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Differential-Functional Inequalities
for
Bounded Vector-Valued Functions

G. Herzog

Abstract. For the space R™ ordered by a cone and some functions f : R™*™” — R™ and
hi,...,hm : R — R we consider differential-functional inequalities of the type

v e + fu,oh), . v(he) < U’ A cu’ + f uyulha), ., u(hm)

and conclude v < v under suitable conditions on u, v, hy and f. The result can be applied to
obtain existence and uniqueness results for differential-functional boundary value problems of
the form

u' e 4+ f u,u(hy),. .. ulhn) =q

with u € C?(R,R™) bounded.
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1. Introduction

Let R™ be endowed with a norm || -||o, and ordered by a cone Ky, that is, Ky is a closed,
non-empty and convex subset of R” with AKy C Ky (A > 0) and Ky N (—Kp) = {0},
and let < y be defined by y — x € Ky. Let Ky have non-empty interior IntKy, and
let £ = Cy(R,R™) denote the Banach space of all bounded and continuous functions
u=(u1,...,u,) : R — R" normed by ||u|| = sup,cp ||u(t)||o, and ordered by the cone

K={ueE: ult)ec K, (teR)}.

On both spaces, R™ and FE, the partial ordering defined by the corresponding cones
Ky and K is denoted by <, and we write z < y or u < v if y — x € IntKy or
v—u € IntK, respectively. Note that K has non-empty interior since if p € Int Ky, then
u(t)=p (t€R)isin IntK.
In the sequel, let ¢ € R, and let
f . Rn+mn N Rn
h=(h1,...,hpn): R—=R™
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be continuous functions. If u : R — R"” is a function, we write u(h) for the function

ts (ula(®) - ulh(8))

for short.

We consider differential-functional inequalities of the type
V() + e’ (1) + fu(t), v(h)(1) < u(t) +eu () + f(u(t), u(h)(t))

for t € R and want to conclude v < v under suitable conditions on u, v, hy and f. Such
a result may be used to prove uniqueness and existence of bounded solutions of first
and second order systems of differential-functional equations, e.g., for boundary value
problems of the type

u () + cu' (t) + f(ult), u(h)(t) = q(t), u € ENC%*R,R").

Note that, in particular, classical delay equations are included in our case by setting
hi(t) =t+ 7 (1 € R).

Let K denote the dual cone of Ky, that is the set of all linear functionals ¢ € (R™)*
for which p(z) > 0 (x > 0). A function g : R™ — R" is called quasimonotone increasing,
in the sense of Volkmann [8], if for z,y € R"

r<y, p€Kj, pr) =0(y) = ¢gx)) < w(g(y)).

2. Results

To state our results let BUC(R, R™) denote the space of all bounded and uniformly con-
tinuous functions on R, and let E;, E» denote the following subspaces of £ = Cj,(R, R™):
E = {u cE:ueCHR,R") and o € BUC(R, R")}

EQZ{UEEZ u € C*(R,R™) and u"EBUC’(R,R")}.

By zI™ we denote the vector (z)*, € R™", if x € R™.

Theorem 1. Let f: R"™™" — R™ be such that for x € R" and y = (y1,.--,Ym) €
Rmn :

1. z — f(z,y) is quasimonotone increasing (y fized).

2. yp — f(x,y) is increasing (x and y; (j # k) fized), fork=1,...,m.

3. There exists p € IntKy with the following property: To each compact subset
C CR™™" gnd each interval [0, A] C R there is a constant L > 0 such that

fa@+ A,y +Ap™) — f(z,y) < —LAp

for (x,y) € C and X € [0, A].
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Then, if u,v € Ey are such that
V() + e’ (t) + fo(t),v(h)(t) < u () +eu (t) + f(ult), u(h)(t))

forallt € R, u < v follows.

Remarks.

(i) Without condition 3, Theorem 1 fails. For example, v" + cv’ < u” + cu’ (here
f = 0) is valid for all constant functions v and v. On the other hand, condition 3 is
valid if f € CH(R"™™" R™) and if there exists p € IntK such that

0 "9
(a—i(ﬂc,y) + ; 8—;€(x,y)>p <0

for all (z,y) € R"*™,

(ii) As can be seen from the proof, the second order differential-functional inequal-
ity in Theorem 1 can be replaced by a first order inequality, that is, if f is as in Theorem
1 and if u,v € E; are such that

V() + fu(t),v(h) (1) < W' (1) + f(u®),ulh)(t))  (tER)

or
—'(t) + f(v(t),v(h)(1)) < —u/(t) + fu®),u(R)(t))  (tER),
then u < v.
(iii) For a one-dimensional version of Theorem 1 (for implicit inequalities, and in a
different frame) see [4]. For second order inequalities on bounded intervals see [5].

