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Differential-Functional Inequalities
for

Bounded Vector-Valued Functions

G. Herzog

Abstract. For the space Rn ordered by a cone and some functions f : Rn+mn → Rn and
h1, . . . , hm : R→ R we consider differential-functional inequalities of the type

v′′ + cv′ + f
�
v, v(h1), . . . , v(hm)

� ≤ u′′ + cu′ + f
�
u, u(h1), . . . , u(hm)

�

and conclude u ≤ v under suitable conditions on u, v, hk and f . The result can be applied to
obtain existence and uniqueness results for differential-functional boundary value problems of
the form

u′′ + cu′ + f
�
u, u(h1), . . . , u(hm)

�
= q

with u ∈ C2(R,Rn) bounded.
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1. Introduction

Let Rn be endowed with a norm || · ||0, and ordered by a cone K0, that is, K0 is a closed,
non-empty and convex subset of Rn with λK0 ⊆ K0 (λ ≥ 0) and K0 ∩ (−K0) = {0},
and let x ≤ y be defined by y − x ∈ K0. Let K0 have non-empty interior IntK0, and
let E = Cb(R,Rn) denote the Banach space of all bounded and continuous functions
u = (u1, . . . , un) : R→ Rn, normed by ||u|| = supt∈R ||u(t)||0, and ordered by the cone

K =
{
u ∈ E : u(t) ∈ K0 (t ∈ R)

}
.

On both spaces, Rn and E, the partial ordering defined by the corresponding cones
K0 and K is denoted by ≤, and we write x << y or u << v if y − x ∈ IntK0 or
v−u ∈ IntK, respectively. Note that K has non-empty interior since if p ∈ IntK0, then
u(t) = p (t ∈ R) is in IntK.

In the sequel, let c ∈ R, and let

f : Rn+mn → Rn

h = (h1, . . . , hm) : R→ Rm
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be continuous functions. If u : R→ Rn is a function, we write u(h) for the function

t 7→ (
u(h1(t)), . . . , u(hm(t))

)

for short.
We consider differential-functional inequalities of the type

v′′(t) + cv′(t) + f
(
v(t), v(h)(t)

) ≤ u′′(t) + cu′(t) + f
(
u(t), u(h)(t)

)

for t ∈ R and want to conclude u ≤ v under suitable conditions on u, v, hk and f . Such
a result may be used to prove uniqueness and existence of bounded solutions of first
and second order systems of differential-functional equations, e.g., for boundary value
problems of the type

u′′(t) + cu′(t) + f
(
u(t), u(h)(t)

)
= q(t), u ∈ E ∩ C2(R,Rn).

Note that, in particular, classical delay equations are included in our case by setting
hk(t) = t + τk (τk ∈ R).

Let K∗
0 denote the dual cone of K0, that is the set of all linear functionals ϕ ∈ (Rn)∗

for which ϕ(x) ≥ 0 (x ≥ 0). A function g : Rn → Rn is called quasimonotone increasing,
in the sense of Volkmann [8], if for x, y ∈ Rn

x ≤ y, ϕ ∈ K∗
0 , ϕ(x) = ϕ(y) =⇒ ϕ(g(x)) ≤ ϕ(g(y)).

2. Results

To state our results let BUC(R,Rn) denote the space of all bounded and uniformly con-
tinuous functions on R, and let E1, E2 denote the following subspaces of E = Cb(R,Rn):

E1 =
{

u ∈ E : u ∈ C1(R,Rn) and u′ ∈ BUC(R,Rn)
}

E2 =
{

u ∈ E : u ∈ C2(R,Rn) and u′′ ∈ BUC(R,Rn)
}

.

By x[m] we denote the vector (x)m
k=1 ∈ Rmn, if x ∈ Rn.

Theorem 1. Let f : Rn+mn → Rn be such that for x ∈ Rn and y = (y1, . . . , ym) ∈
Rmn:

1. x 7→ f(x, y) is quasimonotone increasing (y fixed).
2. yk 7→ f(x, y) is increasing (x and yj (j 6= k) fixed), for k = 1, . . . , m.
3. There exists p ∈ IntK0 with the following property: To each compact subset

C ⊆ Rn+mn and each interval [0,Λ] ⊆ R there is a constant L > 0 such that

f(x + λp, y + λp[m])− f(x, y) ≤ −Lλp

for (x, y) ∈ C and λ ∈ [0,Λ].
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Then, if u, v ∈ E2 are such that

v′′(t) + cv′(t) + f
(
v(t), v(h)(t)

) ≤ u′′(t) + cu′(t) + f
(
u(t), u(h)(t)

)

for all t ∈ R, u ≤ v follows.

