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1. Introduction

Boundary value problems for systems of stationary quasilinear partial differ-
ential equations appear very often in applied sciences (drift-diffusion equa-
tions for semiconductors, two-phase flows in porous media, sedimentation
processes). The mathematical study of these problems is usually restricted
to problems in smooth or convex domains and continuous boundary condi-
tions. Only a few is known about such problems in domains with corners and
edges or when the boundary conditions change.

On the other hand, the theory of general linear elliptic problems in do-
mains with a piecewise smooth boundary is well developed (see the mono-
graphs [18, 23, 38] and the references therein). In papers by Kondrat’ev,
Maz’ya, Plamenevsky, Grisvard, Rossmann, Dauge and many others, the Fred-
holm property of linear operators in domains with conical points and edges is
investigated in several scales of function spaces. Moreover, it is shown there
that the solutions u can be decomposed into a singular part and a more regular
remainder

u = using + ureg.

In comparison with the linear case, the theory of nonlinear problems in non-
smooth domains is much less developed. Here we have to distinguish between
strong nonlinear scalar problems, which are often treated by barrier methods
based on maximum principles [8, 9, 15, 16, 35, 46] and problems where a
linearized problem dominates the singular behaviour of bounded, small solu-
tions [6, 17, 22, 27, 28, 35 - 37, 41, 45]. To the first class belongs for example
the p-Laplacian (a quasilinear operator depending on the gradient of the solu-
tion) for which Tolksdorf [46] and Dobrowolski [15] have proved existence and
asymptotic expansion of the solution near conical points. They first determine
an explicit singularity s using the standard ansatz. Linearizing the operator
at s and using comparison principles they obtain their results. For totally
general systems we cannot hope to realize both steps.

Therefore, we investigate existence and regularity of bounded solutions
of mixed boundary value problems for a class of quasilinear elliptic systems
with small right-hand sides by the classical Local Invertibility Theorem. This
method is not restricted to scalar operators. It requires that the operator as-
sociated with the nonlinear problem is continuously Fréchet differentiable and
that the Fréchet derivative is an isomorphism between some Banach spaces.
This leads to difficulties if the domain is non-smooth or if mixed boundary
conditions occur. In these cases the singularities of the solutions have to be
taken into account in the definition of the underlying function spaces. The
proof of the Fréchet differentiability of the nonlinear elliptic operator requires
differentiability results for composition operators which are well known for
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standard Sobolev, Besov and Hölder spaces (see, e.g., [5, 44]) but not for
weighted Sobolev spaces which we use in case of non-smooth domains.

The Local Invertibility Theorem was applied to the Dirichlet and the
Neumann problem in smooth nonlinear elastic bodies [11, 48]. In [43] Recke
used this approach to prove local W 1,p(Ω)-solvability results with p > 2 for
mixed boundary value problems for a class of two-dimensional quasilinear
elliptic systems. In higher-dimensional cases he investigates the local W 1,2(Ω)-
solvability under special growth conditions for the coefficients.

In [7] a class of semilinear elliptic boundary value problems in domains
with conical boundary points was investigated by means of the Local In-
vertibility Theorem in usual Sobolev spaces with attached asymptotics. For
quasilinear problems we use finer tools like weighted Sobolev spaces and cor-
responding multiplication and composition theorems [2 - 4]. In the latter
papers the authors investigated the properties of multiplication and compo-
sition operators in weighted Sobolev spaces and developed the idea to use
them for (Banach) iteration schemes to solve semilinear evolution equations
(hyperbolic, parabolic) on domains in Rn with conical singularities. In the
earlier paper [1] the action of composition operators on domains of powers of
certain operators (being in fact spaces with attached asymptotics) is studied.
We extend these results proving a new theorem on the Fréchet differentiability
of Nemytskij operators acting in weighted Sobolev spaces.

The results presented in this paper are new in several aspects:

- We study the conditions, which guarantee that the operator of the quasi-
linear problem acting between Sobolev spaces with attached asymptotics
is Fréchet differentiable and continous in a neighbourhood of the zero-
solution and that the Fréchet derivative coincides with the formally lin-
earized operator.

- We prove some lemmata on multiplication and composition operators in
weighted Sobolev spaces of Kondrat’ev type either in domains with con-
ical points, where the weight is the distance to the conical points or in
domains of polyhedral type, where two different weights appear, gener-
ated by corner points and edges.The choice of those spaces is based on
the fact that regularity results for the solutions of linearized problems are
well developed in those spaces [14, 19, 31, 34, 40].The investigation of
the Nemytskij operator in such spaces has its own interest in functional
analysis, independently of the special application here (for usual Sobolev,
Besov and Hölder spaces, see [5, 44]).

- The method used here allows to obtain some local existence and regularity
results for bounded solutions to systems of quasilinear equations in polyg-
onal and polyhedral domains and can also applied to interface problems
and more general problems provided the singularites of the solutions of



60 F. Ali Mehmeti et al.

the linearized problem are known.

The paper is organized in the following way:

After the formulation of the problem (Section 2) we describe the associated
formally linearized operator and its mapping properties in weighted Sobolev
spaces with attached asymptotics (Section 3). The asymptotic expansion of
the solution is well known for domains with conical points in Lp-spaces, while
a corresponding decomposition in polyhedral domains is only available, to
our knowledge, in L2-spaces. In Section 4 we present the main results: first
we give theorems about multiplication and composition in weighted Sobolev
spaces and prove the continuity and the Fréchet differentiability of nonlinear
composition operators in these spaces. These theorems are the basis for the
investigation of the mapping properties of the nonlinear operators presented
in the second part of Section 4. There we formulate conditions, in particular
on the number of asymptotic terms, which guarantee the applicability of the
Local Invertibility Theorem in weighted Sobolev spaces with attached asymp-
totics. Here we formulate also the main results concerning the existence and
the asymptotic behaviour of the solutions of the quasilinear boundary value
problem near conical boundary points, vertices and edges. Since these results
require quite technical proofs, we have postponed them to the last Section 5.

To facilitate the reading of our paper we present at several stages of the
considerations an illustration using the special case of the steady-state drift-
diffusion system.

Acknowledgements. The authors thank R. Farwig (Darmstadt) and A.
Mielke (Stuttgart) and the referees for important and useful remarks.

2. Formulation of the problem

Let Ω ⊂ Rn (n = 2, 3) be a bounded domain satisfying either

(i) there exist a finite set P of conical boundary points such that ∂Ω \ P is
smooth and Ω coincides in the vicinity of every conical boundary point
P with an infinite cone CP (whose basis GP = CP ∩ Sn−1(P ) is then
smooth)

or

(ii) Ω ⊂ R3 is a straight polyhedron.

In the case (i) let ∂Ω = Γ
D∪Γ

N
be a given decomposition of the boundary

with open smooth (n − 1)-dimensional manifolds ΓD, ΓN and meas ΓD 6= 0.
Moreover, we assume that Γ

D ∩ Γ
N ⊂ P for n = 2 and Γ

D ∩ Γ
N

= ∅ if n = 3
(this last case is possible if Ω has some holes).
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In the case (ii) we suppose that ∂Ω = ΓD. Furthermore, we denote by
P (respectively E) the set of vertices (respectively the set of edges) of the
polyhedron Ω. The set of boundary singularities is denoted by S, in other
words, S = P in the first case and S = P ∪ E in the second case.

We consider a mixed boundary value problem for a system of k quasilinear
equations of second order for the vector function u = (u1, . . . , uk)

−∂j

[
aijστ (u)∂iuσ + bjτ (u)

]
+ ciστ (u)∂iuσ + dτ (u) = fτ in Ω[

aijστ (u)∂iuσ + bjτ (u)
]
nj = hτ on ΓN

uτ = gτ on ΓD





(1)

for τ = 1, . . . , k. Here we denote by n = (n1, . . . , nn) the unit outward normal
vector on ∂Ω. Moreover, we apply here and in the following the summation
convention for the repeated indices i, j = 1, . . . , n and σ = 1, . . . , k. We
assume that problem (1) with homogeneous right-hand sides has the trivial
solution which means bjτ (0) = dτ (0) = 0.

