‖f(·, 0)‖C and therefore

h(·, 0)<< 0 <<g(·, 0). (6.6)

From estimate (6.4), the similar quadratic estimates
∫ x

0

g(t, ξ) dξ ≤ κ1x
2 + q1

∫ x

0

h(t, ξ) dξ ≤ κ1x
2 + q1

(t ∈ [0, π], x ∈ R) (6.7)

7) It is easily seen that property (i) is valid for α0 = −λ0.
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with κ1 ∈ (κ, 1
2 ) and q1 ≥ q + c2(κ1−κ)−1/4 follow for the primitives of functions (6.5).

Relations (6.6) and (6.7) imply [6] that the auxiliary problems

x′′ + h(t, x) = 0, x′′ + g(t, x) = 0, x(0) = x(π) = 0 (6.8)

have solutions x−, x+ satisfying (6.2). The functions x−, x+ are not known, but their
norms can be estimated explicitly for given κ1, q1.

In both examples, one can choose the function g1 so that g1(·, 0)>> 0. Then the
operator G1 takes the identical zero to the non-negative function A[β1]g1(·, 0), therefore
Theorems 3 - 5 are valid for iteration procedures with initial value x̃0 ≡ 0.

6.3 Example with continuum of solutions. The simplest example of problem (2.3)
with robust stable continuum of solutions is

Lx = (λ0 − 1)x + ψ(x) (6.9)

with

ψ(x) =

{ 0 if x < 0
x if 0 ≤ x ≤ 1
1 if x > 1.

The solutions of problem (6.9) are the functions x = ξu0 (0 ≤ ξ ≤ 1) where u0 is
the non-negative normed eigenfunction of the operator L corresponding to its simple
eigenvalue λ0. The right-hand side of (6.9) satisfies estimate (6.1) with κ = λ0 − 1,
q = 1.

Consider the problems

Lx = (λ0 − 1)x + (1− ε)ψ(x)

Lx = (λ0 − 1)x + ψ(x) + εu0

with ε ∈ (0, 1). It is easily seen that the first of them has a unique zero solution. At the
same time, the norm of any solution of the second problem is greater than 1. Therefore
the identical zero and the function u0 are included in every robust stable closed subset
of the set of solutions of problem (6.9). Thus, all the iteration procedures of Sections 4
and 5 converge to the solutions u∗ = 0, v∗ = u0 of (6.9) (for any sequences (3.1), (3.2))
and the solution set ξu0 (0 ≤ ξ ≤ 1) of this problem is a robust stable continuous
branch. Note that none of the solutions is robust stable itself.

6.4 Other applications. The methods of this paper are applicable to any problem
(2.3) with linear operator L satisfying condition (i) and non-linearity satisfying the
assumptions of Section 2. The iteration procedures should be constructed in the same
way as in Sections 4 and 5, the theorems hold without any change in formulation. For
example, this is true if the elliptic operator L is defined by differential expression (2.1)
and the Newton boundary condition

∂x

∂ν
+ θ(t)x = 0 (t ∈ ∂Ω)
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where ν is the exterior normal at the boundary of the domain Ω and θ is non-negative.
Condition (i) is satisfied for periodic problems for equations−x′′+p(t)x′+q(t)x = f(t, x)
and x′ = f(t, x), etc.

There is no need to use theorems of this paper if the function f is Lipschitz contin-
uous or even if it satisfies the lower Lipschitz condition

(x− y)(f(t, x)− f(t, y)) ≥ c (x− y)2 (t ∈ Ω; |x|, |y| ≤ ρ). (6.10)

Estimate (6.10) implies that the function f(t, x) + αx with any α > max{−c, α0} in-
creases in x on the segment [−ρ, ρ]. Therefore the operator F [α] is monotone on the
cone interval 〈x−, x+〉, which it maps into itself. Robust stable fixed points of such
operators (or robust stable continual sets of fixed points) can be constructed by the
shuttle iteration method.

7. Proof of Theorem 1

7.1 Proof of Lemmas 1 and 2. Consider the sequence {un}. The equality Lun =
ĥnun is equivalent to

un = A[α](ĥn + αI)un (7.1)

for any α > α0. Therefore

un−1 = A[αn](ĥn−1 + αnI)un−1 <<A[αn](ĥn + αnI)un−1 = Hnun−1.