The following theorems will be proved by using Theorem 1.

Theorem 2. Let f: R*"™" — R™ be as in Theorem 1, let h be uniformly contin-
uous on R, and let ¢ € BUC(R,R"™). Then the boundary value problems

u(t) + e (t) + f(u(t),u(h)(t)) = q(t), u € ENC*R,R")

and
' (t) + f(u(t),u(h)(t)) = q(t), uwe ENCHR,RY)

have at most one solution.

Remarks.

(i) For example, the equation —u/(t) +u(2t) = 0 has non-trivial bounded solutions
u € C°(R,R), even satisfying u(0) = 0 (see [6]). Here condition 3 from Theorem 1 is
not satisfied.

(ii) Bounded solutions of differential-functional equations in the case n = 1 were
studied by Stanek [7]. For ordinary differential equations, results related to Theorem
2 were first obtained by Bebernes and Jackson [2] and Belova [3] in the case n = 1.
For a survey on boundary value problems on infinite intervals we refer to [1] and the
references given therein.
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Theorem 3. Let f : R*™™" — R™ be as in Theorem 1, and in addition let there
exist a > 0 such that x — f(z,y)+a’x is increasing (y € R™" fized). Let h be uniformly
continuous on R, and let ¢ € BUC(R,R™). Moreover, let there exist ug,vg € Eo such
that

v (1) + f(vo(t), vo(R) (1)) < a(t) < ug(t) + f(uo(t), uo(h)(t))

fort € R. Then, the boundary value problem
W (t) + f(u(t),u(h)(t) = q(t),  uwe ENC*R,R")

18 uniquely solvable, and the solution u satisfies ug < u < vy.
Remark. Related existence results for ¢ # 0 can be obtained by the same method
and more technical effort.

As an example we consider the linear case: Let R™ be ordered by the natural cone
K = {xGR”: zp >0 (k:zl,...,n)}.

It is well known [8] that g = (g1,...,9n) : R™ — R™ is quasimonotone increasing if and
only if xp — g;j(z1,...,x,) is increasing (j # k). Now consider real (n x n)-matrices
A, By,..., By, with z — Az quasimonotone increasing (that is, all off diagonal entries
of A are > 0), and = — Bjx increasing (k = 1,...,m). Let there exist p > 0 (that is
P1y-..,Pn > 0 in this case) such that

Ap+> Bip < —Lp
k=1
for some L > 0. Then Theorem 3 applies to f(z,y) = Az + Y ,—, By, that is, we
have unique solvability of the problem

u” (t) + Au(t) + i Bru(hg(t)) = q(t), u € ENC*R,R")
k=1

if h is uniformly continuous and ¢ € BUC(R,R™) (choose p > 0 such that —uLp <
q(t) < pLp, and set ug(t) = —pp and vo(t) = pp for t € R). Moreover, according to
Theorem 1 the solution depends monotone decreasing on q.

For example, the system

W () — duq (8) + ua(t) + ug (2t) + ug(t + 1) = sin®(¢) }
wl) () — dug(t) + up (t) + uy (3t) + ug(t — 1) = exp(—t2) |’

u = (u1,u2) € ENC?(R,R?), has a unique solution (choose p = (1,1)), and u < 0.
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3. Preliminaries

For the proofs of our results we will use the following propositions.

As we noted in the introduction, K has non-empty interior. The functions from
IntK are characterized by

Proposition 1. Let u € K. Then u > 0 if and only if to each 0 # ¢ € K5 there
exists €, > 0 such that p(u(t)) > e, for all t € R.

Proof. Let p € IntK( and let || - ||; denote the norm on (R™)* induced by || - [|o-
If 0 # ¢ € K is such that infycg @(u(t)) = 0, then u — ép ¢ K for each § > 0, since
©(p) > 0. Hence u ¢ IntK.

