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Existence of Non-Oscillatory Solutions
of

Second-Order Neutral Delay Difference Equations

Yong Zhou and Y. Q. Huang

Abstract. In this paper, we consider the second-order neutral delay difference equation with
positive and negative coefficients

∆
�
rn∆(xn + cxn−k)

�
+ pn+1xn+1−m − qn+1xn+1−l = 0

where c ∈ R, k ≥ 1 and m, l ≥ 0 are integers, {rn}∞n=n0 , {pn}∞n=n0 and {qn}∞n=n0 are sequences
of non-negative real numbers. We obtain global results (with respect to c) which are some
sufficient conditions for the existences of non-oscillatory solutions.
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1. Introduction

Consider the second-order neutral delay difference equation with positive and negative
coefficients

∆
(
rn∆(xn + cxn−k)

)
+ pn+1xn+1−m − qn+1xn+1−l = 0 (n ≥ n0) (1)

where c ∈ R, k ≥ 1 and m, l ≥ 0 are integers, {rn}∞n=n0
is a sequence of positive real

numbers, {pn}∞n=n0
and {qn}∞n=n0

are sequences of non-negative real numbers. The
forward difference ∆ is defined as usual, i.e. ∆xn = xn+1 − xn.

Let σ = max{k,m, l} and N0 ≥ n0 be a fixed non-negative integer. By a solution
of equation (1), we mean a real sequence {xn} which is defined for all n ≥ N0 − σ and
satisfies (1) for n ≥ N0. A solution {xn} of (1) is said to oscillate about zero or simply
to oscillate, if the terms xn of the sequence {xn} are neither eventually all positive nor
eventually all negative. Otherwise, the solution is called non-oscillatory.

Recenly there have been a lot of activities concerning the oscillation and non-
oscillation of delay difference equations (see, for example, [1 - 14]). Agarwal, Manuel and
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Thandapani [1- 2] establish some sufficient conditions for existence of non-oscillatory
solution of second-order neutral delay difference equations

∆
(
rn∆(xn + cnxn−k)

)
+ pn+1f(xn+1−m) = 0 (n ≥ n0) (2)

where {rn}∞n=n0
, {cn}∞n=n0

and {pn}∞n=n0
are real sequences with rn > 0 and pn > 0.

The oscillation and non-oscillation of solutions of the first order neutral delay difference
equation with positive and negative coefficients

∆(xn + cxn−k) + pnxn−m − qnxn−l = 0 (n ≥ n0)

have been investigated by Chen and Zhang [5], Zhang and Wang [12], and Zhou [8]. The
second-order neutral difference equation with positive and negative coefficients received
much less attention. In particular, there is no non-oscillation result for equation (1).

In this paper, we obtain global results (with respect to c) in the non-constant co-
efficient case, which are some sufficient conditions for the existence of a non-oscillatory
solution of equation (1) for all values of c 6= ±1.

2. Main results

In this section, we will give four theorems for existence of non-oscillatory solution of
equation (1).

Theorem 1. Assume 0 ≤ c < 1 and

∞∑

i=n0

pi

∞∑

j=i

1
rj

< ∞,

∞∑

i=n0

qi

∞∑

j=i

1
rj

< ∞. (3)

Further, assume there exist a constant α > 1
1−c and a sufficiently large N1 ≥ n0 such

that
pn ≥ αqn (n ≥ N1). (4)

Then equation (1) has a non-oscillatory solution.

Proof. By (3) and (4), there exists n1 ≥ N1 sufficiently large such that

n1 ≥ max{N1, n0 + σ}, σ = max{k, m, l} (5)

∞∑

i=n1

(pi + qi)
∞∑

j=i

1
rj

< 1− c (6)

0 ≤
∞∑

i=n1

(αMpi −Mqi)
∞∑

j=i

1
rj
≤ c− 1 + αM (7)

where M > 0 is a constant such that

1− c

α
< M ≤ 1− c

1 + cα
. (8)
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Consider the Banach Space ln0∞ of all real sequence x = {xn}∞n=n0
with the norm ||x|| =

supn≥n0
|xn|. We define a closed bounded subset Ω of ln0∞ by

Ω =
{

x = {xn} ∈ ln0∞ : M ≤ xn ≤ αM (n ≥ n0)
}

and define an operator T : Ω → ln0∞ by

Txn =





1− c− cxn−k +
∑∞

j=n
1
rj

∑n−1
i=n1

(pixi−m − qixi−l)
+

∑∞
i=n(pixi−m − qixi−l)

∑∞
j=i

1
rj

if n ≥ n1 + 1

Txn1 if n0 ≤ n ≤ n1 + 1.