Remarks.
(i) Without condition 3, Theorem 1 fails. For example, v′′ + cv′ ≤ u′′ + cu′ (here

f = 0) is valid for all constant functions u and v. On the other hand, condition 3 is
valid if f ∈ C1(Rn+mn,Rn) and if there exists p ∈ IntK0 such that

(∂f

∂x
(x, y) +

m∑

k=1

∂f

∂yk
(x, y)

)
p << 0

for all (x, y) ∈ Rn+mn.
(ii) As can be seen from the proof, the second order differential-functional inequal-

ity in Theorem 1 can be replaced by a first order inequality, that is, if f is as in Theorem
1 and if u, v ∈ E1 are such that

v′(t) + f
(
v(t), v(h)(t)

) ≤ u′(t) + f
(
u(t), u(h)(t)

)
(t ∈ R)

or
−v′(t) + f

(
v(t), v(h)(t)

) ≤ −u′(t) + f
(
u(t), u(h)(t)

)
(t ∈ R),

then u ≤ v.
(iii) For a one-dimensional version of Theorem 1 (for implicit inequalities, and in a

different frame) see [4]. For second order inequalities on bounded intervals see [5].

The following theorems will be proved by using Theorem 1.

Theorem 2. Let f : Rn+mn → Rn be as in Theorem 1, let h be uniformly contin-
uous on R, and let q ∈ BUC(R,Rn). Then the boundary value problems

u′′(t) + c u′(t) + f
(
u(t), u(h)(t)

)
= q(t), u ∈ E ∩ C2(R,Rn)

and
±u′(t) + f

(
u(t), u(h)(t)

)
= q(t), u ∈ E ∩ C1(R,Rn)

have at most one solution.

Remarks.
(i) For example, the equation −u′(t)+u(2t) = 0 has non-trivial bounded solutions

u ∈ C∞(R,R), even satisfying u(0) = 0 (see [6]). Here condition 3 from Theorem 1 is
not satisfied.

(ii) Bounded solutions of differential-functional equations in the case n = 1 were
studied by Staňek [7]. For ordinary differential equations, results related to Theorem
2 were first obtained by Bebernes and Jackson [2] and Belova [3] in the case n = 1.
For a survey on boundary value problems on infinite intervals we refer to [1] and the
references given therein.
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Theorem 3. Let f : Rn+mn → Rn be as in Theorem 1, and in addition let there
exist a > 0 such that x 7→ f(x, y)+a2x is increasing (y ∈ Rmn fixed). Let h be uniformly
continuous on R, and let q ∈ BUC(R,Rn). Moreover, let there exist u0, v0 ∈ E2 such
that

v′′0 (t) + f
(
v0(t), v0(h)(t)

) ≤ q(t) ≤ u′′0(t) + f
(
u0(t), u0(h)(t)

)

for t ∈ R. Then, the boundary value problem

u′′(t) + f
(
u(t), u(h)(t)

)
= q(t), u ∈ E ∩ C2(R,Rn)

is uniquely solvable, and the solution u satisfies u0 ≤ u ≤ v0.

Remark. Related existence results for c 6= 0 can be obtained by the same method
and more technical effort.

As an example we consider the linear case: Let Rn be ordered by the natural cone

K =
{

x ∈ Rn : xk ≥ 0 (k = 1, . . . , n)
}

.

It is well known [8] that g = (g1, . . . , gn) : Rn → Rn is quasimonotone increasing if and
only if xk 7→ gj(x1, . . . , xn) is increasing (j 6= k). Now consider real (n × n)-matrices
A,B1, . . . , Bm with x 7→ Ax quasimonotone increasing (that is, all off diagonal entries
of A are ≥ 0), and x 7→ Bkx increasing (k = 1, . . . , m). Let there exist p >> 0 (that is
p1, . . . , pn > 0 in this case) such that

Ap +
m∑

k=1

Bkp ≤ −Lp

for some L > 0. Then Theorem 3 applies to f(x, y) = Ax +
∑m

k=1 Bkyk, that is, we
have unique solvability of the problem

u′′(t) + Au(t) +
m∑

k=1

Bku(hk(t)) = q(t), u ∈ E ∩ C2(R,Rn)

if h is uniformly continuous and q ∈ BUC(R,Rn) (choose µ > 0 such that −µLp ≤
q(t) ≤ µLp, and set u0(t) = −µp and v0(t) = µp for t ∈ R). Moreover, according to
Theorem 1 the solution depends monotone decreasing on q.