Let us present an example of such a system coming from semiconductor
theory [25] and that we will use in the whole paper to illustrate our results:

Example 2.1. Consider the steady-state drift-diffusion system coming
from semiconductor device modelling [25], which after scaling may be written
as

∇ · (eψ∇u) = 0

∇ · (e−ψ∇v) = 0

−ε∆ψ + δ2(eψu− e−ψv) = N

∂u
∂n = ∂v

∂n = ∂ψ
∂n = 0

(u, v, ψ) = (uD, vD, ψD)

in Ω

in Ω

in Ω

on ΓN

on ΓD





(2)

where ψ represents the electrostatic potential and u, v are the so-called Slot-
boom variables (associated with the concentration variables of negative and
positive charges, see [25] for details). The constants ε > 0 and δ > 0, the func-
tion N (the doping profile) and ψD, uD, vD are given. In physical applications
N often has jump discontinuities to create the transistor effect. Existence
results for that system are well-known [25] while regularity results are less
standard, especially for non-smooth domains.

In this paper we investigate under which conditions on aijστ , bjτ , ciστ , dτ

problem (1) is locally solvable in the neighbourhood of u = 0 in certain func-
tion spaces and how regular is this solution in the neighbourhood of corner
points and edges. The key idea is to linearize the above boundary value prob-
lem, to use the mapping properties of the corresponding linearized operator
in weighted Sobolev spaces and to apply the following theorem on local in-
vertibility of nonlinear operators.
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Theorem 2.2 [49: Theorem 4.B]. Let X,Y be two Banach spaces. Con-
sider x0 ∈ X and a neighbourhood U(x0) of x0. Suppose N : U(x0) ⊂ X → Y
is a mapping from U(x0) into Y and y0 = Nx0. We assume the following:

- N is Fréchet differentiable in U(x0).
- The Fréchet derivative N ′(x0) : X → Y is bijective.
- The mapping x 7→ N ′(x) ∈ L(X,Y ) is continuous at x0.

Then there exists a unique mapping N−1 defined in a neighbourhood V(y0) ⊂
Y, N−1 : V(y0) → X, such that NN−1y = y for all y ∈ V(y0).

3. The formally linearized problem and its mapping
properties

We consider the formal linearization of problem (1) at u = 0. We will show
in Section 5 that the associated operator coincides indeed with the Fréchet
derivative of the nonlinear operator corresponding to problem (1) acting be-
tween the weighted Sobolev spaces under consideration. The formally lin-
earized problem reads

−∂j

[
aijστ (0)∂ivσ + 〈∂ubjτ (0),v〉] + ciστ (0)∂ivσ+〉∂udτ (0),v〉 = fτ[

aijστ (0)∂ivσ + 〈∂ubjτ (0),v〉]nj = hτ

vτ = gτ

in Ω

on ΓN

on ΓD





(3)
for τ = 1, . . . , k. Here, 〈·, ·〉 denotes the scalar product in Rk and the deriva-
tives are to be understood in the distributional sense. For simplicity we shortly
write problem (3) as

Av = f in Ω

CNv = h on ΓN

v = g on ΓD





.

We assume the following:

(E) Boundary value problem (3) is elliptic, i.e. the matrix A of differen-
tial operators is properly elliptic in Ω \ S and the Shapiro-Lopatinski
condition is satisfied on ∂Ω \ S.

Example 3.1. For Example 2.1, the linearized operator A of system (2)
is the matrix

A =



−∆ 0 0
0 −∆ 0

δ2I −δ2I −ε∆






Quasilinear Elliptic Systems of Second Order 63

with Dirichlet or Neumann boundary conditions. For that system assumption
(E) clearly holds.

The solvability and regularity of solutions of linear elliptic problems of
type (3) is thoroughly investigated for domains with conical points [19, 29],
edges [12, 31, 33, 38] or for domains of polyhedral type [14, 32, 34, 42]. Here
we apply these general results to problem (3). The regularity of the solutions
is governed by the principal (or leading) parts (L,BN, I) of the operators
(A,CN, I) of boundary value problem (3) (here and below I means the identity
operator on ΓD).

We formulate the solvability and regularity results in weighted Sobolev
spaces for domains with conical points and domains of straight polyhedral
type separately.

3.1 Domains with conical points. For a fixed singular point P ∈ P we
introduce spherical coordinates (rP , ωP ) centered at P and denote by CP the
infinite cone which coincides with Ω in a neighbourhood of P .

We will formulate the solvability and regularity results in terms of weighted
Sobolev spaces of Kondrat’ev’s type that we recall here.

Definition 3.2. For d ∈ N0 = {0, 1, . . .}, 1 < p < ∞ and β ∈ R we
define the weighted Sobolev space V d

β,p(CP ) as the closure of C∞0 (CP \ P )
with respect to the norm

‖u‖V d
β,p

(CP ) =
∑

|α|≤d

‖rβ−d+|α|
P Dαu‖Lp(CP ).

For d ∈ N the space V
d−1/p
β,p (∂CP ) consists of traces on ∂CP of functions in

V d
β,p(CP ) and is equipped with the norm

‖u‖
V

d− 1
p

β,p
(∂CP )

= inf ‖v‖V d
β,p

(CP )

where the infimum is taken over the set of all functions v ∈ V d
β,p(CP ) such

that v = u on ∂CP .

Definition 3.3. For d ∈ N0, 1 < p < ∞ and ~β = (βP )P∈P we define the
space V d

~β,p
(Ω) as the closure of C∞0 (Ω \ P) with respect to the norm which is

assembled by means of a partition of unity from the local norms V d
βP ,p(CP ).

Let ζP ∈ C∞0 (Rn) with 0 ≤ ζP ≤ 1 be such that ζP = 1 near the conical point
P and ζP = 0 near all Q ∈ P with Q 6= P . We set ζ0 = 1−∑

P∈P ζP . Define
the norm in V d

~β,p
(Ω) by

‖u‖V d
~β,p

(Ω) =

(
‖ζ0u‖p

W d
p (Ω)

+
∑

P∈P
‖ζP u‖p

V d
βP ,p

(CP )

)1/p

.
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For d > 0 we denote by V
d−1/p
~β,p

(∂Ω) the space of traces on ∂Ω\P of functions

in V d
~β,p

(Ω).

For the sake of shortness we write Vd
~β,p

(Ω) and Vd−1/p
~β,p

(∂Ω) instead of

[V d
~β,p

(Ω)]k and [V d−1/p
~β,p

(∂Ω)]k, respectively.

Weighted Sobolev spaces have the following imbedding property, which
will be used later.

Lemma 3.4 [19]. Let ~β = (βP )P∈P , ~γ = (γP )P∈P and d′, d ∈ N0 with
d′ ≤ d and βP − d ≤ γP − d′ for all P ∈ P. Then Vd

~β,p
(Ω) is continuously

imbedded into Vd′
~γ,p(Ω).

Let GP = CP ∩ Sn−1(P ) be the intersection of CP with the unit sphere
centered at P . Since the operators L and BN are homogeneous with con-
stant coefficients, their components may be written with respect to the local
spherical coordinates near P ∈ P as follows:

Lστ (∂x) = r−2
P LP,στ (ωP , rP ∂rP

, ∂ωP
)

BN
στ (∂x) = r−1

P BN
P,στ (ωP , rP ∂rP

, ∂ωP
).

Applying the Mellin transform (rP ∂rP → λ) we get a matrix operator pencil
depending on the complex parameter λ denoted for simplicity similarly by

{LP ,BN
P |ΓN∩Sn−1(P ), IP |ΓD∩Sn−1(P )}

where IP |ΓD∩Sn−1(P ) is the identity operator on ΓD ∩ Sn−1(P ) whose com-
ponents are LP,στ (ωP , λ, ∂ωP

) and BN
P,στ (ωP , λ, ∂ωP

). Assumption (E) insures
that the matrix operator pencil

AP (λ) =
{
LP (λ),BN

P |ΓN∩Sn−1(P )(λ), IP |ΓD∩Sn−1(P )

}
(4)

has countably many isolated generalized eigenvalues of finite algebraic multi-
plicity [23]. We associate with any eigenvalue λ of AP a canonical system of
Jordan chains

{
ϕλ,ν,q

P : ν = 1, . . . , M(λ); q = 1, . . . , κ(λ, ν)
}

satisfying (see [10, 23] for more details)

l∑
q=1

A(l−q)
P (λ)

ϕλ,ν,q
P

(l − q)!
= 0

(
l = 1, . . . , κ(λ, ν)

)
. (5)
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We introduce singular functions corresponding to λ by

ξλ,ν,l
P (rP , ωP ) = rλ

P

l∑
q=1

(log rP )l−q

(l − q)!
ϕλ,ν,q

P (ωP ). (6)

They satisfy
Lξλ,ν,l

P = 0

BNξλ,ν,l
P = 0

ξλ,ν,l
P = 0

in CP

on ΓN ∩ C̄P

on ΓD ∩ C̄P .