We shall show that TΩ ⊂ Ω. In fact, for every x ∈ Ω and n ≥ n1, using (7) and (8) we
get

Txn = 1− c− cxn−k +
∞∑

j=n

1
rj

n−1∑

i=n1

(pixi−m − qixi−l) +
∞∑

i=n

(pixi−m − qixm−l)
∞∑

j=i

1
rj

≤ 1− c +
∞∑

j=n

1
rj

n−1∑

i=n1

(αMpi −Mqi) +
n−1∑

i=n1

i(αMpi −Mqi)

≤ 1− c +
n−1∑

i=n1

(αMpi −Mqi)
∞∑

j=i

1
rj

+
∞∑

i=n

(αMpi −Mqi)
∞∑

j=i

1
rj

= 1− c +
∞∑

i=n1

(αMpi −Mqi)
∞∑

j=i

1
rj

≤ αM.

Furthermore, in view of (4) and (8) we have

Txn = 1− c− cxn−k +
∞∑

j=n

1
rj

n−1∑

i=n1

(pixi−m − qixi−l) +
∞∑

i=n

(pixi−m − qixi−l)
∞∑

j=i

1
rj

≥ 1− c− cαM +
∞∑

j=n

1
rj

n−1∑

i=n1

(Mpi − αMqi) +
n−1∑

i=n

(Mpi − αMqi)
∞∑

j=i

1
rj

≥ 1− c− cαM

≥ M.

Thus we proved that TΩ ⊂ Ω.

Now we shall show that T is a contraction operator on Ω. In fact, for x, y ∈ Ω and
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n ≥ n1 we have

|Txn − Tyn|

≤ c |xn−k − yn−k|+
∞∑

j=n

1
rj

n−1∑

i=n1

pi|xi−m − yi−m|+
∞∑

j=n

1
rj

n−1∑

i=n1

qi|xi−l − yi−l|

+
∞∑

i=n

pi|xi−m − yi−m|
∞∑

j=i

1
rj

+
∞∑

i=n

qi|xi−l − yi−l|
∞∑

j=i

1
rj

≤ ||x− y||
(

c +
[ ∞∑

j=n

1
rj

n−1∑

i=n1

(pi + qi) +
∞∑

i=n

(pi + qi)
∞∑

j=i

1
rj

])

≤
[
c +

∞∑

i=n1

(pi + qi)
∞∑

j=i

1
rj

]
||x− y||

= θ1||x− y||.

This implies
||Tx− Ty|| ≤ θ1||x− y||

where, in view of (6), θ1 < 1, which proves that T is a contraction operater on Ω.
Therefore, T has a unique fixed point x in Ω, which is obviously a positive solution of
equation (1). This completes the proof of Theorem 1

Theorem 2. Assume 1 < c < +∞ and (3) holds. Further, assume there exist a
constant β > c

c−1 and a sufficiently large N1 ≥ n0 such that

pn ≥ βqn (n ≥ N1). (9)

Then equation (1) has a non-oscillatory solution.

