Differential-Functional Inequalities for Bounded Vector-Valued Functions

G. Herzog

Abstract. For the space \mathbb{R}^n ordered by a cone and some functions $f : \mathbb{R}^{n+mn} \to \mathbb{R}^n$ and $h_1, \ldots, h_m : \mathbb{R} \to \mathbb{R}$ we consider differential-functional inequalities of the type

 $v'' + cv' + f v, v(h_1), \dots, v(h_m) \leq u'' + cu' + f u, u(h_1), \dots, u(h_m)$

and conclude $u \leq v$ under suitable conditions on u, v, h_k and f. The result can be applied to obtain existence and uniqueness results for differential-functional boundary value problems of the form

$$u'' + cu' + f u, u(h_1), \dots, u(h_m) = q$$

with $u \in C^2(\mathbb{R}, \mathbb{R}^n)$ bounded.

Keywords: Ordered vector spaces, differential-functional inequalities, quasimonotonicity **AMS subject classification:** 34A40, 34K10, 34K25

1. Introduction

Let \mathbb{R}^n be endowed with a norm $||\cdot||_0$, and ordered by a cone K_0 , that is, K_0 is a closed, non-empty and convex subset of \mathbb{R}^n with $\lambda K_0 \subseteq K_0$ ($\lambda \ge 0$) and $K_0 \cap (-K_0) = \{0\}$, and let $x \le y$ be defined by $y - x \in K_0$. Let K_0 have non-empty interior $\operatorname{Int} K_0$, and let $E = C_b(\mathbb{R}, \mathbb{R}^n)$ denote the Banach space of all bounded and continuous functions $u = (u_1, \ldots, u_n) : \mathbb{R} \to \mathbb{R}^n$, normed by $||u|| = \sup_{t \in \mathbb{R}} ||u(t)||_0$, and ordered by the cone

$$K = \left\{ u \in E : u(t) \in K_0 \ (t \in \mathbb{R}) \right\}.$$

On both spaces, \mathbb{R}^n and E, the partial ordering defined by the corresponding cones K_0 and K is denoted by \leq , and we write $x \ll y$ or $u \ll v$ if $y - x \in \text{Int}K_0$ or $v - u \in \text{Int}K$, respectively. Note that K has non-empty interior since if $p \in \text{Int}K_0$, then u(t) = p $(t \in \mathbb{R})$ is in IntK.

In the sequel, let $c \in \mathbb{R}$, and let

$$f: \mathbb{R}^{n+mn} \to \mathbb{R}^n$$
$$h = (h_1, \dots, h_m): \mathbb{R} \to \mathbb{R}^m$$

G. Herzog: Math. Inst. I, Universität Karlsruhe, D-76128 Karlsruhe Gerd.Herzog@math.uni-karlsruhe.de

be continuous functions. If $u: \mathbb{R} \to \mathbb{R}^n$ is a function, we write u(h) for the function

$$t \mapsto (u(h_1(t)), \ldots, u(h_m(t)))$$

for short.

We consider differential-functional inequalities of the type

$$v''(t) + cv'(t) + f(v(t), v(h)(t)) \le u''(t) + cu'(t) + f(u(t), u(h)(t))$$

for $t \in \mathbb{R}$ and want to conclude $u \leq v$ under suitable conditions on u, v, h_k and f. Such a result may be used to prove uniqueness and existence of bounded solutions of first and second order systems of differential-functional equations, e.g., for boundary value problems of the type

$$u''(t) + cu'(t) + f(u(t), u(h)(t)) = q(t), \qquad u \in E \cap C^2(\mathbb{R}, \mathbb{R}^n).$$

Note that, in particular, classical delay equations are included in our case by setting $h_k(t) = t + \tau_k \quad (\tau_k \in \mathbb{R}).$

Let K_0^* denote the dual cone of K_0 , that is the set of all linear functionals $\varphi \in (\mathbb{R}^n)^*$ for which $\varphi(x) \ge 0$ ($x \ge 0$). A function $g : \mathbb{R}^n \to \mathbb{R}^n$ is called *quasimonotone increasing*, in the sense of Volkmann [8], if for $x, y \in \mathbb{R}^n$

$$x \leq y, \ \varphi \in K_0^*, \ \varphi(x) = \varphi(y) \quad \Longrightarrow \quad \varphi(g(x)) \leq \varphi(g(y)).$$