Due to the monotonicity of the operator Hn, the relations un−1 <<Hnun−1, un−1 <<x+

imply that all the elements of sequence (3.11) satisfy y
(n)
k >>un−1. Therefore 8) limk y

(n)
k

= un >>un−1, i.e. the sequence {un} increases.
Fix any α > α0. Since A[α] is a compact operator and the functions hn are uniformly

bounded, it follows from the relations un ∈ 〈x−, x+〉 and (7.1) that the sequence {un}
is compact, hence it converges uniformly to the function u∗ ∈ 〈x−, x+〉. Passing to the
limit in (7.1), we obtain u∗ = A[α](f̂ + αI)u∗, therefore u∗ is a solution of (2.3). This
proves Lemma 1

The proof of Lemma 2 is by the same argument and we omit it.

7.2 Proof of statement 1 of Theorem 1. By Lemmas 1 and 2,

un → u∗, vn → v∗, un <<u∗<<v∗<<vn. (7.2)

Let us show that for any given n the set 〈un, vn〉 contains a solution of problem (2.8)
whenever the function f1 satisfies (2.9) for a sufficiently small δ = δn. Due to this fact,
statement 1 follows from (7.2) if u∗ = v∗.

Take any n and any α > αn, βn. Due to (3.1) and (3.2),

hn(t, x) < f(t, x) < gn(t, x) (t ∈ Ω, |x| ≤ ρ). (7.3)

8) Everywhere we consider the convergence in the space C(Ω); it is not mentioned sometimes.
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Therefore there is a δ = δn > 0 such that (2.9) implies

hn(t, x) ≤ f1(t, x) ≤ gn(t, x) (t ∈ Ω, |x| ≤ ρ)

and hence ĥnu<< f̂1u<< ĝnu for every u ∈ 〈un, vn〉. From the estimates α > αn, βn and
(3.4), it follows that the functions hn(t, x) + αx and gn(t, x) + αx increase in x, hence

ĥnun + αun << ĥnu + αu

ĝnu + αu<< ĝnvn + αvn

for all u ∈ 〈un, vn〉 and therefore

ĥnun + αun << f̂1u + αu<< ĝnvn + αvn.

Applying the positive operator A[α] to these relations and using equality (7.1) and the
similar equality vn = A[α](ĝn + αI)vn, we obtain

un <<A[α](f̂1u + αu) <<vn (u ∈ 〈un, vn〉),

i.e. the completely continuous operator A[α](f̂1 + αI) maps the cone interval 〈un, vn〉
into itself. Therefore the equation x = A[α](f̂1 + αI)x equivalent to problem (2.8) has
a solution in 〈un, vn〉 and statement 1 is proved

7.3 Proof of statement 2. Suppose u∗ is an isolated solution of problem (2.3). The
relation u∗ = v∗ follows from statement 3.

Consider any ε > 0 such that u∗ is a unique solution of (2.3) in the open ball
B(ε) = {u ∈ C(Ω) : ‖u− u∗‖C < ε}. We need to show that the rotation 9) γ(I − A[α]
(f̂ + αI), ∂Γ) of the vector field (3.15) on the boundary ∂Γ of some open domain Γ
equals 1, where Γ contains the point u∗ and the closure Γ̄ of Γ is contained in B(ε). Fix
any n such that 〈un, vn〉 ⊂ B(ε) and any α satisfying α > αn, βn. Set

b1 = min
t∈Ω,|x|≤ρ

(f(t, x)− hn(t, x))

b2 = min
t∈Ω,|x|≤ρ

(gn(t, x)− f(t, x));
(7.4)

these numbers are positive due to (7.3). Now, take any δ > 0 such that 〈un−δ, vn+δ〉 ⊂
B(ε) and the implications

|x− y| ≤ δ =⇒ |hn(t, x)− hn(t, y) + α(x− y)| < b1 (7.5)
|x− y| ≤ δ =⇒ |gn(t, x)− gn(t, y) + α(x− y)| < b2 (7.6)

are valid for all t ∈ Ω and |x|, |y| ≤ ρ. We define Γ̄ = 〈un − δ, vn + δ〉 where δ is the
constant function; Γ is the non-empty interior of this cone interval.