On the other hand, if p(u(t)) > e, > 0 (t € R) for all 0 # ¢ € K, then there
exists g9 > 0 such that o(u(t)) >eg (t€R) forall p € K with ||p]|s =1. If v e Eis
such that ||v]| < %, then @(u(t) +v(t)) > 3 (t € R) for all p € K with ||¢]]; = 1,
and therefore u + v 2 0. Thusu>> 01N

For the first and second derivative of functions in K we have

Proposition 2. Let u € K N Ey and let (t5)52, be a sequence in R such that the
limits ug = limg_ o0 u(ty), up = img_ oo v/ (tx) and ug = limg_ o u”(ty) exist. Then
ug >0, and if p(ug) =0 for some p € K*, then p(uy) =0 and p(uz) > 0.

Proof. It is obvious that uy > 0. Now let ¢ € K be such that ¢(ug) = 0. Consider
a sequence (7;)32; in R\ {0} with limit 0, and set ¥(t) = p(u(t)) (t € R). Since 1, ¢’, "
are bounded on R and since ¢/ € BUC(R,R), we have

Pt + 1) —P(t)
Yt —75) —P(t)
Yt +75) — 20(t) +(t — 75)

5

—¢'(t) =0

+4'(t) = 0

_w//<t) N O

uniformly on R as j — oco. We can find a subsequence (tx,) such that —2= w( ;) — 0 as

J — 00, and therefore

Y(tr, +75)
Tj

0< —p(u) (= 00).

Analogously we get ¢(uq) <0 and p(uz) > 011
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4. Proofs

We will now give the proofs of our main results.

Proof of Theorem 1. The idea of the proof is as follows: We write u, v as limits
of functions U,V : [0,00) — FE, where U,V satisfy a differential inequality, and adapt
the method in [8] to prove U(s) < V(s).

We write Dw and D?w for the first and second derivative of a function w : R — R”,
and D%w := w. In a first step we prove that there are constants L, ;1 > 0 such that the
functions U,V : [0,00) — E defined by

V(s) = p(llvl| + 1) exp(=Ls)p + v }
satisfy U(0) < V(0), and

H,(s) = U'(s) = D*(U(s)) — ¢ D(U(s)) = f(U(s), (U(s))(h))
< V'(s) = D*(V(s)) = e D(V(s)) = f(V(5), (V(s))(h))

Since p > 0, we can manage
U(0) = u < p([[v]| + 1)p + v = V(0)

by choosing p > 0 sufficiently large. According to condition 3 in Theorem 1, there is a
constant L > 0 such that

fz+Ap,y+ Apl™)) — f(z,y) < —2LAp
for [[z]lo < [[v]l; [lykllo < |Jvl] (k=1,...,m) and 0 < A < p(|[v]| + 1). Then
H,(s) — Hyu(s)
= —Lu(||lv]| + 1) exp(—=Ls)p — D*(v — u) — ¢ D(v — u)
— (F(u(llell + 1) exp(~Ls)p + v, u(ol] + 1) exp(~L)p™ + (k) — F(w,0(h)))
— (f(v,v(h)) — f(u,u(h)))
> —Lp(|Jv|] + 1) exp(—Ls)p
(f(u loll + 1) exp(~Ls)p + v u(llo] + 1) exp(~L)p™ +o(h)) — F(o,v(h))
Lu(|[v]| + 1) exp(—Ls)p + 2Lu(|[v|| + 1) exp(—Ls)p
>0
for s > 0. Note that U,V : [0,00) — FE are continuously differentiable, and that

V(s) € E2 (s > 0), since each function V(s) is the sum of v € E5 and a constant
function.
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Now, we set d(s) =V (s) —U(s) (s> 0). We prove d(s) > 0 (s> 0). Assume that
this is not true. Since d(0) > 0 and since d : [0,00) — E is continuous, there exists
so > 0 such that d(s) > 0 (s € [0,s0)), and d(sp) > 0 but d(sg) ¢ IntK. According
to Proposition 1 there is a functional 0 # ¢ € K¢ such that inf;cr ¢ ((d(s0))(t)) = 0.
Let (tx)72; be a sequence in R with limy_ ¢((d(s0))(tx)) = 0, and without loss of
generality assume that (tx) is chosen such that

DI(U(s0)) () —

DIVt = Vi
Vo)) ) — T

(V (o) (W)(t1) = Vi

as k — 0o. We have

(U:(SO))(tk> =0 } ke,
(V(s0))(tr) = = Lp([[v]| + 1) exp(—Lso)p

Note that Uy < Vy and ¢(Vy — Up) = 0, and according to Proposition 2 we have
(Vi = U;y) =0 and ¢(Vo — Us) > 0. Moreover, V, — Uy, € (Kp)™. Since

e < o((Hu(s0))(tr) — (Hu(s0))(tr)) (K €N)

for some ¢ > 0, we get (as k — 00)
0 < o~ Lullfol] + 1) exp(~Lso)p = (Vo = Uz) = e (Vi = Un)