2. Results

To state our results let $BUC(\mathbb{R}, \mathbb{R}^n)$ denote the space of all bounded and uniformly continuous functions on \mathbb{R} , and let E_1, E_2 denote the following subspaces of $E = C_b(\mathbb{R}, \mathbb{R}^n)$:

$$E_1 = \left\{ u \in E : u \in C^1(\mathbb{R}, \mathbb{R}^n) \text{ and } u' \in BUC(\mathbb{R}, \mathbb{R}^n) \right\}$$
$$E_2 = \left\{ u \in E : u \in C^2(\mathbb{R}, \mathbb{R}^n) \text{ and } u'' \in BUC(\mathbb{R}, \mathbb{R}^n) \right\}.$$

By $x^{[m]}$ we denote the vector $(x)_{k=1}^m \in \mathbb{R}^{mn}$, if $x \in \mathbb{R}^n$.

Theorem 1. Let $f : \mathbb{R}^{n+mn} \to \mathbb{R}^n$ be such that for $x \in \mathbb{R}^n$ and $y = (y_1, \ldots, y_m) \in \mathbb{R}^{mn}$:

1. $x \mapsto f(x, y)$ is quasimonotone increasing (y fixed).

2. $y_k \mapsto f(x,y)$ is increasing (x and y_j ($j \neq k$) fixed), for $k = 1, \ldots, m$.

3. There exists $p \in \text{Int}K_0$ with the following property: To each compact subset $C \subseteq \mathbb{R}^{n+mn}$ and each interval $[0, \Lambda] \subseteq \mathbb{R}$ there is a constant L > 0 such that

$$f(x + \lambda p, y + \lambda p^{[m]}) - f(x, y) \le -L\lambda p$$

for $(x, y) \in C$ and $\lambda \in [0, \Lambda]$.

Then, if $u, v \in E_2$ are such that

$$v''(t) + cv'(t) + f(v(t), v(h)(t)) \le u''(t) + cu'(t) + f(u(t), u(h)(t))$$

for all $t \in \mathbb{R}$, $u \leq v$ follows.

Remarks.

(i) Without condition 3, Theorem 1 fails. For example, $v'' + cv' \le u'' + cu'$ (here f = 0) is valid for all constant functions u and v. On the other hand, condition 3 is valid if $f \in C^1(\mathbb{R}^{n+mn}, \mathbb{R}^n)$ and if there exists $p \in \text{Int}K_0$ such that

$$\Big(\frac{\partial f}{\partial x}(x,y) + \sum_{k=1}^{m} \frac{\partial f}{\partial y_k}(x,y)\Big) p \ll 0$$

for all $(x, y) \in \mathbb{R}^{n+mn}$.

(ii) As can be seen from the proof, the second order differential-functional inequality in Theorem 1 can be replaced by a first order inequality, that is, if f is as in Theorem 1 and if $u, v \in E_1$ are such that

$$v'(t) + f(v(t), v(h)(t)) \le u'(t) + f(u(t), u(h)(t)) \qquad (t \in \mathbb{R})$$

or

$$-v'(t) + f(v(t), v(h)(t)) \le -u'(t) + f(u(t), u(h)(t)) \qquad (t \in \mathbb{R}),$$

then $u \leq v$.

(iii) For a one-dimensional version of Theorem 1 (for implicit inequalities, and in a different frame) see [4]. For second order inequalities on bounded intervals see [5].

The following theorems will be proved by using Theorem 1.

Theorem 2. Let $f : \mathbb{R}^{n+mn} \to \mathbb{R}^n$ be as in Theorem 1, let h be uniformly continuous on \mathbb{R} , and let $q \in BUC(\mathbb{R}, \mathbb{R}^n)$. Then the boundary value problems

$$u''(t) + c u'(t) + f(u(t), u(h)(t)) = q(t), \qquad u \in E \cap C^2(\mathbb{R}, \mathbb{R}^n)$$

and

$$\pm u'(t) + f(u(t), u(h)(t)) = q(t), \qquad u \in E \cap C^1(\mathbb{R}, \mathbb{R}^n)$$

have at most one solution.