9) For the definition, main properties, and methods of application see, e.g., [10] or any book
on the topological degree theory.
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Let u ∈ Γ̄. Since α > αn, the function hn(t, x) + αx increases in x, therefore

f̂u + αu = ĥnu + αu + (f̂ − ĥn)u >>(ĥn + αI)(un − δ) + (f̂ − ĥn)u.

Here
(f̂ − ĥn)u >>b1 >>(ĥn + αI)un − (ĥn + αI)(un − δ)

due to (7.4) and (7.5), hence f̂u + αu>> ĥnun + αun and consequently,

A[α](f̂ + αI)u>>A[α](ĥn + αI)un = un (u ∈ Γ̄).

Similarly, the relation A[α](f̂ + αI)u<<vn for each u ∈ Γ̄ follows from (7.4) and (7.6).
Thus, the operator A[α](f̂ + αI) maps the cone interval Γ̄ to the smaller cone interval
〈un, vn〉 ⊂ Γ. Therefore vector field (3.15) is linearly homotopic to the vector field u−u∗
on the boundary ∂Γ of the domain Γ̄, whence 10)

γ(I −A[α](f̂ + αI), ∂Γ) = γ(I − u∗, ∂Γ) = 1.

This formula is now proved for one value of α. To complete the proof of statement
2, it remains to note that vector fields (3.15) have the same zeros for all α > α0 (their
zeros are the solutions of problem (2.3)) and depend continuously on α uniformly with
respect to x, therefore the rotation γ(I −A[α](f̂ + αI), ∂Γ) is the same for all α > α0

7.4 Proof of statement 3. Let u∗ 6= v∗. Denote by Π∗ the set of all solutions of
problem (2.3) that lie in 〈u∗, v∗〉. As it is proved in Subsection 7.2., there is a sequence
δn → 0 such that the cone interval 〈un, vn〉 contains at least one solution of problem
(2.8) whenever the function f1 satisfies (2.9) for δ = δn > 0.

Consider any sequence of problems Lx = fn(t, x) such that |fn(t, x) − f(t, x)| <
δn (t ∈ Ω, x ∈ R) and a sequence of their solutions xn ∈ 〈un, vn〉. Due to the compact-
ness and continuity of the operator A[α], the equalities xn = A[α](f̂n+αI)xn imply that
the sequence {xn} is compact and any its partial limit satisfies x∗ = A[α](f̂ + αI)x∗,
x∗ ∈ 〈u∗, v∗〉, i.e. x∗ ∈ Π∗. This proves the robust stability of the set Π∗.

It remains to show that Π∗ is a continuous branch connecting the points u∗ and v∗
which is the main part of the proof. Consider any open bounded domain U ⊂ C(Ω)
such that either u∗ ∈ U, v∗ 6∈ Ū or v∗ ∈ U, u∗ 6∈ Ū . We need to show that

Π∗ ∩ ∂U 6= ∅. (7.7)

Consider the following two auxiliary lemmas.

10) The rotation γ(I − u∗, ∂U) is 1 if u∗ ∈ U and is 0 if u∗ 6∈ Ū for every point u∗ and every
open bounded domain U ; here Ū is the closure of U .
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Lemma 6. For any sufficiently large n and any m the implication

un <<z <<vm, Hnz >>z =⇒ z 6∈ ∂U (7.8)

is valid.

Proof. Due to the monotonicity of the operator Hn, the relations Hnz >>z (z ∈
〈x−, x+〉) imply that all the elements of sequence (3.11) satisfy y

(n)
k >>z, hence the limit

un of (3.11) satisfies un >>z. Therefore the implication

un <<z <<x+, Hnz >>z =⇒ z = un

holds. From un → u∗, u∗ 6∈ ∂U it follows that un 6∈ ∂U for every sufficiently large n.
This proves (7.8)

Lemma 7. For every sufficiently large m there is a n = n(m) ≥ m such that the
implication

un <<z <<vm, Gmz <<z =⇒ z 6∈ ∂U (7.9)

is valid.

