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On Topological Structure of Solution Sets
for Delay and Functional-Differential Equations
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Abstract. In this paper we characterize the topological structure of global solution sets for
classical delay and functional-differential equations in terms of Rδ sets.
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1. Introduction

Let us consider the delay differential equation

x′ = f(t, x) + g
(
t, x(t− τ(t))

)
(t ≥ t0 ≥ 0) (1)

where f, g : R+ × Rn → Rn and τ : R+ → R+ are continuous functions. The set

Et0 = {t0} ∪ {s : s = t− τ(t) ≤ t0 for t ≥ t0}

is said to be the initial interval for equation (1) at t0. In what follows we suppose
that Et0 is bounded for every t0 ∈ R+. Recall that for any initial continuous function
x0 : Et0 → Rn a function x = x(t) is a solution of (1) on [t0, t0+a) for some 0 < a ≤ +∞
if x is continuous on Et0 ∪ [t0, t0 + a), satisfies (1) on (t0, t0 + a) and

x(t) = x0(t) for t ∈ Et0 . (2)

It is well known that under the above assumptions problem (1) has a local solution (see
[4, 5]).

Recently Constantin [2] formulated conditions which guarantee the existence of
global solutions of equation (1). In this paper we establish that under suitable assump-
tions the set of all global solutions of equation (1) is a compact Rδ, i.e. it is homeo-
morphic to the intersection of a decreasing sequence of compact absolute retracts. In
particular, it is non-empty, compact and connected in a suitable space of continuous
functions.
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Further, we shall consider more general functional-differential equations of the form

x′ = f(t, x) + g(t, xt) (xb = γ, t ≥ b) (3)

where b ∈ R, γ : [−h, 0] → Rn is a continuous function and xt(s) = x(t + s) for
s ∈ [−h, 0]. We prove an Aronszajn type theorem for problem (3), too.

Recall that toplogical properties of solution sets for simpler equations of the form

x′ = g(t, xt) (xt = γ, t ≥ b) (4)

were investigated e.g. by Šeda and Kubáček [12] (Kneser type theorem) and by Kubáček
[11] (Aronszajn type theorem). A multi-valued version of Kneser’s theorem for an
equation of type (4) was proved by Krbec and Kurzweil in [9] (see also references given
in [2: p. 85]).

The proofs of our results are based on the following Vidossich type theorem.

Theorem 1 (Kubáček [10]). Let K be a convex subset of a normed space (Z, | · |),
(Y, ‖ · ‖) be a Banach space, and let X be the space of all continuous locally bounded
maps f : K → Y (i.e. bounded on each bounded subset of K) equipped with the topology
of locally uniform convergence. Denote

M =
{

x ∈ X : ‖x(t)− h(t)‖ ≤ p(t) (t ∈ K)
}

where h ∈ X and p : K → R is a non-negative locally bounded continuous function, and
let a compact map T : M → M satisfy the following conditions:

(i) There exist t0 ∈ K and y0 ∈ Y such that ‖y0−h(t0)‖ ≤ p(t0) and T (x)(t0) = y0

for every x ∈ M .

(ii) T (M) is a set of locally equiuniformly continuous maps.

(iii) For every ε > 0 and for all x, y ∈ M , x|Kε
= y|Kε

implies T (x)|Kε
= T (y)|Kε

where Kε = {t ∈ K : |t− t0| ≤ ε}.
Then the set of all fixed points of T is a compact Rδ.

Remark. Note that a slight technical change in the proof of Theorem 1 shows that
instead of the set M one can consider the set

M ′ =
{

x ∈ X : ‖x(t)− h(t)‖ ≤ p(t) (t ∈ K), x(t0) = y0, ‖y0 − h(t0)‖ ≤ p(t0)
}

.

Obviously, in this case condition (i) has the form T (x)(t0) = y0 for every x ∈ M .



On Topological Structure of Solution Sets 1077

2. Results and proofs

Denote byR0 the class of continuous scalar functions w such that w(r) > 0 for r ≥ δ > 0
and

∫ +∞
δ

ds
w(s) = +∞.

In what follows we shall need the following result due to Constantin [2: p. 243/The-
orem 2.3] concerning continuability of solutions of perturbed ordinary differential equa-
tions

r′ = ϕ(t)w(r) + ψ(t)z(r). (5)

Theorem 2. Assume ϕ,ψ, z, w : R+ → R+ are continuous functions such that
z(r) > 0 and w(r) > 0 for all r ≥ δ ≥ 0. Let w ∈ R0 and suppose there exist constants
K, L, M > 0 such that

z(r) ≤ Kw(r)
∫ r

δ

ds

w(s)
+ Mw(r) (r ≥ L ≥ 0).