Remarks.

(i) For example, the equation -u'(t) + u(2t) = 0 has non-trivial bounded solutions $u \in C^{\infty}(\mathbb{R}, \mathbb{R})$, even satisfying u(0) = 0 (see [6]). Here condition 3 from Theorem 1 is not satisfied.

(ii) Bounded solutions of differential-functional equations in the case n = 1 were studied by Staňek [7]. For ordinary differential equations, results related to Theorem 2 were first obtained by Bebernes and Jackson [2] and Belova [3] in the case n = 1. For a survey on boundary value problems on infinite intervals we refer to [1] and the references given therein.

Theorem 3. Let $f : \mathbb{R}^{n+mn} \to \mathbb{R}^n$ be as in Theorem 1, and in addition let there exist a > 0 such that $x \mapsto f(x, y) + a^2 x$ is increasing $(y \in \mathbb{R}^{mn} \text{ fixed})$. Let h be uniformly continuous on \mathbb{R} , and let $q \in BUC(\mathbb{R}, \mathbb{R}^n)$. Moreover, let there exist $u_0, v_0 \in E_2$ such that

 $v_0''(t) + f(v_0(t), v_0(h)(t)) \le q(t) \le u_0''(t) + f(u_0(t), u_0(h)(t))$

for $t \in \mathbb{R}$. Then, the boundary value problem

$$u''(t) + f(u(t), u(h)(t)) = q(t), \qquad u \in E \cap C^2(\mathbb{R}, \mathbb{R}^n)$$

is uniquely solvable, and the solution u satisfies $u_0 \leq u \leq v_0$.

Remark. Related existence results for $c \neq 0$ can be obtained by the same method and more technical effort.

As an example we consider the linear case: Let \mathbb{R}^n be ordered by the natural cone

$$K = \Big\{ x \in \mathbb{R}^n : x_k \ge 0 \ (k = 1, \dots, n) \Big\}.$$

It is well known [8] that $g = (g_1, \ldots, g_n) : \mathbb{R}^n \to \mathbb{R}^n$ is quasimonotone increasing if and only if $x_k \mapsto g_j(x_1, \ldots, x_n)$ is increasing $(j \neq k)$. Now consider real $(n \times n)$ -matrices A, B_1, \ldots, B_m with $x \mapsto Ax$ quasimonotone increasing (that is, all off diagonal entries of A are ≥ 0), and $x \mapsto B_k x$ increasing $(k = 1, \ldots, m)$. Let there exist $p \gg 0$ (that is $p_1, \ldots, p_n > 0$ in this case) such that

$$Ap + \sum_{k=1}^{m} B_k p \le -Lp$$

for some L > 0. Then Theorem 3 applies to $f(x, y) = Ax + \sum_{k=1}^{m} B_k y_k$, that is, we have unique solvability of the problem

$$u''(t) + Au(t) + \sum_{k=1}^{m} B_k u(h_k(t)) = q(t), \qquad u \in E \cap C^2(\mathbb{R}, \mathbb{R}^n)$$

if h is uniformly continuous and $q \in BUC(\mathbb{R}, \mathbb{R}^n)$ (choose $\mu > 0$ such that $-\mu Lp \leq q(t) \leq \mu Lp$, and set $u_0(t) = -\mu p$ and $v_0(t) = \mu p$ for $t \in \mathbb{R}$). Moreover, according to Theorem 1 the solution depends monotone decreasing on q.

For example, the system

$$\left. u_1''(t) - 4u_1(t) + u_2(t) + u_1(2t) + u_2(t+1) = \sin^2(t) \\ u_2''(t) - 4u_2(t) + u_1(t) + u_1(3t) + u_2(t-1) = \exp(-t^2) \right\},$$

 $u = (u_1, u_2) \in E \cap C^2(\mathbb{R}, \mathbb{R}^2)$, has a unique solution (choose p = (1, 1)), and $u \leq 0$.