Proof. Since vm → v∗, v∗ 6∈ ∂U , the relation vm 6∈ ∂U is valid for every sufficiently
large m. Let us fix such a m. We show that any sequence {zn} such that

un <<zn <<vm, Gmzn <<zn

converges to vm, therefore (7.9) follows from vm 6∈ ∂U .

The estimate gm(t, x) > hn(t, x) implies (ĝm + βmI)un >>(ĥn + βmI)un. Applying
to both sides the positive operator A[βm], we obtain Gmun >>un. From the relations
Gmun >>un and Gmvm = vm it follows that the monotone operator Gm maps the cone
interval 〈un, vm〉 into itself. Therefore Gmzn ∈ 〈un, vm〉 for each n.

Consider any partial limit y∗ of the compact sequence {yn} = {Gmzn} (n ≥ 1).
The relations yn ∈ 〈un, vm〉, un → u∗ imply y∗ ∈ 〈u∗, vm〉. Also, yn = Gmzn <<zn

implies Gmyn <<yn for each n, hence Gmy∗<<y∗.
From the relations y∗ ∈ 〈u∗, vm〉, Gmy∗<<y∗ it follows that all elements of sequence

(3.13) with n = m satisfy z
(m)
k <<y∗, therefore vm = limk z

(m)
k <<y∗<<vm, i.e. y∗ = vm.

Since this is true for any partial limit y∗ of the compact sequence yn, we conclude that
yn → vm and the inequalities yn <<zn <<vm imply zn → vm

For any sufficiently large m consider the cone interval 〈un, vm〉 such that both
implications (7.8) and (7.9) are valid; here n = n(m) ≥ m. This cone interval is a
bounded convex closed subset of C(Ω), therefore there exists a continuous projector P
onto this subset:

Pz = z, z ∈ 〈un, vm〉, P z ∈ 〈un, vm〉, z ∈ C(Ω).

Consider the completely continuous vector field

Φ(z, λ) = z − λGmPz − (1− λ)vm (z ∈ Ū)
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depending on the parameter λ ∈ [0, 1]. Recall that the operator Gm maps the cone
interval 〈un, vm〉 into itself. Therefore the inclusions Pz, vm ∈ 〈un, vm〉 imply λGmPz+
(1 − λ)vm ∈ 〈un, vm〉 for any z and λ, hence every zero z∗ of the vector field Φ(·, λ)
satisfies

z∗ = λGmz∗ + (1− λ)vm, un <<z∗ = Pz∗<<vm.

This means that either λ = 0, z∗ = vm or λ > 0, z∗>>λGmz∗+(1−λ)z∗. In both cases,
z∗>>Gmz∗ and by Lemma 7 z∗ 6∈ ∂U , i.e. the vector field Φ(·, λ) is non-degenerate on
∂U for each λ. Therefore the rotation γ(Φ(·, λ), ∂U) of this field on the boundary ∂U
of the domain U is defined and this rotation is the same for all λ ∈ [0, 1]. In particular,

γ(I −GmP, ∂U) = γ(I − vm, ∂U) (7.10)

for λ = 1 and λ = 0.
Now consider the vector fields Ψ(z, α) = z − A[α](ĝm + αI)Pz with the parameter

α ≥ βm. For α = βm,
Ψ(z, βm) = Φ(z, 1) = z −GmPz. (7.11)

Since A[α], ĝm + αI are monotone operators for α ≥ βm and gm(t, x) > hn(t, x), the
inclusion z ∈ 〈un, vm〉 implies

un = A[α](ĥn + αI)un <<A[α](ĝm + αI)z <<A[α](ĝm + αI)vm = vm, (7.12)

hence the operator A[α](ĝm +αI) maps the cone interval 〈un, vm〉 into itself. Therefore
Ψ(z, α) = 0 if and only if

z = A[α](ĝm + αI)z, z = Pz ∈ 〈un, vm〉,

i.e. the zeros of the vector field Ψ(·, α) for each α coincide with the solutions of the
problem Lx = gm(t, x) lying in the cone interval 〈un, vm〉. We see that all the vector
fields Ψ(·, α), α ≥ βm, have the same zeros, hence they are non-degenerate on ∂U
together with field (7.11). Since the vector fields Ψ(·, α) depend continuously on α
uniformly with respect to z, they have the same rotation on ∂U and (7.10) implies