The signification of these singular functions is the well-known fact that the
solution of the problem

Lu = f in Ω

BNu = h on ΓN

u = g on ΓD





can be decomposed into a regular part and a linear combination of the above
singular function (see below). In [39: Chapter 4] it is outlined that with
Euler’s change of variable r = et and a reduction to a first order system this
problem can be brought into the form of an evolution equation

∂V

∂t
−AV = F (7)

in a suitable Hilbert space. The solution of this equation can be reduced
to the study of the resolvent of A, which is a meromorphic operator-valued
function. The principle part of its Laurent series with respect to a fixed
eigenvalue of A corresponds to the singular functions. They can be calculated
from the principle vectors corresponding to the Jordan decomposition of the
finite-dimensional eigenspace of this eigenvalue. The connection with formula
(6) is explained in [39: Lemma 4.18].

In the following we denote by ΛP (a, b) the set of all eigenvalues λ of AP

with a < Re λ < b.

Example 3.5. For Example 2.1 in a 2-dimensional polygonal domain Ω,
the principal part L of system (2) is the diagonal matrix

L =



−∆ 0 0
0 −∆ 0
0 0 −ε∆


 (8)

with Dirichlet or Neumann boundary conditions. Therefore, the matrix opera-
tor L is splitted into three scalar Laplace operators with Dirichlet or Neumann
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boundary conditions for which the eigenvalues and associated Jordan chains
are well known (see, for instance, [18, 19]). Accordingly, the eigenvalues of
AP are equal to kπ

ω0P
with 0 6= k ∈ Z if P belongs to two edges of ΓD or two

edges of ΓN , otherwise they are equal to π
2ω0P

+ kπ
ω0P

with k ∈ Z where ω0P

is the interior opening angle of Ω at P . If P belongs to two edges of ΓD, for
λ = kπ

ω0P
the associated Jordan chain is given by

ξλ,i,1
P (rP , ωP ) = rλ

P (δij sin(λω0P ))i,j=1,2,3.

The other cases of boundary conditions can be treated simiarly.

We are now able to formulate the solvability and regularity results in
weighted Sobolev spaces.

Theorem 3.6 (Solvability Theorem [19, 23, 29]). Let d ∈ N0. Suppose
that the ellipticity condition (E) is satisfied and that the line Re λ = d + 2 −
n
p − βP does not contain eigenvalues of the pencil AP (λ) for every P ∈ P.
Then the operator

Ad,~β,p = (A,CN, I) : Vd+2
~β,p

(Ω) → Vd
~β,p

(Ω)×V
d+1− 1

p

~β,p
(ΓN )×V

d+2− 1
p

~β,p
(ΓD)

is of Fredholm type.

The asymptotics (singular terms) of the linearized problem (3) with lower
order terms has the same form as the asymptotics (singular terms) corre-
sponding to the principal part of the problem if we demand that the strip of
considered eigenvalues is less than 1.

Theorem 3.7 (Regularity Theorem [19, 23, 29]). Let d ∈ N0,u ∈
Vd+2

~β,p
(Ω) be a solution of the linearized boundary value problem (3), where

f ∈ Vd
~µ,p(Ω),h ∈ Vd+1−1/p

~µ,p (ΓN ),g ∈ Vd+2−1/p
~µ,p (ΓD), and let the vectors ~β

and ~µ have the components βP and µP , respectively. Suppose that ellipticity
condition (E) is satisfied and that the lines

Re λ = d + 2− n

p
− βP = H1,P

Re λ = d + 2− n

p
− µP = H2,P

do not contain eigenvalues of the pencil AP (λ) for every P ∈ P. Suppose
further that 0 < βP − µP < 1 for all P ∈ P. Then the solution u admits the
decomposition

u = ureg +
∑

P∈P

∑

λ∈ΛP (H1,P ,H2,P )

M(λ)∑
ν=1

κ(λ,ν)∑
q=1

χP cλ,ν,q
P ξλ,ν,q

P (9)
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where the singular vector functions ξλ,ν,q
P are defined by (6) and ureg ∈ Vd+2

~µ,p (Ω),
χP are cut-off functions equal to 1 near 0 and cλ,ν,q

P are constants.

3.2 Straight polyhedral domains. Let us consider the case that Ω is
a three-dimensional straight polyhedron. We treat here only the Dirichlet
problem with g = 0. It is well known [14, 18, 19, 31, 32, 40] that a solution u
of problem (3) has edge and/or vertex singularities if the right-hand sides are
smooth enough. We underline that the decomposition in singular and regular
terms is known in weighted L2-Sobolev spaces [14, 38, 40]; the Lp theory is
developed only for edge singularities [31, 32]. To describe this decomposition
we introduce some further notations.

Firstly, we fix P in the set P of vertices of Ω. Let CP be the infinite
polyhedral cone of R3 which coincides with Ω in a neighbourhood of P ; we
set GP = CP ∩ S2(P ), the intersection of CP with the unit sphere centered
at P . We now proceed as for conical points and introduce the operator pencil
AP and the corresponding singular vector functions ξλ,ν,q

P analogously to (4)
and (6). The spectrum of AP will be denoted by ΛP . Note that GP is a
curvilinear polygon on the sphere and the singular functions depend also on
the shape of its corners (edge singularities).

Secondly, we consider the edge singularities. Let E be an edge of Ω and
let ω0E be the opening angle of the edge. We write the operator L(∂x) in
local Cartesian coordinates (yE1, yE2, zE), where the zE-axis coincides with
the edge E (for shortness we drop the subscript E for a moment)

L(∂x) = L(∂y1 , ∂y2 , ∂z).

After the application of the Fourier transform with respect to z → η we obtain
the operator L(∂y1 , ∂y2 , η), where L(∂y1 , ∂y2 , 0) has the decomposition

L(∂y1 , ∂y2 , 0) = r−2L(ω, ∂ω, r∂r).

Here (r, ω) denote the polar coordinates in the (y1, y2)-plane. Then we intro-
duce the operator pencil AE(λ) corresponding to the parameter depending
boundary value problem

L(ω, ∂ω, λ)u(ω) = 0 (ω ∈ (0, ω0))

u(ω) = 0 (ω ∈ {0, ω0})

}
.

The spectrum of AE will be denoted by ΛE , and for any λ ∈ ΛE we write the
associated singular function ξλ,ν,q

E

(
q = 1, . . . , κ(λ, ν); ν = 1, . . . , M(λ)

)
.
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Example 3.8. For Example 2.1, a principal part L of system (2) is the
diagonal matrix (8) with Dirichlet boundary conditions. Therefore, L can be
decomposed into three scalar Laplace operators with Dirichlet boundary con-
ditions for which the eigenvalues and Jordan chains at corners and along edges
are wellknown (see, for instance, [14, 18]). Accordingly, the edge eigenvalues
of AE are equal to kπ

ω0E
with 0 6= k ∈ Z and the associated Jordan chain is

given in Example 3.5 replacing P by E. Any corner eigenvalue λ associated

with a corner P is given by λ = − 1
2 ±

√
ν + 1

4 where ν is an eigenvalue of the

Laplace-Beltrami operator LDir
P on GP with Dirichlet boundary conditions

(see [14, 18] for details). Further, the associated Jordan chain is given by

ξλ,i,1
P (rP , ωP ) = rλ

P (δijψν(ωP ))j=1,2,3 (i = 1, 2, 3)

where ψν is the eigenvector of LDir
P associated with the eigenvalue ν.

Finally, we shall use the “angular” distance to the edges θ = minE∈E θE ,
where for E ∈ E we define θE = rE/dE , when rE is the distance to E and dE is
a function in Ω̄, smooth on Ē and equivalent to the distance to the endpoints
of E. Note that θ(x) corresponds to the distance between x and the edges far
from the corners, while near a corner P and an edge E it is equivalent to the
angle between the line Px and E.

We now recall some weighted Sobolev spaces of Kondrat’ev’s type with
double weight (for edge and vertex singularities) already used in [13, 32, 34].

Definition 3.9. For two real numbers α, β and a positive integer d we
set

Hd
α,β(Ω) =

{
v : rα+|γ|−dθβ+|γ|−dDγv ∈ L2(Ω) for all γ ∈ N3

0 with |γ| ≤ d
}

where r = r(x) is the distance between x and the set of vertices of Ω and θ as
defined above. It is a Hilbert space with the norm

‖v‖Hd
α,β

(Ω) =
{ ∑

|γ|≤d

∥∥rα+|γ|−dθβ+|γ|−dDγv
∥∥2

L2(Ω)

}1/2

.