Proof. By (3) and (9), there exists n1 ≥ N1 sufficiently large such that

n1 + k ≥ n0 + max{m, l} (10)

∞∑

i=n1

(pi + qi)
∞∑

j=i

1
rj

< c− 1 (11)

0 ≤
∞∑

i=n1

(βHpi −Hqi)
∞∑

j=i

1
rj
≤ 1− c + cβH (12)

where H > 0 is a constant such that

c− 1
βc

< H ≤ c− 1
c + β

. (13)

Let ln0∞ be the set as in the proof of Theorem 1, set

Ω =
{

x = {xn} ∈ ln0∞ : H ≤ xn ≤ βH (n ≥ n0)
}
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and define an operator T : Ω → ln0∞ by

Txn =





1− 1
c

{
1 + xn+k −

∑∞
j=n+k

1
rj

∑n+k−1
i=n1

(pixi−m − qixi−l)
−∑∞

i=n+k(pixi−m − qixi−l)
∑∞

j=i
1
rj

}
if n ≥ n1

Txn1 if n0 ≤ n ≤ n1.

We shall show that TΩ ⊂ Ω. In fact, for every x ∈ Ω and n ≥ n1, using (9), (12) and
(13), we get

Txn = 1− 1
c

(
1 + xn+k −

∞∑

j=n+k

1
rj

n+k−1∑

i=n1

(pixi−m − qixi−l)

−
∞∑

i=n+k

(pixi−m − qixi−l)
∞∑

j=i

1
rj

)

≤ 1− 1
c

(
1−

∞∑

j=n+k

1
rj

n+k−1∑

i=n1

(βHpi −Hqi)−
∞∑

i=n+k

(βHpi −Hqi)
∞∑

j=i

1
rj

)

≤ 1− 1
c

(
1−

[ n+k−1∑

i=n1

(βHpi −Hqi)
∞∑

j=i

1
rj

+
∞∑

i=n+k

(βHpi −Hqi)
∞∑

j=i

1
rj

])

= 1− 1
c

(
1−

∞∑

i=n1

(βHpi −Hqi)
∞∑

j=i

1
rj

)

≤ βH.

Furthermore, in view of (9) and (13) we get

Txn = 1− 1
c

(
1 + xn+k −

∞∑

j=n+k

1
rj

n+k−1∑

i=n1

(pixi−m − qixi−l)

−
∞∑

i=n+k

(pixi−m − qixi−l)
∞∑

j=i

1
rj

)

≤ 1− 1
c

(
1 + βH −

∞∑

j=n+k

1
rj

n+k−1∑

i=n1

(Hpi − βHqi)−
∞∑

i=n+k

(Hpi − βHqi)
∞∑

j=i

1
rj

)

≥ 1− 1
c
(1 + βH)

≥ H.

Thus we proved that TΩ ⊂ Ω.

Now we shall show that T is a contraction operator on Ω. In fact, for x, y ∈ Ω and
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n ≥ n1 we have

|Txn − Tyn|

≤ 1
c

(
|xn+k − yn+k|

+
[ ∞∑

j=n+k

1
rj

n+k−1∑

i=n1

pi|xi−m − yi−m|+
∞∑

j=n+k

1
rj

n+k−1∑

i=n1

qi|xi−l − yi−l|
]

+
[ ∞∑

i=n+k

pi|xi−m − yi−m|
∞∑

j=i

1
rj

+
∞∑

i=n+k

qi|xi−l − yi−l|
∞∑

j=i

1
rj

])

≤ 1
c
||x− y||

(
1 +

[ n+k−1∑

i=n1

(pi + qi)
∞∑

j=i

1
rj

+
∞∑

i=n+k

(pi + qi)
∞∑

j=i

1
rj

])

=
1
c

[
1 +

∞∑

i=n1

(pi + qi)
∞∑

j=i

1
rj

]
||x− y||

= θ2||x− y||.

This implies
||Tx− Ty|| ≤ θ2||x− y||

where, in view of (11), θ2 < 1, which prove that T is a contraction operator. Con-
sequently, T has the unique fixed point x, which is obviously a positive solution of
equation (1). This completes the proof of Theorem 2

Theorem 3. Assume −1 < c < 0 and (3) holds. Further, assume there exist a
constant γ > 1 and a sufficiently large N1 ≥ n0 such that

pn ≥ γqn (n ≥ N1). (14)

Then equation (1) has a non-oscillatory solution.