γ(I −A[α](ĝm + αI)P, ∂U) = γ(I − vm, ∂U) (α ≥ βm). (7.13)

Similarly one can prove the formula

γ(I −A[α](ĥn + αI)P, ∂U) = γ(I − un, ∂U) (α ≥ αn). (7.14)

Lemma 6 implies that the vector fields z − λHnPz − (1 − λ)un are non-degenerate on
∂U for all λ ∈ [0, 1] and therefore γ(I −HnP, ∂U) = γ(I − un, ∂U), i.e. (7.14) is true
for α = αn. For α ≥ αn formula (7.14) follows from the fact that the vector fields
z − A[α](ĥn + αI)Pz depend continuously on α and have the same zeros (these zeros
are the solutions of the problem Lx = hn(t, x) lying in the cone interval 〈un, vm〉).

By assumption, the domain U contains one of the points u∗, v∗, the other point lies
outside the set Ū . Suppose m and n = n(m) are sufficiently large. Then U contains
exactly one of the points un, vm. Therefore one of the rotations γ(I − un, ∂U), γ(I −
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vm, ∂U) equals 0, the other rotation equals 1. Fix any α ≥ αn, βm. From (7.13), (7.14),
the relation

γ(I −A[α](ĝm + αI)P, ∂U) 6= γ(I −A[α](ĥn + αI)P, ∂U)

follows, consequently any completely continuous deformation connecting the vector
fields z − A[α](ĝm + αI)Pz and z − A[α](ĥn + αI)Pz is degenerate on ∂U . In par-
ticular, the linear deformation

Θ(z, λ) = z −A[α](λĝm + (1− λ)ĥn + αI)Pz, λ ∈ [0, 1]

has at least one zero z = zm ∈ ∂U for some λ = λm. From (7.12) and the similar
relations

un <<A[α](ĥn + αI)z <<vm (z ∈ 〈un, vm〉)
it follows that the operator A[α](λĝm +(1−λ)ĥn +αI) maps the cone interval 〈un, vm〉
into itself, hence the equality Θ(zm, λm) = 0 is equivalent to the relations

zm = A[α](λmĝm + (1− λm)ĥn(m) + αI)zm, un(m) <<zm = Pzm <<vm. (7.15)

Finally, consider any partial limit z∗ of the compact sequence {zm}. Relations (3.3)
and (7.15) imply z∗ = A[α](f̂ + αI)z∗ and u∗<<z∗<<v∗, i.e. z∗ ∈ Π∗. Also, zm ∈ ∂U
implies z∗ ∈ ∂U , which proves that (7.7) is valid and that Π∗ is a continuous branch
connecting the points u∗ and v∗. Theorem 1 is completely proved

8. Proof of Theorems 2 - 4

8.1 Proof of Lemma 3. First note that if the relation A[α](φ̂ + αI)u>>u holds for
some u and α > α0, then it holds also for any β ∈ (α0, α) in place of α. Indeed, applying
the positive operator (α− β)A[β] to this relation and using the resolvent identity

A[β]−A[α] = (α− β)A[β]A[α], (8.1)

we obtain
A[β](φ̂ + αI)u−A[α](φ̂ + αI)u>>(α− β)A[β]u

and hence
A[β](φ̂ + βI)u>>A[α](φ̂ + αI)u >>u.

Similarly, if A[α](φ̂ + αI)u<<u, then A[β](φ̂ + βI)u<<u for all β ∈ (α0, α). Therefore
it suffices to prove relations (4.4) for sufficiently large α only. Both the relations can be
proved in the same way, we prove the first one.

Denote by y∗ the limit of the decreasing sequence (3.6). By definition, y∗ is a fixed
point of the operator Hn = A[αn](ĥn + αnI), hence it is a solution of the problem
Ly = hn(t, y). Fix any α > α0, c. Due to (4.3), the operator φ̂ + αI is monotone on
〈x−, x+〉, therefore y

(n)
k >>y∗ implies

A[α](φ̂ + αI)y(n)
k >>A[α](φ̂ + αI)y∗ (k ≥ 0). (8.2)
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We prove that for all sufficiently large k

y
(n)
k <<A[α](φ̂ + αI)y∗, (8.3)

then the required relation (4.4) follows from (8.2).