Furthermore, we set Hd
α,β(Ω) = (Hd

α,β(Ω))k.

Let us note that in [13, 32, 34] the above space is denoted by V d,2
α,β(Ω). We

have used the notation Hd
α,β(Ω) in order to avoid confusion with the space

V d
β,2(Ω) introduced before.

We now give the regularity results in weighted Sobolev spaces. We first
state a decomposition result extending [14: Theorem 17.13]. Then we deduce
an isomorphism property.
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Theorem 3.10. Assume that the line Re λ = 1
2 contains no eigenvalues

of AP (λ), for all vertices P ∈ P, and that the line Re λ = 1 contains no
eigenvalues of AE(λ), for all edges E ∈ E. Then the solution u ∈ H̊1(Ω) of
problem (3) with f ∈ L2(Ω) admits the decomposition

u = ureg +
∑

P∈P

∑

λ∈ΛP (− 1
2 , 1

2 )

M(λ)∑
ν=1

κ(λ,ν)∑
q=1

χP cλ,ν,q
P ξλ,ν,q

P

+
∑

E∈E

∑

λ∈ΛE(0,1)

M(λ)∑
ν=1

κ(λ,ν)∑
q=1

Zλ,ν,q
E (cλ,ν,q

E ).

(10)

Here the regular part ureg belongs to H2
0,0(Ω), the coefficients cλ,ν,q

P of the
vertex singularities are real numbers. The coefficient functions cλ,ν,q

E of the
edge singularities belong to H1−Re λ

−Re λ (E) (usual weighted Sobolev space of Kon-
drat’ev’s type defined on the edge E, where the weight is the distance to the
endpoint of E; see, for instance, [14: Appendix A]). Further, Zλ,ν,q

E is a
pseudo-differential operator which maps continuously H1−Re λ

−Re λ (E) into H̊1(Ω)
which may be written as

Zλ,ν,q
E (c) = K(c)χE(θE)ξλ,ν,q

E (θE , ωE),

where χE is a cut-off function equal to 1 near 0 and K(c) is a convolution
operator defined by

K(c)(θE , ωE , zE) =
∫

R
ϕ
( t

θE

)
c̃(t− z̃E)

dt

θE
,

ϕ being a smooth function in S(R) of mean 1, c̃(z̃E) = c(zE) and finally z̃E

is the stretched variable z̃E =
∫ zE

0
dz

dE(z) (so that the mapping zE → z̃E is
one-to-one from E to R). Moreover, there exists a constant C > 0 such that

‖ureg‖H2
0,0(Ω) +

∑

P∈P

∑

λ∈ΛP (− 1
2 , 1

2 )

M(λ)∑
ν=1

κ(λ,ν)∑
q=1

|cλ,ν,q
P |

+
∑

E∈E

∑

λ∈ΛE(0,1)

M(λ)∑
ν=1

κ(λ,ν)∑
q=1

‖cλ,ν,q
E ‖H1−Re λ

−Re λ
(E) ≤ C‖f‖L2(Ω).

(11)

Proof. The proof follows the lines of [14: Theorem 17.13] (a localized
version, see [14: Remark 17.18]) where the usual Sobolev spaces are replaced
by weighted Sobolev spaces of Kondrat’ev’s type. The main ingredient is the
edge decomposition in the spaces V d

β,2(D), where D is a dihedral cone, which
is available due to the results in 2-dimensional cones from [23: Chapter 8]
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Corollary 3.11. Let α0 and β0 be defined by

α0 = min
λ∈ΛP ,P∈P,Re λ>− 1

2

Re λ and β0 = min
λ∈ΛE ,E∈E,Re λ>0

Re λ

and let α, β ∈ R with α > min{0, 1
2 − α0} and β > min{0, 1 − β0}. Then

the solution u ∈ H̊1(Ω) of problem (3) with f ∈ L2(Ω) belongs to H2
α,β(Ω).

Moreover, there exists a constant C > 0 such that

‖u‖H2
α,β

(Ω) ≤ C‖f‖L2(Ω). (12)

3.3 Weighted Sobolev spaces with attached asymptotics. Theorems
3.7 and 3.10 motivate the introduction of Sobolev spaces with attached asymp-
totics which will be identified later with the spaces X and Y occurring in the
Local Invertibility Theorem 2.2. In order to apply this theorem we have to
ensure that the linearized problem is uniquely solvable in appropriate spaces.
Therefore we make the following assumption:

(U) If Ω has only conical singularities, then the operatorAd,~β,p in Theorem
3.6 is an isomorphism for d + 2 − βP − n

p = 1 − n
2 for all P ∈ P. If

Ω is a polyhedron, we assume that the operator A is an isomorphism
from H̊1(Ω) into H−1(Ω).

Remark 3.12. For domains with conical points, the choice of the val-
ues of d and ~β is motivated by existence and uniqueness theorems for weak
solutions in H1(Ω). If problem (3) is not uniquely solvable, then it is neces-
sary to use appropriate factor spaces using the fact that Ad,~β,p is a Fredholm
operator.

3.3 Domains with conical points. For any fixed µP < d + 1 − n
p +

n
2 (P ∈ P) let v1, . . . ,vz be a basis of the spaces generated by all singular
vector functions χP ξλ,ν,q

P from Theorem 3.7 corresponding to the eigenvalues
in

⋃
P∈P ΛP (1− n

2 , d + 2− n
p − µP ). We define

Dd+2
~µ,p (Ω) = span

{
v1, . . . ,vz

}⊕Vd+2
~µ,p (Ω).

The norm of an element u ∈ Dd+2
~µ,p (Ω) with the decomposition u =

∑z
j=1 cjvj+

ũ is defined by

‖u‖Dd+2
~µ,p

(Ω) =
z∑

j=1

|cj |+ ‖ũ‖Vd+2
~µ,p

(Ω).

For every P ∈ P let
αP = min

{
Re λ : λ ∈ ΛP

(
1− n

2 , d + 2− n
p − µP

)}

νP = d + 2− n
p − αP + ε

where ε is a small positive number. Furthermore, let ~ν be the vector with the
components νP (P ∈ P).
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Lemma 3.13. The imbedding Dd+2
~µ,p (Ω) → Vd+2

~ν,p (Ω) is continuous.

Proof. This is a direct consequence of the fact that vj ∈ Vd+2
~ν,p (Ω) and

of the continuous imbedding of Vd+2
~µ,p (Ω) into Vd+2

~ν,p (Ω)

Theorem 3.7 and uniqueness assumption (U) allow to formulate the map-
ping properties of the operator (A,CN, I) of the linearized problem (3) in the
space Dd+2

~µ,p (Ω).

Theorem 3.14. Suppose that the line Reλ = d + 2 − n
p − µP does not

contain eigenvalues of the pencil AP (λ), that 0 < d + 1− n
p + n

2 − µP < 1 for
every P ∈ P and that condition (U) is satisfied. Then the operator

(A,CN, I) : Dd+2
~µ,p (Ω) → Vd

~µ,p(Ω)×Vd+1−1/p
~µ,p (ΓN )×Vd+2−1/p

~µ,p (ΓD)

is an isomorphism.

Proof. The mapping is bijective due to expansion (9). Furthermore, the
continuity of the inverse mapping follows from the estimate (see [20: Theorem
4])

‖u‖Dd+2
~µ,p

(Ω) =
z∑

j=1

|cj |+ ‖ureg‖Vd+2
~µ,p

(Ω)

≤ C
(
‖Au‖Vd

~µ,p
(Ω) + ‖CNu‖

V
d+1−1/p

~µ,p
(ΓN )

+ ‖u‖
V

d+2−1/p

~µ,p
(ΓD)

)

and the assertion is proved

3.2.2 Straight polyhedral domains. Similarly, if Ω is a straight polyhe-
dron, we define D0,0(Ω) as the space consisting of all functions of form (10)
with cλ,ν,q

P ∈ R and cλ,ν,q
E ∈ H1−Re λ

−Re λ (E) equipped with the norm

‖u‖D0,0(Ω) = ‖ureg‖H2
0,0(Ω) +

∑

P∈P

∑

λ∈ΛP (− 1
2 , 1

2 )

M(λ)∑
ν=1

κ(λ,ν)∑
q=1

|cλ,ν,q
P |

+
∑

E∈E

∑

λ∈ΛE(0,1)

M(λ)∑
ν=1

κ(λ,ν)∑
q=1

‖cλ,ν,q
E ‖H1−Re λ

−Re λ
(E).