3. Preliminaries

For the proofs of our results we will use the following propositions.

As we noted in the introduction, K has non-empty interior. The functions from Int K are characterized by

Proposition 1. Let $u \in K$. Then $u \gg 0$ if and only if to each $0 \neq \varphi \in K_0^*$ there exists $\varepsilon_{\varphi} > 0$ such that $\varphi(u(t)) \geq \varepsilon_{\varphi}$ for all $t \in \mathbb{R}$.

Proof. Let $p \in \text{Int}K_0$ and let $|| \cdot ||_1$ denote the norm on $(\mathbb{R}^n)^*$ induced by $|| \cdot ||_0$. If $0 \neq \varphi \in K_0^*$ is such that $\inf_{t \in \mathbb{R}} \varphi(u(t)) = 0$, then $u - \delta p \notin K$ for each $\delta > 0$, since $\varphi(p) > 0$. Hence $u \notin \text{Int}K$.

On the other hand, if $\varphi(u(t)) \geq \varepsilon_{\varphi} > 0$ $(t \in \mathbb{R})$ for all $0 \neq \varphi \in K_0^*$, then there exists $\varepsilon_0 > 0$ such that $\varphi(u(t)) \geq \varepsilon_0$ $(t \in \mathbb{R})$ for all $\varphi \in K_0^*$ with $||\varphi||_1 = 1$. If $v \in E$ is such that $||v|| < \frac{\varepsilon_0}{2}$, then $\varphi(u(t) + v(t)) \geq \frac{\varepsilon_0}{2}$ $(t \in \mathbb{R})$ for all $\varphi \in K_0^*$ with $||\varphi||_1 = 1$, and therefore $u + v \geq 0$. Thus $u \gg 0$

For the first and second derivative of functions in K we have

Proposition 2. Let $u \in K \cap E_2$ and let $(t_k)_{k=1}^{\infty}$ be a sequence in \mathbb{R} such that the limits $u_0 = \lim_{k\to\infty} u(t_k)$, $u_1 = \lim_{k\to\infty} u'(t_k)$ and $u_2 = \lim_{k\to\infty} u''(t_k)$ exist. Then $u_0 \ge 0$, and if $\varphi(u_0) = 0$ for some $\varphi \in K^*$, then $\varphi(u_1) = 0$ and $\varphi(u_2) \ge 0$.

Proof. It is obvious that $u_0 \ge 0$. Now let $\varphi \in K_0^*$ be such that $\varphi(u_0) = 0$. Consider a sequence $(\tau_j)_{j=1}^{\infty}$ in $\mathbb{R} \setminus \{0\}$ with limit 0, and set $\psi(t) = \varphi(u(t))$ $(t \in \mathbb{R})$. Since ψ, ψ', ψ'' are bounded on \mathbb{R} and since $\psi'' \in BUC(\mathbb{R}, \mathbb{R})$, we have

$$\frac{\psi(t+\tau_j)-\psi(t)}{\tau_j}-\psi'(t)\to 0$$
$$\frac{\psi(t-\tau_j)-\psi(t)}{\tau_j}+\psi'(t)\to 0$$
$$\frac{\psi(t+\tau_j)-2\psi(t)+\psi(t-\tau_j)}{\tau_j^2}-\psi''(t)\to 0$$

uniformly on \mathbb{R} as $j \to \infty$. We can find a subsequence (t_{k_j}) such that $\frac{\psi(t_{k_j})}{\tau_j} \to 0$ as $j \to \infty$, and therefore

$$0 \le \frac{\psi(t_{k_j} + \tau_j)}{\tau_j} \to \varphi(u_1) \qquad (j \to \infty).$$

Analogously we get $\varphi(u_1) \leq 0$ and $\varphi(u_2) \geq 0$

4. Proofs

We will now give the proofs of our main results.

Proof of Theorem 1. The idea of the proof is as follows: We write u, v as limits of functions $U, V : [0, \infty) \to E$, where U, V satisfy a differential inequality, and adapt the method in [8] to prove $U(s) \ll V(s)$.

