
Zeitschrift für Analysis und ihre Anwendungen
Journal for Analysis and its Applications

Volume 21 (2002), No. 1, 21–26

Quaternionic Reformulation of Maxwell Equations
for Inhomogeneous Media

and New Solutions

V. V. Kravchenko

Abstract. We propose a simple quaternionic reformulation of Maxwell equations
for inhomogeneous media and use it in order to obtain new solutions in a static case.
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1. Introduction

The algebra of quaternions was applied to the study of the Maxwell equations
starting from the work of J. C. Maxwell himself. The standard reference
for the quaternionic reformulation of the Maxwell equations is the work [4],
where the Maxwell equations for vacuum were written in a simple and compact
form. In this relation we should mention also the earlier article [13]. Some
new integral representations for electromagnetic quantities based on the idea
of quaternionic diagonalization of the Maxwell equations for homogeneous
media were obtained in [6] (see also [12: Chapter 2]). A review of different
applications of quaternionic analysis to the Maxwell equations can be found
in [3]. In the recent work [9] with the aid of quaternionic analysis techniques
the Maxwell equations for inhomogeneous but slowly changing media were
diagonalized and new solutions obtained. Nevertheless, even the question
how to write the Maxwell equations for arbitrary inhomogeneous media in a
compact quaternionic form remained open. In the present work we propose
such a reformulation and use it for obtaining new results in the static case.
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2. Preliminaries

We denote by H(C) the algebra of complex quaternions (= biquaternions).
The elements of H(C) are represented in the form q =

∑3
k=0 qkik, where qk ∈

C, i0 is the unit and ik (k = 1, 2, 3) are standard quaternionic imaginary units.
We will use also the vector representation of complex quaternions q = q0 + ~q,
where ~q =

∑3
k=1 qkik. The vector parts of complex quaternions we identify

with vectors from C3. The product of two biquaternions can be written in the
form

p · q = p0q0 − 〈~p, ~q〉+ [~p× ~q] + p0~q + q0~p

where 〈~p, ~q〉 and [~p × ~q] denote the usual scalar and vector products, respec-
tively. We will use the notations pMq = p ·q and Mpq = q ·p for the operators
of multiplication from the left-hand and right-hand sides, respectively.

Remark 1. The scalar product of vectors ~p and ~q can be represented as
〈~p, ~q〉 = − 1

2 (~pM + M~p)~q.

On the set of differentiable H(C)-valued functions the Moisil-Theodoresco
operator is defined by the expression Df =

∑3
k=1 ik∂kf . In vector form this

expression can be written as

Df = −div ~f + gradf0 + rot~f

where the first term is the scalar part of the biquaternion Df and the last two
terms represent its vector part.

Let us note some simple properties of the operator D which will be used
in this work. Let ϕ be a scalar function and f be an H(C)-valued function.
Then

D(ϕ · f) = Dϕ · f + ϕ ·Df

and (
D − gradϕ

ϕ

)
f = ϕD

( 1
ϕ

f
)
. (1)
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3. Quaternionic reformulation of the Maxwell equations

The Maxwell equations for complex amplitudes of the time-harmonic electro-
magnetic field have the form

div(ε ~E) = ρ, div(µ ~H) = 0 (2)

rot ~H = iωε ~E +~j rot ~E = −iωµ ~H (3)

where ~E and ~H are C3-valued functions, ω is the frequency, ε is the permit-
tivity and µ is the permeability of the medium. We suppose ε and µ to be two
times differentiable complex-valued functions with respect to each coordinate
xk (k = 1, 2, 3). Note that they are always different from zero.

Equations (2) can be rewritten as

div ~E +
〈grad ε

ε
, ~E

〉
=

ρ

ε

div ~H +
〈gradµ

µ
, ~H

〉
= 0





.

Combining these equations with (3) we have the Maxwell equations in the
form

D ~E =
〈grad ε

ε
, ~E

〉
− iωµ ~H − ρ

ε

D ~H =
〈gradµ

µ
, ~H

〉
+ iωε ~E +~j





.

Taking into account Remark 1 we rewrite them as

(
D +

1
2

gradε

ε

)
~E = −1

2
M

gradε
ε ~E − iωµ ~H − ρ

ε(
D +

1
2

gradµ

µ

)
~H = −1

2
M

gradµ
µ ~H + iωε ~E +~j





.