Theorem 3.15. Let the assumptions of Theorem 3.10 and condition (U)
be satisfied. Then the operator A is an isomorphism between the spaces
D0,0(Ω) and L2(Ω). Moreover, the space D0,0(Ω) is continuously embedded
into H2

α,β(Ω) ∩ H̊1(Ω) with α and β from Theorem 3.11.

Proof. The first assertion follows from estimate (11) and the closed graph
theorem. The second assertion follows from estimate (12) and the inverse
estimate (11)
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4. Main results

Theorems 3.14 and 3.15 suggest the choices of the spaces X and Y in the
Local Invertibility Theorem 2.2. Namely, if Ω has only conical singularities,
then we will take

X = Dd+2
~µ,p (Ω)

Y = Y d
~µ,p = Vd

~µ,p(Ω)×V
d+1− 1

p

~µ,p (ΓN )×V
d+2− 1

p

~µ,p (ΓD).

On the other hand, if Ω is a polyhedron, then we will clearly take X =
D0,0(Ω) and Y = L2(Ω). For these choices of spaces we have to show that
the operator N corresponding to nonlinear boundary value problem (1) is
continuously Fréchet differentiable. For that purpose we prove multiplication
and composition theorems in weighted Sobolev spaces extending some results
from [1 - 3]. In Subsection 4.1 we state the multiplication and composition
theorems, in Subsection 4.2 we present the results of the application of the
Local Invertibility Theorem, the main results of this paper. The proofs are
postponed to Section 5.

4.1 Multiplication and composition theorems in weighted Sobolev
spaces. In this subsection we state some multiplication and composition
theorems.

4.1.1 Domains with conical points. Let us start with a multiplication
theorem for scalar functions in domains with only one conical point. Replacing
in Definition 3.2 the infinite cone CP by the bounded domain Ω with the
conical boundary point P , we get the space V d

β,p(Ω).

Theorem 4.1 [1, 3]. Let 2 ≤ q ∈ N0, 1 < p < ∞, and di ∈ N0, γi ∈ R
for all i = 1, . . . , q. Further, let d ∈ N0 be such that d ≤ di for all i = 1, . . . , q
and

∑
i∈Ij

di > (j − 1)n
p + d for all j = 2, . . . , q and all Ij ⊂ {1, . . . , q} such

that #Ij = j. Then for all ui ∈ V di
γi,p(Ω) (i = 1, . . . , q)

q∏

i=1

ui ∈ V d
γ,p(Ω)

where

γ ≥
q∑

i=1

γi + d−
q∑

i=1

di +
n

p
(q − 1).

Moreover, there exists a constant C > 0 such that
∥∥∥∥

q∏

i=1

ui

∥∥∥∥
V d

γ,p(Ω)

≤ C

q∏

i=1

‖ui‖V
di

γi,p(Ω)
.
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We proceed with the mapping properties of the composition operator

G : u → g ◦ u

in weighted Sobolev spaces, defined for simplicity for domains with only one
conical point (r = rP ), and formulate a result which differs slightly from [1,
2].

Theorem 4.2 [1, 2]. Let d, d′ ∈ N0 with d > n
p and d ≥ d′, and let

γ, γ′, p ∈ R with 1 < p.
(i) Assume that d − γ − n

p > 0. If g ∈ Cd′(Rk) satisfies the flatness
condition

|Dαg(x)| ≤ C|x|s−|α| (13)

for all |x| ≤ 1 and α = (α1, . . . , αk) with |α| ≤ d′, for some C > 0 (independent
of x) and some real number s ≥ d′ such that

(d′ − n
p − γ′) < s(d− n

p − γ), (14)

then the scalar-valued composition operator G : u → g ◦ u maps Vd
γ,p(Ω) →

V d′
γ′,p(Ω) and

‖g ◦ u‖V d′
γ′,p(Ω) ≤ C

{
‖u‖s

Vd
γ,p(Ω) + χ[1,+∞)(‖u‖Vd

γ,p(Ω))‖u‖Vd
γ,p(Ω)

}

where χ[1,+∞) is the characteristic function of [1, +∞).
(ii) If d−γ− n

p < 0, then the same assertion holds, if we add to condition
(13) the growth condition

|Dαg(x)| ≤ C|x|s−|α| (15)

for all |x| > 1 and α = (α1, . . . , αk) with |α| ≤ d′.

Finally, we discuss the continuity and the differentiability of the Nemytskij
operator G in the neighbourhood of u = 0. Note that the local Lipschitz
continuity of the Nemytskij operator has been proved in [2: Theorem 4.11].

Theorem 4.3. Let d, d′ ∈ N0 with d > n
p and d ≥ d′, and let γ, γ′, p ∈ R

with 1 < p. Assume that d−γ− n
p > 0 and d−d′−γ+γ′ > 0. If g ∈ Cd′+1(Rk)

satisfies the flatness condition

|Dαg(x)| ≤ C|x|s−|α| (16)

for all |x| ≤ 1 and α = (α1, . . . , αk) with |α| ≤ d′ + 1, for some C >
0 (independent of x) and some real number s ≥ d′ + 1 such that (14) holds,
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then the scalar-valued composition operator G : u → g ◦ u, which maps
Vd

γ,p(Ω) → V d′
γ′,p(Ω), is differentiable in a neighbourhood U(0) ⊂ Vd

γ,p(Ω)
of u = 0. The Fréchet derivative G′(v) is given by

G′(v)u =
〈
∂ug(v),u

〉
. (17)

Furthermore, the composition operator Hj : Vd
γ,p(Ω) → V d′

η,p(Ω) defined by
Hj : u 7→ ∂uj

g ◦ u is continuous for η = γ′ − γ + d− n
p .

4.1.2 Straight polyhedral domains. We start with a multiplicative result
in weighted Sobolev spaces H l

α,β(Ω) that will be useful later on (compare with
Theorem 4.1).

Theorem 4.4. Let 2 ≤ q ∈ N0, and di ∈ N0, αi, βi ∈ R for all i =
1, . . . , q. Further, let d ∈ N0 be such that d ≤ di for all i = 1, . . . , q and∑

i∈Ij
di > (j − 1) 3

2 + d for all j = 2, . . . , q and all Ij ⊂ {1, . . . , q} such that

#Ij = j. Then, for all ui ∈ Hdi

αi,βi
(Ω) (i = 1, . . . , q),

m∏

i=1

ui ∈ Hd
α,β(Ω)

where

α ≥
q∑

i=1

αi + d−
q∑

i=1

di + 3
2 (q − 1)

β ≥
q∑

i=1

βi + d−
q∑

i=1

di + (q − 1).

Moreover, there exists a constant C > 0 such that

∥∥∥∥
q∏

i=1

ui

∥∥∥∥
Hd

α,β
(Ω)

≤ C

q∏

i=1

‖ui‖H
di
αi,βi

(Ω)
. (18)

We now pass to the composition result. Our goal is to give sufficient
conditions on g which insure that G becomes differentiable from Hd

α,β(Ω) into
Hd′

α′,β′(Ω), for any d, d′ ∈ N0 with d′ ≤ d.

Theorem 4.5. Let d, d′ ∈ N0 with d ≥ 2 and d ≥ d′, and let α, β, α′, β′ ∈
R. Further, let g ∈ Cd′(Rk) satisfy (13) for some real number s ≥ d′ such that

(d′ − 3
2 − α′) < s(d− 3

2 − α) (19)

(d′ − 1− β′) < s(d− 1− β). (20)
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If d− 3
2 −α or d− 1−β is negative, we further require that (15) holds. Then,

for all u ∈ Hd
α,β(Ω),

g ◦ u ∈ Hd′
α′,β′(Ω).

Moreover, there exists a continuous function C such that

‖g ◦ u‖Hd′
α′,β′ (Ω) ≤ C

(‖u‖Hd
α,β

(Ω)

)‖u‖s
Hd

α,β
(Ω).

We finish with the differentiability properties of G.

Theorem 4.6. Let d, d′ ∈ N0 with d ≥ 2 and d ≥ d′, and let α, β, α′, β′ ∈
R such that

d− 3
2 − α > 0

d− 1− β > 0

d− α− d′ + α′ > 0

d− β − d′ + β′ > 0.