Then the solutions of equation (5) are defined in the future.

Now, we prove the following Aronszajn type result for problem (1) - (2).

Theorem 3. Let f, g : [t0,+∞) × Rn → Rn and τ : R+ → R+ be continuous
functions. Suppose there exist continuous functions ϕ,ψ, z, w : R+ → R+ satisfying the
conditions of Theorem 2 with w and z non-decreasing on R+ such that

‖f(t, x)‖ ≤ ϕ(t)z(‖x‖)
‖g(t, x)‖ ≤ ψ(t)w(‖x‖)

(
(t, x) ∈ R+ × Rn

)
. (6)

Moreover, suppose supt∈Et0
‖x0(t)‖ = ‖x0(t0)‖. Then the set of all solutions of problem

(1)− (2) is a compact Rδ.

Proof. It can be easily verified that problem (1) - (2) is equivalent to the problem

x(t) = x0(t0) +
∫ t

t0

[
f(s, x(s)) + g

(
s, x(s− τ(s))

)]
ds (t > t0)

x(s) = x0(s) (s = t− τ(t) ∈ Et0)





.

Let X = C([t0,+∞),Rn) be the space of all continuous functions [t0, +∞) → Rn

with the topology of locally uniform convergence and analogously let X̃ = C
(
Et0 ∪

[t0, +∞),Rn
)
. Moreover, let r : [t0,+∞) → R+ be a solution of equation (5) with

initial condition r(t0) = ‖x0(t0)‖. Remark that in view of Theorem 2 a solution r is
defined on the whole interval [t0,+∞). Let

M̃ =
{

x ∈ X̃ : x|Et0
= x0 and ‖x(t)‖ ≤ r(t) for every t ≥ t0

}
.

Define

T̃ (x)(t) =

{
x0(t0) +

∫ t

t0

[
f(s, x(s)) + g

(
s, x(s− τ(s))

)]
ds if t > t0

x0(t− τ(t)) if t− τ(t) ∈ Et0
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for x ∈ M̃ and t > t0. It can be easily verified that x is a solution of system (1) - (2) if
and only if x is a fixed point of T̃ . Moreover, it is clear that any such solution x satisfies
the inequality ‖x(t)‖ ≤ r(t) for every t ≥ t0. Now, set

V =
{
x ∈ X : x(t0) = x0(t0)

}

Ṽ =
{
x ∈ X̃ : x|Et0

= x0

}

and define the mapping P : V → Ṽ by the formula

P (x)(t) =
{

x(t) if t > t0

x0(t− τ(t)) if t− τ(t) ∈ Et0 .

It is not difficult to verify that P is a homeomorphism (note that P−1(x) = x|(t0,+∞)

for x ∈ Ṽ ). Consider the operator T = P−1 ◦ T̃ ◦ P |M , where

M =
{

x ∈ X : ‖x(t)‖ ≤ r(t) (t ≥ t0) and x(t0) = x0(t0)
}

.

Now, we show that T maps M into itself. Indeed, have

T (x)(t)

= (P−1 ◦ T̃ ◦ P )(x)(t)

= P−1

({
x0(t0) +

∫ t

t0

[
f
(
s, P (x)(s)

)
+ g

(
s, P (x)(s− τ(s))

)]
ds if t > t0

x0(t− τ(t)) if t− τ(t) ∈ Et0

})

= x0(t0) +
∫ t

t0

[
f(s, x(s)) + g

(
s, P (x)(s− τ(s))

)]
ds

and, by (6),

‖T (x)(t)‖ ≤ ‖x0(t0)‖+
∫ t

t0

[‖f(s, x(s))‖+
∥∥g

(
s, P (x)(s− τ(s))

)‖]ds

≤ ‖x0(t0)‖+
∫ t

t0

[
ϕ(s)z(‖x(s)‖) + ψ(s)w

(∥∥P (x)(s− τ(s))
∥∥)]

ds

for x ∈ M and t ≥ t0. Because

∥∥P (x)(s− τ(s))
∥∥ =

{ ‖x(s− τ(s))‖ if s− τ(s) > t0
‖x0(s− τ(s))‖ if s− τ(s) ≤ t0

≤
{

r(s− τ(s)) if s− τ(s) > t0
‖x0(t0)‖ if s− τ(s) ≤ t0

=
{

r(s− τ(s)) if s− τ(s) > t0
r(t0) if s− τ(s) ≤ t0

≤ r(s)