For example, the system

u′′1(t)− 4u1(t) + u2(t) + u1(2t) + u2(t + 1) = sin2(t)

u′′2(t)− 4u2(t) + u1(t) + u1(3t) + u2(t− 1) = exp(−t2)

}
,

u = (u1, u2) ∈ E ∩ C2(R,R2), has a unique solution (choose p = (1, 1)), and u ≤ 0.
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3. Preliminaries

For the proofs of our results we will use the following propositions.

As we noted in the introduction, K has non-empty interior. The functions from
IntK are characterized by

Proposition 1. Let u ∈ K. Then u >> 0 if and only if to each 0 6= ϕ ∈ K∗
0 there

exists εϕ > 0 such that ϕ(u(t)) ≥ εϕ for all t ∈ R.

Proof. Let p ∈ IntK0 and let || · ||1 denote the norm on (Rn)∗ induced by || · ||0.
If 0 6= ϕ ∈ K∗

0 is such that inft∈R ϕ(u(t)) = 0, then u − δp /∈ K for each δ > 0, since
ϕ(p) > 0. Hence u /∈ IntK.

On the other hand, if ϕ(u(t)) ≥ εϕ > 0 (t ∈ R) for all 0 6= ϕ ∈ K∗
0 , then there

exists ε0 > 0 such that ϕ(u(t)) ≥ ε0 (t ∈ R) for all ϕ ∈ K∗
0 with ||ϕ||1 = 1. If v ∈ E is

such that ||v|| < ε0
2 , then ϕ(u(t) + v(t)) ≥ ε0

2 (t ∈ R) for all ϕ ∈ K∗
0 with ||ϕ||1 = 1,

and therefore u + v ≥ 0. Thus u >> 0

For the first and second derivative of functions in K we have

Proposition 2. Let u ∈ K ∩ E2 and let (tk)∞k=1 be a sequence in R such that the
limits u0 = limk→∞ u(tk), u1 = limk→∞ u′(tk) and u2 = limk→∞ u′′(tk) exist. Then
u0 ≥ 0, and if ϕ(u0) = 0 for some ϕ ∈ K∗, then ϕ(u1) = 0 and ϕ(u2) ≥ 0.

Proof. It is obvious that u0 ≥ 0. Now let ϕ ∈ K∗
0 be such that ϕ(u0) = 0. Consider

a sequence (τj)∞j=1 in R\{0} with limit 0, and set ψ(t) = ϕ(u(t)) (t ∈ R). Since ψ,ψ′, ψ′′

are bounded on R and since ψ′′ ∈ BUC(R,R), we have

ψ(t + τj)− ψ(t)
τj

− ψ′(t) → 0

ψ(t− τj)− ψ(t)
τj

+ ψ′(t) → 0

ψ(t + τj)− 2ψ(t) + ψ(t− τj)
τ2
j

− ψ′′(t) → 0

uniformly on R as j → ∞. We can find a subsequence (tkj ) such that
ψ(tkj

)

τj
→ 0 as

j →∞, and therefore

0 ≤ ψ(tkj + τj)
τj

→ ϕ(u1) (j →∞).

Analogously we get ϕ(u1) ≤ 0 and ϕ(u2) ≥ 0
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4. Proofs

We will now give the proofs of our main results.

Proof of Theorem 1. The idea of the proof is as follows: We write u, v as limits
of functions U, V : [0,∞) → E, where U, V satisfy a differential inequality, and adapt
the method in [8] to prove U(s) << V (s).

We write Dw and D2w for the first and second derivative of a function w : R→ Rn,
and D0w := w. In a first step we prove that there are constants L, µ > 0 such that the
functions U, V : [0,∞) → E defined by

U(s) = u

V (s) = µ(||v||+ 1) exp(−Ls)p + v

}

satisfy U(0) << V (0), and

Hu(s) := U ′(s)−D2(U(s))− cD(U(s))− f
(
U(s), (U(s))(h)

)

<< V ′(s)−D2(V (s))− cD(V (s))− f
(
V (s), (V (s))(h)

)

=: Hv(s) (s ≥ 0).