Further, let g ∈ Cd′+1(Rk) satisfy growth condition (16) for some real number
s ≥ d′ + 1 such that (19)− (20) hold. Then the operator

G : Hd
α,β(Ω) 3 u → g ◦ u ∈ Hd′

α′,β′(Ω)

is differentiable in a neighbourhood U(0) ⊂ Hd
α,β(Ω) of u.

4.2 Existence, uniqueness and asymptotic behaviour of the solution
of the quasilinear problem. Now we use our results on the mapping prop-
erties of the composition operator on domains with conical points or corners
and edges to study the Fréchet-differentiability near the zero solution of the
quasilinear operator associated with problem (1). Then we apply the Local In-
vertibility Theorem to deduce existence, uniqueness and asymptotic behaviour
of the solution of (1). In this section we present only the main results, the
proofs are postponed to Section 5.

4.2.1 Domains with conical points. For all P ∈ P, introduce the following
notations:

αP = min
{
R λ : λ ∈ ΛP (1− n

2 , ϑP )
}

(21)

δP = max
{
R λ : λ ∈ ΛP (1− n

2 , ϑP )
}

(22)

νP = d + 2− n
p − αP + ε (23)

µP = d + 2− n
p − δP − ε (24)

Y d
~µ,p = Vd

~µ,p(Ω)×V
d+1− 1

p

~µ,p (ΓN )×V
d+2− 1

p

~µ,p (ΓD) (25)

where ϑP > 1− n
2 are real numbers given a-priori for all P ∈ P such that the

set ΛP (1− n
2 , ϑP ) is not empty and ε > 0 is a fixed sufficiently small number.
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Theorem 4.7. Let us assume the following:

(A1) aijστ ∈ C2(Rk), bjτ ∈ C2(Rk), ciστ ∈ C1(Rk), dτ ∈ C2(Rk).

(A2) bjτ (0) = dτ (0) = 0.

(A3) αP > 0, 2αP > δP , αP + 1 > δP , 2− n
2 > δP for all P ∈ P.

(A4) (f ,h,g) ∈ Y d
~µ,p with sufficiently small norms and d ∈ {0, 1}, p > n.

(A5) Assumptions (E) and (U) are satisfied.

Then nonlinear problem (1) has a unique solution u ∈ Dd+2
~µ,p (Ω).

Remark 4.8. The assumption 2αP > δP is a restriction on the length
of the asymptotics, which is generated by the non-linearity of the coefficients
aijστ . In the semilinear case we need only the condition 1+2αP > δP instead
of 2αP > δP .

We now formulate an existence result for nonlinear problem (1) under
weaker assumptions on the given right-hand sides as in Theorem 4.7, however,
the solution admits no singular decomposition of form (9).

Theorem 4.9. Let µ′P = d+2− n
p−βP with 0 ≤ βP < min{αP , 2− n

2 } for
all P ∈ P. We assume that assumptions (A1), (A2), (A5) and the assumption

(A4′) (f ,h,g) ∈ Y d
~µ′,p with sufficiently small norms and d ∈ {0, 1}, p > n

are satisfied. Then nonlinear problem (1) has a unique solution u ∈ Vd+2
~µ′,p(Ω).

Let us illustrate the above results for our Example 2.1:

Example 4.10. Let Ω be a 2-dimensional polygonal domain and ω0P the
interior opening angle and ωP the running polar angle to the corner point P .
For Example 2.1 with Dirichlet boundary conditions on ∂Ω (only for the sake
of simplicity), assumptions (A1) and (A2) clearly hold. To check assumption
(A3) we remark that αP = π

ω0P
and that we can chose ϑP < min{ 2π

ω0P
, π

ω0P
+

1, 2}. Thus we have αP = δP for reentrant corners. Finally, assumption (A5)
holds if δ is sufficiently small with respect to ε (due to Poincaré’s inequality).
Under these assumptions, if N ∈ V d

~µ,p(Ω) and (ψD, uD, vD) ∈ [V d+2−1/p
~µ,p (∂Ω)]3

with a sufficiently small norm (cf. assumption (A4)), problem (2) admits a
unique solution (ψ, u, v) which admits the decomposition

ψ = ψreg +
∑

P∈P
χP (rP )cψ

P r
π

ω0P

P sin
(πωP

ω0P

)

where ψreg belongs to V d+2
~µ,p (Ω) and cψ

P is some constant. A similar expansion
for u and v holds replacing ψ by u and v, respectively.
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Alternatively, Theorem 4.9 gives a solution (ψ, u, v) in [V d+2
~µ′,p (Ω)]3 pro-

vided βP < min{1, π
ω0P

} for appropriated data.

4.2.2 Straight polyhedral domains. We modify Theorem 4.7 for polyhe-
dral domains.

Theorem 4.11. We suppose that the conditions of Theorem 3.10, as-
sumptions (A2) and (A5) as well as the assumptions

(A1′′) aijστ ∈ C3(Rk), bjτ ∈ C2(Rk), ciστ ∈ C1(Rk), dτ ∈ C2(Rk)

(A3′′) α0 > 1
4 and β0 > 1

2 with α0 and β0 defined in Corollary 3.11

(A4′′) f ∈ L2(Ω) with a sufficiently small norm

hold. Then nonlinear problem (1) with g = 0 has a unique solution u ∈
D0,0(Ω).

Remark 4.13. Note that [21: Theorem 1] gives sufficient conditions
which guarantee that β0 > 1

2 . These conditions always hold for scalar op-
erators (k = 1). The condition α0 > 1

4 is relatively strong but cannot be
removed in our level of generality, e.g., if k = 1 and A is the Laplace operator,
then α0 > 1

4 if, for all P ∈ P, CP is included in a revolution cone of opening
ξ < ξ0, with ξ0 ≈ 160◦ (see [14: Section 18.D]). If Theorem 3.10 would have
been established in Lp-spaces, then we could get similar results as in Theorem
4.7 without the assumption α0 > 1

4 .

Example 4.13. For Example 2.1 assumptions (A1′′) and (A2) directly
hold while assumption (A5) holds for appropriated ε and δ (see above). For
assumption (A3′′) the condition β0 > 1

2 is equivalent to ω0E < 2π, while the
condition α0 > 1

4 is simply equivalent to ν1P > 5
16 for all P ∈ P, where

ν1P is the first eigenvalue of LDir
P (which could be explicitely checked either

numerically or analytically, cf. Remark 4.12). Under these assumptions, if
N ∈ L2(Ω) with a sufficiently small norm and (ψD, uD, vD) = (0, 0, 0), prob-
lem (2) admits a unique solution (ψ, u, v) which admits decomposition (10)
with singularities as described in Example 3.8.

5. Proofs of the main results

5.1 Multiplication and composition theorems in weighted Sobolev
spaces. We prove the results of Subsection 4.1 in the following subsections.

5.1.1 Domains with conical points. We start with the proof of the
multiplication Theorem 4.1.
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Proof of Theorem 4.1. We remark that the weighted Sobolev spaces
V d

γ,p(Ω) coincide with the standard Sobolev spaces W d
p (Ω) outside a small

neighbourhood of the conical point P . Since the multiplication theorem is
valid for the spaces W d

p (Ω) (see, e.g., [18, 48]), it is enough here to prove the
assertion for the weighted spaces V d

γ,p(CP ).
Let GP := CP ∩ Sn−1 and ZP := GP × R, and let (r, ω) be the spherical

coordinates in Rn with origin in P . For arbitrary functions u(r, ω) on R+×GP

let T u be the Euler transformation of u, i.e.

(T u)(t, ω) = u(et, ω). (26)

The assertion of the theorem follows from the equivalence of the norms ‖u‖V d
γ,p(CP )

and ‖e(γ−d+ n
p )tT u‖W d

p (ZP ) (see [23: p. 193]) and the multiplication properties
of (non-weighted) Sobolev spaces (see, e.g., [18, 48])

Proof of Theorem 4.2. We have to show that g ◦ u ∈ V d′
γ′,p(Ω), i.e.

r|α|−d′+γ′Dα(g ◦ u) ∈ Lp(Ω) (|α| ≤ d′). (27)

In order to verify this we use Theorem 4.1, flatness condition (13), the estimate

|u(x)| ≤ C|x|d−γ−n
p ‖u‖Vd

γ,p(CP ) (28)

valid for all u ∈ Vd
γ,p(CP ) with d > n

p [30: Lemma 1.1] (see also [38: p. 88])
and Faa di Bruno’s formula (see, e.g., [26])

Dα(g ◦ u) =
∑

1≤|β|≤|α|
(Dαg) ◦ u ·

( ∑
q

cq

n∏

i=1

∏

j

Dqij ui

)
(|α| ≥ 1) (29)

where the summation is taken over all multi-indices q = (qij) such that

∑

i,j

qij = α, |qij | ≥ 1,
∑

i,j

(|qij | − 1) = |α| − |β|

and cq > 0 are real constants (see [2: Theorem 4.5] for the details).