We write Dw and D^2w for the first and second derivative of a function $w : \mathbb{R} \to \mathbb{R}^n$, and $D^0w := w$. In a first step we prove that there are constants $L, \mu > 0$ such that the functions $U, V : [0, \infty) \to E$ defined by

$$U(s) = u$$

$$V(s) = \mu(||v|| + 1) \exp(-Ls)p + v$$

satisfy $U(0) \ll V(0)$, and

$$H_u(s) := U'(s) - D^2(U(s)) - c D(U(s)) - f(U(s), (U(s))(h))$$

$$\ll V'(s) - D^2(V(s)) - c D(V(s)) - f(V(s), (V(s))(h))$$

$$=: H_v(s) \quad (s \ge 0).$$

Since $p \gg 0$, we can manage

$$U(0) = u \ll \mu(||v|| + 1)p + v = V(0)$$

by choosing $\mu > 0$ sufficiently large. According to condition 3 in Theorem 1, there is a constant L > 0 such that

$$f(x + \lambda p, y + \lambda p^{[m]})) - f(x, y) \le -2L\lambda p$$

for $||x||_0 \le ||v||$, $||y_k||_0 \le ||v||$ (k = 1, ..., m) and $0 \le \lambda \le \mu(||v|| + 1)$. Then

$$\begin{split} H_v(s) &- H_u(s) \\ &= -L\mu(||v|| + 1) \exp(-Ls)p - D^2(v - u) - c \, D(v - u) \\ &- \left(f\left(\mu(||v|| + 1) \exp(-Ls)p + v, \mu(||v|| + 1) \exp(-Ls)p^{[m]} + v(h)\right) - f(v, v(h)) \right) \\ &- \left(f(v, v(h)) - f(u, u(h)) \right) \\ &\geq -L\mu(||v|| + 1) \exp(-Ls)p \\ &- \left(f\left(\mu(||v|| + 1) \exp(-Ls)p + v, \mu(||v|| + 1) \exp(-Ls)p^{[m]} + v(h) \right) - f(v, v(h)) \right) \\ &\geq -L\mu(||v|| + 1) \exp(-Ls)p + 2L\mu(||v|| + 1) \exp(-Ls)p \\ &\gg 0 \end{split}$$

for $s \ge 0$. Note that $U, V : [0, \infty) \to E$ are continuously differentiable, and that $V(s) \in E_2$ $(s \ge 0)$, since each function V(s) is the sum of $v \in E_2$ and a constant function.

Now, we set d(s) = V(s) - U(s) $(s \ge 0)$. We prove $d(s) \gg 0$ $(s \ge 0)$. Assume that this is not true. Since $d(0) \gg 0$ and since $d : [0, \infty) \to E$ is continuous, there exists $s_0 > 0$ such that $d(s) \gg 0$ $(s \in [0, s_0))$, and $d(s_0) \ge 0$ but $d(s_0) \notin \text{Int}K$. According to Proposition 1 there is a functional $0 \ne \varphi \in K_0^*$ such that $\inf_{t \in \mathbb{R}} \varphi((d(s_0))(t)) = 0$. Let $(t_k)_{k=1}^{\infty}$ be a sequence in \mathbb{R} with $\lim_{k\to\infty} \varphi((d(s_0))(t_k)) = 0$, and without loss of generality assume that (t_k) is chosen such that

$$D^{j}(U(s_{0}))(t_{k}) \rightarrow U_{j}$$

$$D^{j}(V(s_{0}))(t_{k}) \rightarrow V_{j}$$

$$(U(s_{0})(h))(t_{k}) \rightarrow U_{h}$$

$$(V(s_{0})(h))(t_{k}) \rightarrow V_{h}$$

$$(j = 0, 1, 2)$$

as $k \to \infty$. We have

$$(U'(s_0))(t_k) = 0 (V'(s_0))(t_k) = -L\mu(||v|| + 1) \exp(-Ls_0)p$$
 $(k \in \mathbb{N}).$