Since p >> 0, we can manage

U(0) = u << µ(||v||+ 1)p + v = V (0)

by choosing µ > 0 sufficiently large. According to condition 3 in Theorem 1, there is a
constant L > 0 such that

f
(
x + λp, y + λp[m])

)− f(x, y) ≤ −2Lλp

for ||x||0 ≤ ||v||, ||yk||0 ≤ ||v|| (k = 1, . . . , m) and 0 ≤ λ ≤ µ(||v||+ 1). Then

Hv(s)−Hu(s)

= −Lµ(||v||+ 1) exp(−Ls)p−D2(v − u)− cD(v − u)

−
(
f
(
µ(||v||+ 1) exp(−Ls)p + v, µ(||v||+ 1) exp(−Ls)p[m] + v(h)

)− f(v, v(h))
)

− (
f(v, v(h))− f(u, u(h))

)

≥ −Lµ(||v||+ 1) exp(−Ls)p

−
(
f
(
µ(||v||+ 1) exp(−Ls)p + v, µ(||v||+ 1) exp(−Ls)p[m] + v(h)

)− f(v, v(h))
)

≥ −Lµ(||v||+ 1) exp(−Ls)p + 2Lµ(||v||+ 1) exp(−Ls)p

>> 0

for s ≥ 0. Note that U, V : [0,∞) → E are continuously differentiable, and that
V (s) ∈ E2 (s ≥ 0), since each function V (s) is the sum of v ∈ E2 and a constant
function.
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Now, we set d(s) = V (s)−U(s) (s ≥ 0). We prove d(s) >> 0 (s ≥ 0). Assume that
this is not true. Since d(0) >> 0 and since d : [0,∞) → E is continuous, there exists
s0 > 0 such that d(s) >> 0 (s ∈ [0, s0)), and d(s0) ≥ 0 but d(s0) /∈ IntK. According
to Proposition 1 there is a functional 0 6= ϕ ∈ K∗

0 such that inft∈R ϕ
(
(d(s0))(t)

)
= 0.

Let (tk)∞k=1 be a sequence in R with limk→∞ ϕ
(
(d(s0))(tk)

)
= 0, and without loss of

generality assume that (tk) is chosen such that

Dj(U(s0))(tk) → Uj

Dj(V (s0))(tk) → Vj

(U(s0)(h))(tk) → Uh

(V (s0)(h))(tk) → Vh

(j = 0, 1, 2)

as k →∞. We have

(U ′(s0))(tk) = 0

(V ′(s0))(tk) = −Lµ(||v||+ 1) exp(−Ls0)p

}
(k ∈ N).

Note that U0 ≤ V0 and ϕ(V0 − U0) = 0, and according to Proposition 2 we have
ϕ(V1 − U1) = 0 and ϕ(V2 − U2) ≥ 0. Moreover, Vh − Uh ∈ (K0)m. Since

ε < ϕ
(
(Hv(s0))(tk)− (Hu(s0))(tk)

)
(k ∈ N)

for some ε > 0, we get (as k →∞)

0 < ϕ
(
− Lµ(||v||+ 1) exp(−Ls0)p− (V2 − U2)− c (V1 − U1)

− (
f(V0, Vh)− f(V0, Uh)

)− (
f(V0, Uh)− f(U0, Uh)

))

≤ −Lµ(||v||+ 1) exp(−Ls0)ϕ(p)

< 0

according to the properties of f , which is a contradiction. Hence we have U(s) = u <<
µ(||v||+ 1) exp(−Ls) + v = V (s) (s ≥ 0) and therefore, as s →∞, u ≤ v

Proof of Theorem 2. We consider a solution u ∈ E ∩ C2(R,Rn) of the second
order problem in Theorem 2. Then f(u, u(h)) ∈ E, hence u′′ + cu′ ∈ E. We first
prove u′ ∈ E. In the case c = 0 this follows from coordinatewise application of Taylor’s
formula. Let c 6= 0. Then, the two point boundary value problem

z′′(t) + cz′(t) = 0 (t ∈ [0, 1])

z(0) = z(1) = 0

}

has only the trivial solution z : [0, 1] → R, z(t) = 0. Hence there exists Green’s function
G : [0, 1]2 → R for this problem, and if r ∈ C([0, 1],Rn) and w ∈ C2([0, 1],Rn) solves
w′′ + cw′ = r, then

w(t) =
exp(−ct)− 1
exp(−c)− 1

(
w(1)− w(0)