The case (i) describes the case when u vanishes near the corner point P ,
whereas the case (ii) allows a moderate unbounded behaviour of u near P .
Note that in the case (ii) estimate (14) implies an upper bound for s, namely

d′ ≤ s <
−d′+ n

p +γ′

−d+ n
p +γ
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Proof of Theorem 4.3. Clearly, Theorem 4.2 implies that G maps
Vd

γ,p(Ω) to V d′
γ′,p(Ω). Let u,v ∈ U(0). Applying the multiplication Theo-

rem 4.1 we obtain
∥∥G(u)−G(v)− 〈∂ug(v),u− v〉∥∥

V d′
γ′,p(Ω)

=
∥∥∥∥
〈
u− v,

∫ 1

0

∂ug
(
v + t(u− v)

)− ∂ug(v) dt

〉∥∥∥∥
V d′

γ′,p(Ω)

≤ ‖u− v‖Vd
γ,p(Ω)

∫ 1

0

∥∥∂ug
(
v + t(u− v)

)− ∂ug(v)
∥∥
Vd′

η,p(Ω)
dt.

(30)

The flatness condition guarantees that the right-hand sides of the above in-
equality are well defined (compare Theorem 4.2).

It remains to show that the composition operator Hj : Vd
γ,p(Ω) → V d′

η,p(Ω)
is continuous. We start with the case d′ = 0. Let (un) be a sequence of
elements in Vd

γ,p(Ω) which converges to an element u in Vd
γ,p(Ω). Due to

estimate (28) and the assumption d − γ − n
p > 0 we have un → u in C(Ω).

Since g ∈ C1(Rk), we have Hj(un)(x) → Hj(u)(x) in C(Ω) which implies
that Hj(u) ∈ C(Ω) ∩ V 0

η,p(Ω). Now we get the estimate

∥∥Hj(un)−Hj(u)
∥∥p

V 0
η,p(Ω)

=
∫

Ω

rηp|Hj(un)−Hj(u)|pdx

≤
∫

Ω

rηpdx ‖Hj(un)−Hj(u)‖p

C(Ω)

≤ C‖Hj(un)−Hj(u)‖p

C(Ω)

since the exponents of r are chosen in appropriate manner (η + n
p > 0).

Let d′ > 0 and the sequence (un) be defined as before. We assume for
simplicity that the functions u = u and un = un have only one component,
i.e. we take k = 1. In this case Faa di Bruno formula (29) simplifies to

Dγ(g ◦ u) =
|γ|∑
q=1

g(q)(u)
q!

∑
j1,...,jq∈Nn

j1+...+jq=γ

q∏

i=1

Djiu

ji!
. (31)

The case k > 1 is treated similarly using the general form (29) of the chain
rule.

We have to show that
∥∥r−d′+|α|+η

{
Dα(hj ◦ un)−Dα(hj ◦ u)

}∥∥
Lp(Ω)

→ 0 (|α| ≤ d′). (32)
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The case α = 0 is treated as before since (−d′ + η)p + n > 0 is equivalent to
the condition d− d′ − γ + γ′ > 0. For |α| ≥ 1, using Faa di Bruno’s formula,
the norm in (32) can be written as

∥∥∥∥∥r−d′+|α|+η

{ |α|∑
q=1

(h(q)
j ◦ un)

∑
j1,...,jq∈Nn

j1+...+jq=α

q∏

i=1

ciqD
jiun

−
|α|∑
q=1

(h(q)
j ◦ u)

∑
j1,...,jq∈Nn

j1+...+jq=α

q∏

i=1

ciqD
jiu

}∥∥∥∥∥
Lp(Ω)

≤
|α|∑
q=1

∑
j1,...,jq∈Nn

j1+...+jq=α

∥∥∥∥r−d′+|α|+η

{
(h(q)

j ◦ un)
q∏

i=1

ciqD
jiun − (h(q)

j ◦ u)
q∏

i=1

ciqD
jiu

}∥∥∥∥
Lp(Ω)

≤
|α|∑
q=1

∑
j1,...,jq∈Nn

j1+...+jq=α

ciq

{∥∥∥∥r−d′+|α|+η
(
h

(q)
j ◦ un − h

(q)
j ◦ u

) q∏

i=1

Djiun

∥∥∥∥
Lp(Ω)

(33)

+
∥∥∥∥r−d′+|α|+η(h(q)

j ◦ u)
q∑

k=1

(
Djkun −Djku

) ∏

i>k

Djiun ·
∏

i<k

Djiu

∥∥∥∥
Lp(Ω)

}
(34)

with some real constants ciq > 0. We now remark that the regularity hj ∈
Cd′(Rk) and (28) yield h

(q)
j ◦ un → h

(q)
j ◦ u in C(Ω) for all q = 0, . . . , d′. By

the multiplication Theorem 4.1 it follows that

r−d′+|α|+η

q∏

i=1

Djiun ∈ Lp(Ω)

provided that d′ − η − n
p ≤ q(d − γ − n

p ) for q = 1, . . . , |α|. This is indeed
satisfied since d′ − γ′ + γ − d < d− γ − n

p . Thus (33) converges to 0 because
it can be estimated by

|α|∑
q=1

∑
j1,...,jq∈Nn

j1+...+jq=α

ciq

∥∥h
(q)
j ◦ un − h

(q)
j ◦ u

∥∥
C(Ω)

∥∥∥∥r−d′+|α|+η

q∏

i=1

Djiun

∥∥∥∥
Lp(Ω)

.

Let us estimate (34). We remark that (16) yields |h(q)
j (x)| ≤ c|x|s−1−q for q =

1, . . . , d′ and |x| ≤ 1. Applying inequality (28) to |u|s−1−q and to Djk(un−u)
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we obtain

|α|∑
q=1

∑
j1,...,jq∈Nn

j1+...+jq=α

q∑

k=1

ciq

∣∣∣∣r−d′+|α|+η(h(q)
j ◦ u)

∏

i>k

Djiun ·
∏

i<k

Djiu ·Djk(un − u)
∣∣∣∣

≤ C

∣∣∣∣r−d′+|α|+η+(d−n
p−γ)(s−1−q)

∏

i>k

Djiun ·
∏

i<k

Djiu · rd−n
p−γ−jk

∣∣∣∣ ‖un − u‖V d
γ,p(Ω)

for some constant C > 0. Thus (34) converges to 0 because it can be estimated
by

∥∥∥∥r−d′+|α|+η+(d−n
p−γ)(s−1−q)+d−n

p−γ−jk
∏

i>k

Djiun·
∏

i<k

Djiu

∥∥∥∥
Lp(Ω)

‖un−u‖V d
γ,p(Ω)

and

r−d′+|α|+η+(d−n
p−γ)(s−1−q)+d−n

p−γ−jk
∏

i>k

Djiun ·
∏

i<k

Djiu ∈ Lp(Ω)

due to the multiplication Theorem 4.1 because d′− η− n
p < (s−1)(d−γ− n

p )
for s ≥ 2

5.1.2 Straight polyhedral domains. Firstly, we prove the multiplication
Theorem 4.4.

Proof of Theorem 4.4. In standard Sobolev spaces this is already a
classical result (see, e.g., [18, 48]). Therefore we localize the problem in an
appropriate neighbourhood V of a vertex P and work in the cone CP . First
using spherical coordinates, we easily show that

‖v‖2Hd
α,β

(CP )
∼=

d∑

l=0

∫ ∞

0

r2α−2d+3
∥∥∥
(
r

∂

∂r

)l

v
∥∥∥

2

V d−l
β

(GP )

dr

r

where V d−l
β (GP ) is the weighted Sobolev space of Kondrat’ev’s type on GP ,

with weight being the distance to the corners of GP (which is equivalent to
θ); here for shortness we write r instead of rP . Secondly, performing Euler
Transformation (26) we get

‖v‖2Hd
α,β

(CP )
∼=

d∑

l=0

∫ ∞

−∞
et(2α−2d+3)

∥∥∥
( ∂

∂t

)l

T v
∥∥∥

2

V d−l
β

(GP )
dt. (35)
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For α = α1 + α2 + d− d1 − d2 + 3
2 we get by Leibniz’s rule

et(α−d+ 3
2 )

( ∂

∂t

)l

(T u1T u2)

=
l∑

j=0

( l

j

)
et(α1−d1+

3
2 ) ∂

jT u1

∂tj
et(α2−d2+

3
2 ) ∂

l−jT u2

∂tl−j
.