Estimates (4.2) imply (φ̂y∗ − ĥny∗)(t) ≥ δ > 0 for all t ∈ Ω. Since y∗ = limk y
(n)
k

and the operators A[αn], ĥn are continuous in C(Ω), for each sufficiently large k the
relation

(
I + (α− αn)A[αn]

)(
(ĥn + αnI)y(n)

k−1 − (ĥn + αnI)y∗
)
<<(φ̂− ĥn)y∗ (8.4)

is valid. Let us apply the positive operator A[α] to both sides. Using (8.1), we get

A[αn](ĥn + αnI)y(n)
k−1 −A[αn](ĥn + αnI)y∗<<A[α](φ̂− ĥn)y∗,

i.e.
y
(n)
k <<A[α](φ̂− ĥn)y∗ + A[αn](ĥn + αnI)y∗.

Due to
y∗ = A[αn](ĥn + αnI)y∗ = A[α](ĥn + αI)y∗

this is equivalent to (8.3)

8.2 Proof of Theorem 2. By definition, sequence (3.11) decreases, therefore y
(n)
s(n) >>

limk y
(n)
k = un. From the relations

y
(n−1)
s(n−1) <<Hny

(n−1)
s(n−1), Hnx+ <<x+, y

(n−1)
s(n−1) <<x+,

it follows that the monotone operator Hn maps the cone interval 〈y(n−1)
s(n−1), x+〉 into

itself, hence all the elements of sequence (3.11) and its limit un lie in this cone interval.
Therefore y

(n−1)
s(n−1) <<un and the proof is complete

8.3 Proof of Theorem 3. By definition of the sequence {dn}, the relations

dn−1 <<zmn−1 <<zmn <<x+, dn−1 <<Hndn−1

are valid for each n. Due to the monotonicity of the operator Hn, these relations imply
that all elements of sequences (3.11) and (4.8) satisfy y

(n)
k >>dn−1, i.e.

dn−1 <<(Hn)kx+, dn−1 <<(Hn)kzmn (k ≥ 0).

Passing to the limit in the first relation and setting k = s(n) in the second one, we
obtain dn−1 <<un and dn−1 <<dn. Since un <<u∗, it follows that

d1 <<d2 << . . . <<dn << . . . <<u∗ (8.5)



1050 D. Rachinskii

where u∗ is solution (3.12) of problem (2.3). It remains to prove dn → u∗ if (4.9) holds.
Fix any index `. The relations zm → x+ and g1(t, x) > h`(t, x) imply for every

sufficiently large m
(
I + (α` − β1)A[β1]

)(
(ĝ1 + β1I)x+ − (ĝ1 + β1I)zm−1

)
<<(ĝ1 − ĥ`)x+.

Applying to both sides the operator A[α`] and using (8.1), we get

G1x+ −G1zm−1 <<A[α`](ĝ1 − ĥ`)x+. (8.6)

Here G1x+ = x+ due to (4.9), hence x+ = A[α](ĝ1 + αI)x+ for every α > α0 and we
can rewrite (8.6) as

x+ − zm <<x+ − α`A[α`]x+ −A[α`]ĥ`x+,

i.e. zm >>A[α`](ĥ` + α`I)x+ = H`x+. Since the sequence x+,H`x+, (H`)2x+, . . . de-
creases and converges to u`, this inequality implies zm >>u`.

Take any n = n(`) such that n > ` and zmn >>u`. From (7.1) and hn(t, x) > h`(t, x)
the relations

u` = A[αn](ĥ` + αnI)u` <<A[αn](ĥn + αnI)u` = Hnu`

follow. The inequalities u` <<Hnu`, u` <<zmn imply that all elements of sequence (4.8)
satisfy u` <<y

(n)
k , in particular u` <<dn. Finally, the relations u` → u∗, u` <<dn(`) and

(8.5) imply dn → u∗. This completes the proof

8.4 Proof of Theorem 4. Take any n ≥ 2 and consider the function ṽn−1. By
definition, ṽn−1 >>Hn−1ṽn−1, therefore the sequence

y0 = ṽn−1, yk = Hn−1yk−1 (k ≥ 1)

decreases and its element ũn−1 satisfies ũn−1 << ṽn−1. Also, by definition,

ũn−1 <<Gnũn−1, Gnṽn−1 << ṽn−1.