Proof. By (3) and (14), there exists n1 ≥ N1 sufficiently large such that (5) and
the inequalities

∞∑

i=n1

(pi + qi)
∞∑

j=i

1
rj

< c + 1 (15)

0 ≤
∞∑

i=n1

(γM1pi −M1qi)
∞∑

j=i

1
rj
≤ (c + 1)(γM1 − 1) (16)

where the constant M1 satisfies
1
γ

< M1 ≤ 1. (17)

Let ln0∞ be the set as in the proof of Theorem 1, set

Ω =
{

x = {xn} ∈ ln0∞ : M1 ≤ xn ≤ γM1 (n ≥ n0)
}
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and define an operator T : Ω → ln0∞ by

Txn =





1 + c− cxn−k +
∑∞

j=n
1
rj

∑n−1
i=n1

(pixi−m − qixi−l)
+

∑∞
i=n(pixi−m − qixi−l)

∑∞
j=i

1
rj

if n ≥ n1 + 1

Txn1 if n0 ≤ n ≤ n1 + 1.

For every x ∈ Ω and n ≥ n1, using (14) and (16), we get

Txn = 1 + c− cxn−k +
∞∑

j=n

1
rj

n−1∑

i=n1

(pixi−m − qixi−l) +
∞∑

i=n

(pixi−m − qixi−l)
∞∑

j=i

1
rj

≤ 1 + c− cγM1 +
∞∑

i=n

1
rj

n−1∑

i=n1

(γM1pi −M1qi) +
∞∑

i=n

(γM1pi −M1qi)
∞∑

j=i

1
rj

≤ 1 + c− cγM1 +
∞∑

i=n1

(γM1pi −M1qi)
∞∑

j=i

1
rj

≤ 1 + c− cγM1 + (c + 1)(γM1 − 1)

= γM1.

Further, in view of (14) and (17) we have

Txn = 1 + c− cxn−k +
∞∑

i=n

1
rj

n−1∑

i=n1

(pixi−m − qixi−l) +
∞∑

i=n

(pixi−m − qixi−l)
∞∑

j=i

1
rj

≥ 1 + c− cM1 +
∞∑

i=n

1
rj

n−1∑

i=n1

(M1pi − γM1qi) +
∞∑

i=n

(M1pi − γM1qi)
∞∑

j=i

1
rj

≥ 1 + c− cM1

≥ M1.

Thus, we proved that TΩ ⊂ Ω.
For x, y ∈ Ω and n ≥ n1 we have

|Txn − Tyn|

≤ −c|xn−k − yn−k|+
∞∑

j=n

1
rj

n−1∑

i=n1

pi|xi−m − yi−m|+
∞∑

j=n

1
rj

n−1∑

i=n1

qi|xi−l − yi−l|

+
∞∑

i=n

pi|xi−m − yi−m|
∞∑

j=i

1
rj

+
∞∑

i=n

qi|xi−l − yi−l|
∞∑

j=i

1
rj

≤ ||x− y||
(
− c +

[ ∞∑

i=n1

(pi + qi)
∞∑

j=i

1
rj

+
∞∑

i=n

(pi + qi)
∞∑

j=i

1
rj

])

=
[
− c +

∞∑

i=n1

(pi + qi)
∞∑

j=i

1
rj

]
||x− y||

= θ3||x− y||.



1072 Yong Zhou and Y. Q. Huang

This implies
||Tx− Ty|| ≤ θ3||x− y||

where, in view of (15), θ3 < 1. This proves that T is a contraction operator. Conse-
quently, T has a unique fixed point x, which is obviously a positive solution of equation
(1). This completes the proof of Theorem 3

Theorem 4. Assume −∞ < c < −1 and (3) holds. Further, assume there exists a
constant δ > 1 and a sufficiently large N1 ≥ n0 such that

pn ≥ δqn (n ≥ N1). (18)

Then equation (1) has a non-oscillatory solution.