Note that $U_0 \leq V_0$ and $\varphi(V_0 - U_0) = 0$, and according to Proposition 2 we have $\varphi(V_1 - U_1) = 0$ and $\varphi(V_2 - U_2) \geq 0$. Moreover, $V_h - U_h \in (K_0)^m$. Since

$$\varepsilon < \varphi ((H_v(s_0))(t_k) - (H_u(s_0))(t_k)) \qquad (k \in \mathbb{N})$$

for some $\varepsilon > 0$, we get (as $k \to \infty$)

$$0 < \varphi \Big(-L\mu(||v||+1) \exp(-Ls_0)p - (V_2 - U_2) - c (V_1 - U_1) \\ - (f(V_0, V_h) - f(V_0, U_h)) - (f(V_0, U_h) - f(U_0, U_h)) \Big) \\ \le -L\mu(||v||+1) \exp(-Ls_0)\varphi(p) \\ < 0$$

according to the properties of f, which is a contradiction. Hence we have $U(s) = u \ll \mu(||v|| + 1) \exp(-Ls) + v = V(s)$ $(s \ge 0)$ and therefore, as $s \to \infty$, $u \le v \blacksquare$

Proof of Theorem 2. We consider a solution $u \in E \cap C^2(\mathbb{R}, \mathbb{R}^n)$ of the second order problem in Theorem 2. Then $f(u, u(h)) \in E$, hence $u'' + cu' \in E$. We first prove $u' \in E$. In the case c = 0 this follows from coordinatewise application of Taylor's formula. Let $c \neq 0$. Then, the two point boundary value problem

$$z''(t) + cz'(t) = 0 \quad (t \in [0, 1])$$

$$z(0) = z(1) = 0$$

has only the trivial solution $z : [0,1] \to \mathbb{R}$, z(t) = 0. Hence there exists Green's function $G : [0,1]^2 \to \mathbb{R}$ for this problem, and if $r \in C([0,1],\mathbb{R}^n)$ and $w \in C^2([0,1],\mathbb{R}^n)$ solves w'' + cw' = r, then

$$w(t) = \frac{\exp(-ct) - 1}{\exp(-c) - 1} \left(w(1) - w(0) \right) + w(0) + \int_0^1 G(t, \tau) r(\tau) \, d\tau$$

1062 G. Herzog

for $t \in [0, 1]$. Hence

$$w'(t) = \frac{-c\exp(-ct)}{\exp(-c) - 1} (w(1) - w(0)) + \int_0^1 G_t(t,\tau)r(\tau) d\tau$$

for $t \in [0, 1]$, and since G_t is bounded, there is a constant $\alpha \ge 0$ such that

$$||w'(t)||_0 \le \alpha \Big(||w(1)||_0 + ||w(0)||_0 + \max_{\tau \in [0,1]} ||r(\tau)||_0 \Big)$$

for $t \in [0,1]$. Fix $t_0 \in \mathbb{R}$ and consider $w(t) = u(t+t_0)$ $(t \in [0,1])$. We obtain

$$||u'(t+t_0)||_0 \le \alpha (2||u|| + ||f(u,u(h))|| + ||q||)$$

for $t \in [0, 1]$. Since t_0 was arbitrary, we have $u' \in E$ and therefore $u'' \in E$. In particular, $u, u' \in BUC(\mathbb{R}, \mathbb{R}^n)$, and since h is uniformly continuous, also $u(h) \in BUC(\mathbb{R}, \mathbb{R}^{mn})$. Since f is uniformly continuous on compact subsets of \mathbb{R}^{n+mn} , we get $f(u, u(h)) \in BUC(\mathbb{R}, \mathbb{R}^n)$ and, finally, $u'' \in BUC(\mathbb{R}, \mathbb{R}^n)$. Altogether $u \in E_2$. Now, if v is another solution of our problem, then $v \in E_2$ and Theorem 1 gives $u \leq v$ and $v \leq u$, hence u = v.

Analogously we get uniqueness of the solution of the first order problem (compare Remark ii following Theorem 1) \blacksquare

Proof of Theorem 3. First note that the problem in Theorem 3 has at most one solution according to Theorem 2, and if u is a solution, then $u \in E_2$ (compare the proof of Theorem 2). According to Theorem 1 we have $u_0 \leq u \leq v_0$. It remains to prove the existence of a solution.