On Topological Structure of Solution Sets 1079

for s ≥ t0, so in view of the assumptions that the functions z and w are non-decreasing
we obtain

‖T (x)(t)‖ ≤ ‖x0(t0)‖+
∫ t

t0

[
ϕ(s)z(r(s)) + ψ(s)w(r(s))

]
ds

for x ∈ M and t ≥ t0. Thus T maps M into itself.
Now, let x ∈ M and t1, t2 ∈ [t0, t0 + a] for some a > 0, with t2 < t1. In view of the

inequalities ∥∥T (x)(t1)− T (x)(t2)
∥∥

=
∥∥∥∥

∫ t1

t2

[
f(s, x(s)) + g

(
s, P (x)(s− τ(s))

)]
ds

∥∥∥∥

≤
∫ t1

t2

[
ϕ(s)z(‖x(s)‖) + ψ(s)w(‖P (x)(s− τ(s))‖)]ds

≤
∫ t1

t2

[
ϕ(s)z(r(s)) + ψ(s)w(r(s))

]
ds

it is clear that the family T (M) is locally equiuniformly continuous.
To show the continuity of the mapping T assume x, xn ∈ M for n ∈ N and xn → x

(in the sense of the topology of M) and fix t > t0. We have

P (xn)(s− τ(s)) =
{

xn(s− τ(s)) if s− τ(s) > t0
x0(s− τ(s)) if s− τ(s) ≤ t0.

Because xn → x uniformly on [t0, t], so

P (xn)(s− τ(s)) → P (x)(s− τ(s))

uniformly on [t0, t]. In view of the Krasnoselskii-Krein lemma [8]

g(s, P (xn)(s− τ(s))) → g(s, P (x)(s− τ(s)))

uniformly on [t0, t]. Moreover, f(s, xn(s)) → f(s, x(s)) uniformly on this interval, so
T (xn)(t) → T (x)(t). Hence T (xn) → T (x) uniformly on every interval [t0, t0+a] (a > 0)
which proves the continuity of T .

Further, in view of Ascoli’s theorem [6: pp. 80 - 81] we infer that T (M) is relatively
compact, so T is a compact mapping. It is clear that T satisfies all conditions of Theorem
1 and therefore the set S of all its fixed points is a compact Rδ. As the homeomorphic
image of a compact Rδ set is again a compact Rδ set, so P−1(S) is a compact Rδ set,
which completes the proof of Theorem 2

Now let pass on to problem (3). Let h > 0 and b ∈ R. Denote by H = C([−h, 0],Rn)
the space of all continuous functions [−h, 0] → Rn with the topology of uniform con-
vergence and by X = C([b,+∞),Rn) and X̃ = C([b − h, +∞),Rn) the spaces of all
continuous functions [b,+∞) → Rn and [b− h, +∞) → Rn, respectively, with toplogies
of locally uniform convergence. For x ∈ X̃ and t ∈ [b,+∞) denote by xt ∈ H the
function defined as

xt(s) = x(t + s) (s ∈ [−h, 0]).

Then obviously ‖xt‖ = sups∈[−h,0] ‖xt(s)‖.
Our next result is given by the following
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Theorem 4. Let f : [b,+∞)×Rn → Rn and g : [b,+∞)×H → Rn be continuous
functions. Suppose there exist continuous functions ϕ,ψ, z, w : R+ → R+ satisfying
the conditions of Theorem 2 with z and w non-decreasing on R+ and inequalities (6).
Moreover, suppose γ ∈ H is such that ‖γ‖ = ‖γ(0)‖. Then the set of all solutions of
problem (3) is a compact Rδ.

To prove Theorem 4 it is enough to repeat similar arguments as in the proof of
Theorem 3 and therefore we omit its proof.
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différentielles. Ann. Math. 43 (1942), 730 – 738.

[2] Constantin, A.: Global existence of solutions for perturbed differential equations. Ann. di
Mat. Pura ed Appl. 168 (1995), 237 – 299.

[3] Dragoni, R., Macki, J. W., Nistri, P. and P. Zecca: Solution Sets of Differential Equations
in Abstract Spaces (Pitman Research Notes in Mathematics Series: Vol. 342). Harlow:
Longman 1996.

[4] Driver, R. D.: Existence theory for a delay differential system. Contrib. Diff. Equ. 1
(1963), 317 – 336.

[5] Hale, J. K.: Theory of Functional Differential Equations. New York: Springer-Verlag
1997.

[6] Kelley, J. L. and I. Namioka: Linear Toplogical Spaces. Princeton: Van Nostrand 1963.
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Časop. pro Pěst. Mat. 104(1979)1, 1 – 8.
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