Proof. By (3) and (18), there exists a n1 ≥ n0 sufficiently large such that (10) and
the inequalities

∞∑

i=n1

(pi + qi)
∞∑

j=i

1
rj

< −c− 1 (19)

0 ≤
∞∑

i=n1

(δH1pi −H1qi)
∞∑

j=i

1
rj
≤ (c + 1)(H1 − 1) (20)

hold where the constant H1 > 0 satisfies
1
δ
≤ H1 < 1. (21)

Let ln0∞ be the set as in the proof of Theorem 1, set

Ω =
{

x = {xn} ∈ ln0∞ : H1 ≤ xn ≤ δH1 (n ≥ n0)
}

and define an operator T : Ω → ln0∞ by

Txn =





1 + 1
c

{
1− xn+k +

∑∞
j=n+k

1
rj

∑n+k−1
i=n1

(pixi−m − qixi−l)
+

∑∞
i=n+k i(pixi−m − qixi−l)

∑∞
j=i

1
rj

}
if n ≥ n1

Txn1 if n0 ≤ n ≤ n1.
For every x ∈ Ω and n ≥ n1, using (18) and (21) we get

Txn = 1 +
1
c

(
1− xn+k +

∞∑

j=n+k

1
rj

n+k−1∑

i=n1

(pixi−m − qixi−l)

+
∞∑

i=n+k

(pixi−m − qixi−l)
∞∑

j=i

1
rj

)

≤ 1 +
1
c

(
1− δH1 +

∞∑

j=n+k

1
rj

n+k−1∑

i=n1

(H1pi − δH1qi)

+
∞∑

i=n+k

(H1pi − δH1qi)
∞∑

j=i

1
rj

)

≤ 1 +
1
c
(1− δH1)

≤ δH1.
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Furthermore, in view of (20) and (21) we have

Txn = 1 +
1
c

(
1− xn+k +

∞∑

j=n+k

1
rj

n+k−1∑

i=n1

(pixi−m − qixi−l)

+
∞∑

i=n+k

(pixi−m − qixi−l)
∞∑

j=i

1
rj

)

≥ 1 +
1
c

(
1−H1 +

∞∑

j=n+k

1
rj

n+k−1∑

i=n1

(δH1pi −H1qi)

+
∞∑

i=n+k

(δH1pi −H1qi)
∞∑

j=i

1
rj

)

≥ 1 +
1
c

(
1−H1 +

∞∑

i=n1

(δH1pi −H1qi)
∞∑

j=i

1
rj

)

≥ 1 +
1
c

(
1−H1 + (c + 1)(H1 − 1)

)

= H1.

Thus, we proved TΩ ⊂ Ω.
For x, y ∈ Ω and n ≥ n1 we have

|Txn − Tyn|

≤ −1
c

(
|xn+k − yn+k|

+
[ ∞∑

j=n+k

1
rj

n+k−1∑

i=n1

pi|xi−m − yi−m|+
∞∑

j=n+k

1
rj

n+k−1∑

i=n1

qi|xi−l − yi−l|
]

+
[ ∞∑

i=n+k

pi|xi−m − yi−m|
∞∑

j=i

1
rj

+
∞∑

i=n+k

qi|xi−l − yi−l|
∞∑

j=i

1
rj

])

≤ −1
c
||x− y||

(
1 +

∞∑

i=n1

(pi + qi)
∞∑

j=i

1
rj

+
∞∑

i=n+k

(pi + qi)
∞∑

j=i

1
rj

)

= −1
c

[
1 +

∞∑

i=n1

(pi + qi)
∞∑

j=i

1
rj

]
||x− y||

= θ4||x− y||.
This immediately implies

||Tx− Ty|| ≤ θ4||x− y||.
In view of (19), θ4 < 1. This proves that T is a contraction operator. Consequently, T
has a unique fixed point x, which is obviously a positive solution of equation (1). This
completes the proof of Theorem 4
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Finally, in the special case where qn = 0, conditions (4), (9), (14) and (18) are
redundant. By Theorems 1 - 4, we have the following result.

Corollary 1. Assume −∞ < c < +∞ and
∑∞

i=n0
pi

∑∞
j=i

1
rj

< ∞. Then the
neutral difference equation

∆(rn∆(xn + cxn−k) + pn+1xn+1−m = 0

has a non-oscillatory solution.
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