)
+ w(0) +

∫ 1

0

G(t, τ)r(τ) dτ
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for t ∈ [0, 1]. Hence

w′(t) =
−c exp(−ct)
exp(−c)− 1

(
w(1)− w(0)

)
+

∫ 1

0

Gt(t, τ)r(τ) dτ

for t ∈ [0, 1], and since Gt is bounded, there is a constant α ≥ 0 such that

||w′(t)||0 ≤ α
(
||w(1)||0 + ||w(0)||0 + max

τ∈[0,1]
||r(τ)||0

)

for t ∈ [0, 1]. Fix t0 ∈ R and consider w(t) = u(t + t0) (t ∈ [0, 1]). We obtain

||u′(t + t0)||0 ≤ α
(
2||u||+ ||f(u, u(h))||+ ||q||)

for t ∈ [0, 1]. Since t0 was arbitrary, we have u′ ∈ E and therefore u′′ ∈ E. In particular,
u, u′ ∈ BUC(R,Rn), and since h is uniformly continuous, also u(h) ∈ BUC(R,Rmn).
Since f is uniformly continuous on compact subsets of Rn+mn, we get f(u, u(h)) ∈
BUC(R,Rn) and, finally, u′′ ∈ BUC(R,Rn). Altogether u ∈ E2. Now, if v is another
solution of our problem, then v ∈ E2 and Theorem 1 gives u ≤ v and v ≤ u, hence
u = v.

Analogously we get uniqueness of the solution of the first order problem (compare
Remark ii following Theorem 1)

Proof of Theorem 3. First note that the problem in Theorem 3 has at most one
solution according to Theorem 2, and if u is a solution, then u ∈ E2 (compare the proof
of Theorem 2). According to Theorem 1 we have u0 ≤ u ≤ v0. It remains to prove the
existence of a solution.

Consider the operator T defined by

(Tw)(t) =
∫

R

1
2a

exp(−a|t− τ |)
(
f(w(τ), w(h)(τ)) + a2w(τ)− q(τ)

)
dτ.

For w ∈ E it is easy to check that Tw ∈ E ∩ C2(R,Rn), (Tw)′ ∈ E, and

(Tw)′′ − a2Tw + f(w, w(h)) + a2w = q.

In particular, (Tw)′′ ∈ E, and therefore Tw ∈ E2 if w ∈ E2. Moreover, T : E → E is
increasing. Let the sequence (wn) be defined recursively by

w0 = u0

wn+1 = Twn (n ∈ N0)

}
.

Then Tw0 = Tu0 ≥ u0. Indeed, for t ∈ R we have

(Tu0)(t) =
∫

R

1
2a

exp(−a|t− τ |)
(
f
(
u0(τ), u0(h)(τ)

)
+ a2u0(τ)− q(τ)

)
dτ

≥
∫

R

1
2a

exp(−a|t− τ |)
(
a2u0(τ)− u′′0(τ)

)
dτ

=: g(t).
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Now g′′−a2g = u′′0−a2u0 and g ∈ E2. Theorem 1 (applied to the function x 7→ −a2x and
c = 0) proves g = u0. Therefore, (wn) is increasing. Theorem 1 gives wn ≤ v0 (n ∈ N0)
since

w′′n+1 + f
(
wn+1, wn+1(h)

)

= f
(
wn+1, wn+1(h)

)
+ a2wn+1 −

(
f(wn, wn(h)) + a2wn

)
+ q

≥ q.

Hence the sequence (wn) converges pointwise to a measurable and bounded function
u : R→ Rn with u0(t) ≤ u(t) ≤ v0(t) (t ∈ R). From Lebesgue’s theorem of dominated
convergence we get ϕ ◦ Twn → ϕ ◦ Tu (ϕ ∈ K∗

0 ) pointwise on R as k →∞. Therefore,
Tu = u, hence u ∈ E. Then u ∈ E ∩ C2(R,Rn) and u′′ + f(u, u(h)) = q
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