Consider the operator T defined by

$$(Tw)(t) = \int_{\mathbb{R}} \frac{1}{2a} \exp(-a|t-\tau|) \Big(f(w(\tau), w(h)(\tau)) + a^2 w(\tau) - q(\tau) \Big) d\tau.$$

For $w \in E$ it is easy to check that $Tw \in E \cap C^2(\mathbb{R}, \mathbb{R}^n)$, $(Tw)' \in E$, and

$$(Tw)'' - a^2Tw + f(w, w(h)) + a^2w = q.$$

In particular, $(Tw)'' \in E$, and therefore $Tw \in E_2$ if $w \in E_2$. Moreover, $T: E \to E$ is increasing. Let the sequence (w_n) be defined recursively by

$$\begin{cases} w_0 = u_0 \\ w_{n+1} = Tw_n \quad (n \in \mathbb{N}_0) \end{cases}$$

Then $Tw_0 = Tu_0 \ge u_0$. Indeed, for $t \in \mathbb{R}$ we have

$$(Tu_0)(t) = \int_{\mathbb{R}} \frac{1}{2a} \exp(-a|t-\tau|) \Big(f\big(u_0(\tau), u_0(h)(\tau)\big) + a^2 u_0(\tau) - q(\tau) \Big) d\tau$$

$$\geq \int_{\mathbb{R}} \frac{1}{2a} \exp(-a|t-\tau|) \Big(a^2 u_0(\tau) - u_0''(\tau) \Big) d\tau$$

=: g(t).

Now $g''-a^2g = u_0''-a^2u_0$ and $g \in E_2$. Theorem 1 (applied to the function $x \mapsto -a^2x$ and c = 0) proves $g = u_0$. Therefore, (w_n) is increasing. Theorem 1 gives $w_n \leq v_0$ $(n \in \mathbb{N}_0)$ since

$$w_{n+1}'' + f(w_{n+1}, w_{n+1}(h))$$

= $f(w_{n+1}, w_{n+1}(h)) + a^2 w_{n+1} - (f(w_n, w_n(h)) + a^2 w_n) + q$
 $\geq q.$

Hence the sequence (w_n) converges pointwise to a measurable and bounded function $u: \mathbb{R} \to \mathbb{R}^n$ with $u_0(t) \leq u(t) \leq v_0(t)$ $(t \in \mathbb{R})$. From Lebesgue's theorem of dominated convergence we get $\varphi \circ Tw_n \to \varphi \circ Tu$ $(\varphi \in K_0^*)$ pointwise on \mathbb{R} as $k \to \infty$. Therefore, Tu = u, hence $u \in E$. Then $u \in E \cap C^2(\mathbb{R}, \mathbb{R}^n)$ and u'' + f(u, u(h)) = q

Acknowledgement. The author whishes to express his sincere gratitude to Prof. Dr. Roland Lemmert for discussions and helpful remarks.

References

- Andres, J., Gabor, G. and L. Górniewicz: Boundary value problems on infinite intervals. Trans. Amer. Math. Soc. 351 (1999), 4861 – 4903.
- [2] Bebernes, J. W. and L. K. Jackson: Infinite interval boundary value problems for y'' = f(x, y). Duke Math. J. 34 (1967), 39 47.
- Belova, M. M.: Bounded solutions of ordinary second-order differential equations. Dokl. Akad. Nauk SSSR 180 (1968), 603 - 606.
- [4] Herzog, G.: Second order differential-functional inequalities for bounded functions. Positivity (to appear).
- [5] Herzog, G. and R. Lemmert: Second order differential inequalities in Banach spaces. Ann. Polon. Math. (to appear).
- [6] Kato, T. and J. B. McLeod: The functional-differential equation $y'(x) = ay(\lambda x) + by(x)$. Bull. Amer. Math. Soc. 77 (1971), 891 – 937.
- [7] Staňek, S.: On the boundedness and periodicity of solutions of second-order functional differential equations with a parameter. Czech. Math. J. 42 (1992), 257 – 270.
- [8] Volkmann, P.: Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorräumen. Math. Z. 127 (1972), 157 – 164.

Received 05.02.2001; in revised form 02.07.2001