~ (F(V. Vi) = (V0. Un) = (F(Vo. Un) = /(U0 Un) )
< —Lp([|v]] + 1) exp(—Lso ) (p)
<0
according to the properties of f, which is a contradiction. Hence we have U(s) = u <
w(|v]| + 1) exp(—Ls) +v =V (s) (s> 0) and therefore, as s — oo, u < v i

Proof of Theorem 2. We consider a solution v € E N C?(R,R™) of the second
order problem in Theorem 2. Then f(u,u(h)) € E, hence v’ + cu’ € E. We first
prove u' € E. In the case ¢ = 0 this follows from coordinatewise application of Taylor’s
formula. Let ¢ # 0. Then, the two point boundary value problem

Z'(t)+ e (t) =0 (t€][0,1])
z2(0) =2(1)=0
has only the trivial solution z : [0,1] — R, z(¢) = 0. Hence there exists Green’s function

G : [0,1)*> — R for this problem, and if » € C([0,1],R") and w € C?([0,1],R™) solves
w"” + cw’ = r, then

exp(—ct) — 1

w(t) = exp(—c) — 1

(w(l) — w(O)) + w(0) + /0 G(t,7)r(r)dr
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for t € [0,1]. Hence

(1) = —cexp(—ct)

(w(l) — w(O)) —l—/o Gi(t,T)r(T)dr

exp(—c) — 1

for t € [0, 1], and since G, is bounded, there is a constant o > 0 such that

e’ (@)llo < ax(llw(Do + wO)llo + mas fir(r)lo)

for ¢ € [0,1]. Fix ¢p € R and consider w(t) = u(t + to) (¢ € [0,1]). We obtain
||/ (¢ + to)llo < a(2lfull + [1f (w, u(R)]| + |lal])

for t € [0, 1]. Since tg was arbitrary, we have v’ € F and therefore u” € E. In particular,
u,u’ € BUC(R,R™), and since h is uniformly continuous, also u(h) € BUC(R,R™").
Since f is uniformly continuous on compact subsets of R" ™" we get f(u,u(h)) €
BUC(R,R™) and, finally, v” € BUC(R,R™). Altogether u € Ey. Now, if v is another
solution of our problem, then v € Ey and Theorem 1 gives u < v and v < u, hence
u=v.

Analogously we get uniqueness of the solution of the first order problem (compare
Remark ii following Theorem 1) il

Proof of Theorem 3. First note that the problem in Theorem 3 has at most one
solution according to Theorem 2, and if u is a solution, then u € FEy (compare the proof
of Theorem 2). According to Theorem 1 we have ug < u < vg. It remains to prove the
existence of a solution.

Consider the operator T' defined by

Tw)() = [ 5z exp(=alt = 7 (). wl)() +au(r) — o(r))

For w € E it is easy to check that Tw € EN C?(R,R"), (Tw) € E, and
(Tw)" — a®*Tw + f(w,w(h)) + a*w = q.

In particular, (Tw)"” € E, and therefore Tw € Fy if w € Ey. Moreover, T : E — E is
increasing. Let the sequence (w,,) be defined recursively by

Wo = Ug
Wpy1 = Tw, (n € Ny) .

Then Twg = Tug > ug. Indeed, for t € R we have

(Tuo)(t) = [ 5 exp(=alt = 71} (# (un(r),uo(h)(7)) + a®ua(r) ~ a(r) )

R

> [ esplalt = 7 (auo(r) — ) ar

=:g(t).
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2 2

Now g”—a%g = ufj —a?ug and g € E,. Theorem 1 (applied to the function x — —a?z and
¢ = 0) proves g = ug. Therefore, (w,,) is increasing. Theorem 1 gives w,, < vy (n € Np)

since
/!

Wy 41 T f(wn+1a wn+1(h)>
= f(wn+1awn+l<h)) + a2wn+l - (f(wnawn(h)) + a2wn) +4q
> q.

Hence the sequence (w,) converges pointwise to a measurable and bounded function
u: R — R™ with ug(t) < u(t) <wv(t) (t €R). From Lebesgue’s theorem of dominated
convergence we get o Tw,, — poTu (p € K{) pointwise on R as k — oo. Therefore,
Tu = u, hence u € E. Then u € ENC?(R,R") and u” + f(u,u(h)) =g
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