Due to (1) we obtain

1√
ε
D(
√

ε ~E) + ~E · ~ε = −iωµ ~H − ρ

ε

1√
µ

D(
√

µ ~H) + ~H · ~µ = iωε ~E +~j





where

~ε =
grad

√
ε√

ε
and ~µ =

grad
√

µ√
µ

.
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Introducing the notations

~E =
√

ε ~E, ~H =
√

µ ~H, k = ω
√

εµ

we finally arrive at the system

(D + M~ε)~E = −ik ~H− ρ√
ε

(4)

(D + M~µ) ~H = ik~E +
√

µ~j (5)

which is equivalent to (2) - (3). This pair of equations is the quaternionic
reformulation of the Maxwell equations for inhomogeneous media.

The operator D + Mα with α being a constant complex quaternion was
studied in detail in [12]. Note that ~ε and ~µ are constants if ε and µ are
functions of the form exp(ax1+bx2+cx3+d) with constant a, b, c. For the case
when α is not a constant there were proposed some classes of exact solutions
in [8, 10, 11]. In the same articles the reader can see that the classical Dirac
operator with different potentials is closely related to the operator D + Mα.
A simple matrix transform proposed in [7] turns the classical Dirac operator
into the operator D + Mα, where α contains the mass and the energy of the
particle as well as the terms corresponding to potentials.

In a static case (ω = 0) we arrive at the equations

(D + M~ε)~E = − ρ√
ε

(D + M~µ) ~H =
√

µ~j



 .

Thus we are interested in the solutions for the operator D + M ~α, where the
complex quaternion ~α has the form ~α = gradϕ

ϕ and the function ϕ is different
from zero. Note that due to property (1) the operator D +~α M permits a
complete study which can be found in [14] because it practically reduces to
the operator D. In the case of the operator D + M ~α the situation as we will
see later on is quite different.

Consider the equation

(D + M ~α)~f = 0. (6)

Denote v = ∆ϕ
ϕ . In other words, ϕ is a solution of the Schrödinger equation

−∆ϕ + vϕ = 0. (7)

Proposition 2. Let ψ be another solution of equation (7). Then the
function

~f = (D − ~α)ψ (8)
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is a solution of equation (6).

Proof. The proof consists of a simple calculation. Consider

D~f = −∆ψ −Dψ · Dϕ

ϕ
− ψ ·D

(Dϕ

ϕ

)

= −vψ −Dψ · Dϕ

ϕ
+ ψ ·

(Dϕ

ϕ

)2

+ ψ
∆ϕ

ϕ

= −
(
Dψ − Dϕ

ϕ
· ψ

)Dϕ

ϕ

= −~f · ~α.

This way the assertion is proved

This proposition gives us the possibility to reduce the solution of equation
(6) to that of the Schrödinger equation (7). Moreover, if ψ is a fundamental
solution of the Schrödinger operator (−∆ + v)ψ = δ, then the function ~f
defined by (8) is a fundamental solution of the operator D + M ~α that can be
seen following the proof of Proposition 2.

Remark 3. Proposition 2 is closely related to the factorization of the
Schrödinger operator proposed in [1, 2]. Namely, for a scalar function u we
have the equality

(D + Mα)(D −Mα)u = (−∆ + v)u

if the complex quaternionic function α satisfies the equation

Dα + α2 = −v. (9)

It is easy to check that for α = gradϕ
ϕ equation (9) is equivalent to equation

(7). Equation (9) can be considered as a natural generalization of the ordinary
differential Riccati equation. In [5, 15] the corresponding generalizations of
the well known Euler theorems for the Riccati equation were obtained.

Let us consider the following simple example of application of Proposition
2.

Example 4. Consider equation (6) in some domain Ω ⊂ R3 and let
∆ϕ
ϕ = −c2 in Ω, where c is a complex constant. In this case we are able to

construct a fundamental solution for the operator D + M ~α. Denote

ψ(x) =
eic|x|

4π|x| .
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This is a fundamental solution of the operator −∆−c2. Then the fundamental
solution of D + M ~α is constructed as

~f(x) =
(
D − gradϕ(x)

ϕ(x)

) eic|x|

4π|x| =
(
− x

|x|2 + ic
x

|x| −
gradϕ(x)

ϕ(x)

) eic|x|

4π|x|

where x =
∑3

k=1 xkik.

Note that it is not clear how to obtain this result for the Maxwell operators
D + M~ε and D + M~µ using other known methods.
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