These relations imply that sequence (5.1) increases and converges uniformly to a solution
ζn ∈ 〈ũn−1, ṽn−1〉 of the equation x = Gnx. Since ṽn is an element of this sequence, it
follows that ũn−1 << ṽn <<ζn << ṽn−1.

Similarly, the relations

ũn−1 <<Hnũn−1, Hnṽn << ṽn

imply ũn−1 <<ξn << ũn << ṽn, where ξn is the limit of the decreasing sequence (5.4),
ξn = Hnξn. Thus, we have

ũ1 <<ξ2 << . . . << ũn−1 <<ξn << ũn << . . .<< ṽn <<ζn << ṽn−1 << . . . << ζ2 << ṽ1. (8.7)

In the same way as in the proof of Theorem 1, the relations

ξ1 <<ξ2 << . . . <<ξn << . . .<< ζn << . . . <<ζ2 <<ζ1, ξn = Hnξn, ζn = Gnζn

imply that the sequences {ξn} and {ζn} converge uniformly to solutions u? and v? of
problem (2.3), respectively, the inequality u? <<v? holds, and the set of all solutions of
problem (2.3) contained in the cone interval 〈u?, v?〉 is robust stable. Now all conclusions
of Theorem 4 follow from (8.7)
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9. Proof of Theorem 5

9.1 Proof of Lemmas 4 and 5. Because both lemmas can be proved in the same way,
we prove Lemma 4. The constructions are basically the same as in the corresponding
parts of the proofs of Theorems 1 and 4.

Since sequence (5.7) increases and each sequence (5.9) decreases, the relations
d̃k−1 <<zmk−1 <<zmk

are valid for every k. The functions d̃k−1 and zmk
satisfy

d̃k−1 <<Hjn+kd̃k−1, Hjn+kzmk
<<zmk

by definition. These relations imply the inequalities d̃k−1 <<ηk <<y
(k)
` for each element

of sequence (5.9), where ηk is the limit of this sequence, ηk = Hjn+kηk. In particular,
d̃k−1 <<ηk << d̃k.

From the relations

d̃1 <<η2 << d̃2 <<η3 << . . . << d̃k−1 <<ηk << d̃k << . . . <<x+, ηk = Hjn+kηk,

it follows that the sequences {d̃k} and {ηk} converge uniformly from below to the same
limit d̃∗ and this limit is a solution of problem (2.3).

It remains to prove (5.10). Set α = βin+1. The estimate gin+1(t, x)−f(t, x) ≥ δ > 0
implies the inequality (ĝin+1 +αI)d̃k >>(f̂ +αI)d̃∗ for each sufficiently large k, therefore

Gin+1d̃k = A[α](ĝin+1 + αI)d̃k >>A[α](f̂ + αI)d̃∗ = d̃∗.

Now (5.10) follows from d̃∗>> d̃k+1

9.2 Proof of Theorem 5. The proof of this theorem is close to that of Theorem 1.
Thus we give a sketch of it only.

Denote by ζn and ξn+1 the limits of the increasing sequence (5.7) and the decreas-
ing sequence (5.11), respectively. From the definition of ūn and v̄n it follows without
difficulty that

ū1 <<ξ1 << ū2 <<ξ2 << . . .<< ζ2 << v̄2 <<ζ1 << v̄1. (9.1)

These relations and the equalities ξn = Hjnξn, ζn = Ginζn imply that the functions

u? = sup ūn = sup ξn

v? = inf v̄n = inf ζn

are solutions of problem (2.3), the inequalities (5.14) are valid, and the sequences
{ūn}, {ξn} converge uniformly to u?, the sequences {v̄n}, {ζn} converge uniformly to
v?.

To prove robust stability of the set Π? of all solutions of problem (2.3) lying in the
cone interval 〈u?, v?〉, one can use the argument of Subsections 7.2 and 7.4, it suffices
just to replace the functions un and vn by ξn and ζn, and the operators ĥn and ĝn by
ĥjn and ĝin , respectively.
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We need analogs of Lemmas 6 and 7 to prove the last conclusion of the theorem
(that Π? is a continuous branch if u? 6= v?). Suppose u? 6= v? and consider any open
bounded domain U such that either u? ∈ U, v? 6∈ Ū or v? ∈ U, u? 6∈ Ū . Consider the
sequence

z̄0 = ξn+1, z̄` = Gin+1z̄`−1 (` ≥ 1). (9.2)

The equality ξn+1 = Hjn+1ξn+1 implies that ξn+1 <<Gin+1ξn+1, therefore this sequence
increases, denote its limit by τn+1. By definition, τn+1 = Gin+1τn+1.

Lemma 8. For every sufficiently large n the implications

Hjn+1x>>x =⇒ x 6∈ ∂U

Gin+1x<<x =⇒ x 6∈ ∂U
(9.3)

hold for every x ∈ 〈ξn+1, τn+1〉. The sequence {τn} converges to v?.

Proof. If ξn+1 <<x, Gin+1x <<x, then all elements of sequence (9.2) satisfy z̄` <<x,
hence τn+1 <<x. Therefore the implication

ξn+1 <<x <<τn+1, Gin+1x<<x =⇒ x = τn+1 (9.4)

holds. Consider the decreasing sequence (5.9) for k = k0 + 1:

y
(k0+1)
0 = zmk0+1 , y

(k0+1)
` = Hjn+1y

(k0+1)
`−1 (` ≥ 1).

By definition, this sequence contains sequence (5.11), hence they have the same limit
ξn+1 and ξn+1 <<zmk0+1 . Also, Gin+1zmk0+1 <<zmk0+1 due to (5.8), therefore the rela-
tion τn+1 <<zmk0+1 holds. If there is a x such that x<<τn+1 <<zmk0+1 and Hjn+1x >>x,

then y
(k0+1)
` >>x for each ` and ξn+1 = lim

`
y
(k0+1)
` >>x, hence

ξn+1 <<x <<τn+1, Hjn+1x>>x =⇒ x = ξn+1. (9.5)

Now note that relations (5.10) and (9.1) imply

d̃k0+1 <<Gin+1d̃k0 = Gin+1ūn+1 <<Gin+1ξn+1.

Since sequence (5.11) decreases and converges to ξn+1, all its elements ym satisfy
ξn+1 <<ym <<y0 = d̃k0+1 <<Gin+1ξn+1. From ξn+1 <<ym1 <<Gin+1ξn+1 it follows that
sequence (5.12) with k = 1 converges to the same limit τn+1 as sequence (9.2). Both
sequences increase and the first of them contains d̄1, hence d̄1 <<τn+1.

By Lemma 5, the sequence {d̄k} decreases, therefore v̄n+1 = d̄k1 << d̄1 <<τn+1. On
the other hand, τn+1 <<zmk0+1 and zmk0+1 is an element of sequence (5.7), which in-
creases and converges to ζn, hence τn+1 <<ζn.

The relations v̄n+1 <<τn+1 <<ζn and v̄n, ζn → v? imply τn → v?. Since also ξn → u?,
for every sufficiently large n the relations u?, v? 6∈ ∂U imply ξn+1, τn+1 6∈ ∂U . Therefore
(9.3) follows from (9.4), (9.5) and Lemma 8 is proved
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The rest of the proof of Theorem 5 follows exactly the proof of Theorem 1. If n is
large enough, Lemma 8 implies the formulas

γ(I −A[α](ĝin+1 + αI)P1, ∂U) = γ(I − τn+1, ∂U)

γ(I −A[α](ĥjn+1 + αI)P1, ∂U) = γ(I − ξn+1, ∂U)

similar to (7.13) and (7.14), where P1 is a projector onto the cone interval 〈ξn+1, τn+1〉.
Therefore the linear deformation

Θ1(z, λ) = z −A[α](λĝin+1 + (1− λ)ĥjn+1 + αI)P1z

has a zero zn ∈ ∂U ∩ 〈ξn+1, τn+1〉 for some λn ∈ [0, 1] and any partial limit z∗ of the
compact sequence {zn} satisfies the relations z∗ ∈ ∂U ∩ 〈u?, v?〉, z∗ = A[α](f̂ + αI)z∗.
This completes the proof
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