(36)

Since ui ∈ Hdi

αi,βi
(CP ) (i = 1, 2), it follows from (35) that ∂jT u1

∂tj belongs to

V d1−j
β1

(GP ) and ∂l−jT u2
∂tl−j belongs to V

d2−(l−j)
β2

(GP ). Therefore by Theorem 4.1
(with n = 2) we obtain

∂jT u1

∂tj
∂l−jT u2

∂tl−j
∈ V d−l

β (GP ).

Furthermore, there exists a constant C > 0 such that∥∥∥∥∥
∂jT u1

∂tj
∂l−jT u2

∂tl−j

∥∥∥
V d−l

β
(GP )

≤ C
∥∥∥∂jT u1

∂tj

∥∥∥
V

d1−j

β1
(GP )

∥∥∥∂l−jT u2

∂tl−j

∥∥∥
V

d2−(l−j)
β2

(GP )
.

Using this estimate in (36) and relation (35), we readily get the results. For
q ≥ 3 we use an iterative argument. Finally, we derive estimate (18) from the
localized estimates by means of a partition of unity

To prove the composition result we first need an asymptotic estimate as
in (28) (see [30: Lemma 1.1]).

Lemma 5.1. Let 2 ≤ d ∈ N0. Then for all α, β ∈ R, there exists a
constant C > 0 such that, for all u ∈ Hd

α,β(Ω),

|u(x)| ≤ Crd− 3
2−αθd−1−β‖u‖Hd

α,β
(Ω) (x ∈ Ω).

In particular, if d− 3
2−α and d−1−β are non-negative, we have the continuous

embedding
Hd

α,β(Ω) ↪→ C(Ω̄).

Proof. If the support of an element u ∈ Hd
α,β does not contain edges and

corners, then this is a consequence of the Sobolev imbedding theorem. Using
(35) and a localization near a corner P and an edge E by a cut-off function
χE , we have

et(α−d+ 3
2 )es(β−d+1)(χEu)(et, es, ϕE) ∈ Hd(R2 × (0, ω0E))

with es = θE and∥∥et(α−d+ 3
2 )es(β−d+1)(χEu)(et, es, ϕE)

∥∥
Hd(R2×(0,ω0E))

≤ C‖u‖Hd
α,β

(Ω).

The Sobolev imbedding Theorem then yields

sup
t,s∈R,ϕE∈(0,ω0E)

∣∣et(α−d+ 3
2 )es(β−d+1)(χEu)(et, es, ϕE)

∣∣ ≤ C‖u‖Hd
α,β

(Ω).

Going back to CP , we get the conclusion
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Proof of Theorem 4.5. For the sake of simplicity, we give the proof
in the case k = 1, the case k ≥ 2 can be treated similarly. We first remark
that if d − 3

2 − α and d − 1 − β are non-negative, then Lemma 5.1 implies
that u ∈ Hd

α,β(Ω) is bounded in Ω, consequently g satisfies (13) for all x ∈[ − ‖u‖∞, ‖u‖∞
]
, with a function C which depends continuously on ‖u‖∞.

Conversely, if d − 3
2 − α or d − 1 − β is negative, then u ∈ Hd

α,β(Ω) may be
unbounded in Ω. Therefore we have imposed (13) for all x ∈ R. This means
that in both cases there exists a constant C(u) depending continuously on
‖u‖Hd

α,β
(Ω) such that, for all j = 0, . . . , d′,

|g(j)(u(x))| ≤ C(u)r(d− 3
2−α)(s−j)θ(d−1−β)(s−j)‖u‖s−j

Hd
α,β

(Ω)
(x ∈ Ω). (37)

For all |γ| ≤ d′ we shall show that this implies

r|γ|−d′+α′θ|γ|−d′+β′Dγ(g ◦ u) ∈ L2(Ω) (38)∥∥r|γ|−d′+α′θ|γ|−d′+β′Dγ(g ◦ u)
∥∥

L2(Ω)
≤ C(u)‖u‖s

Hd
α,β

(Ω). (39)

i) For |γ| = 0, owing to (37) with j = 0, we may write
∣∣r−d′+α′θ−d′+β′(g◦u)(x)

∣∣ ≤ C(u)r−d′+α′+(d− 3
2−α)sθ−d′+β′+(d−1−β)s‖u‖s

Hd
α,β

(Ω)

for all x ∈ Ω. Integrating the square of this estimate over Ω, one obtains
∥∥r−d′+α′θ−d′+β′(g ◦ u)

∥∥
L2(Ω)

≤ C(u)‖u‖s
Hd

α,β
(Ω)

since conditions (19) - (20) guarantee the convergence of
∫

Ω

r2(−d′+α′)+(d− 3
2−α)2sθ2(−d′+β′)+(d−1−β)2sdx.

This yields (38) - (39) for γ = 0.
ii) For |γ| ≥ 1 we use Faa di Bruno’s formula (31). We shall show that

each term of this right-hand side multiplied by the weight r|γ|−d′+α′θ|γ|−d′+β′

belongs to L2(Ω). Therefore let us fix q = 1, . . . , |γ| and j1, . . . , jq ∈ Nn such
that j1 + . . . + jq = γ. Then our goal reduces to prove that

w = r|α|−d′+α′θ|α|−d′+β′g(q)(u)
q∏

i=1

Djiu

belongs to L2(Ω) and that

‖w‖L2(Ω) ≤ C(u)‖u‖s
Hd

α,β
(Ω). (40)
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But from (37) we have for every x ∈ Ω

|w(x)| ≤ C(u)‖u‖s−q

Hd
α,β

(Ω)
r|γ|−d′+α′+(d− 3

2−α)(s−q)

× θ|γ|−d′+β′+(d−1−β)(s−q)

∣∣∣∣
q∏

i=1

Djiu(x)
∣∣∣∣.

Consequently, w ∈ L2(Ω) if

q∏

i=1

Djiu ∈ H0
δ,η(Ω) (41)

for
δ = |γ| − d′ + α′ + (d− 3

2
− α)(s− q)

η = |γ| − d′ + β′ + (d− 1− β)(s− q).

Moreover, we will have the estimate

‖w‖L2(Ω) ≤ C(u)‖u‖s−q

Hd
α,β

(Ω)

∥∥∥∥
q∏

i=1

Djiu

∥∥∥∥
H0

δ,η
(Ω)

. (42)

The proof of inclusion (41) follows from Theorem 4.4 (except the case q = 1
which is easily treated). Indeed, owing to that theorem, the inclusions Djiu ∈
H

l−|ji|
α,β (Ω) (i = 1, . . . , q) imply

q∏

i=1

Djiu ∈ H0
δ′,η′(Ω) (43)

where
δ′ = qα− ql + |γ|+ (q − 1) 3

2

η′ = qβ − ql + |γ|+ (q − 1)

with the estimate
∥∥∥∥

q∏

i=1

Djiu

∥∥∥∥
H0

δ′,η′ (Ω)

≤ C‖u‖q

Hl
α,β

(Ω)
. (44)

It can be easily seen that condition (19) is equivalent to δ > δ′ and (20) is
equivalent to η > η′. Thus we have the imbedding

H0
δ′,η′(Ω) ↪→ H0

δ,η(Ω)

and consequently (41) follows from (43). This imbedding, (44) and (42) yield
(40)
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The proof of Theorem 4.6 is similar to that of Theorem 4.3 and is therefore
omitted.

5.2 Existence, uniqueness and asymptotic behaviour of the solu-
tion of the quasilinear problem. We write problem (1) in the form of an
operator equation

Nu = (f ,h,g)

with
f = (f1, . . . , fk)

h = (h1, . . . , hk)

g = (g1, . . . , gk)

and the operator N defined by

(Nu)τ =
(
− ∂j

[
aijστ (u)∂iuσ + bjτ (u)

]
+ ciστ (u)∂iuσ + dτ (u),

[
aijστ (u)∂iuσ + bjτ (u)

]
nj

∣∣
ΓN , uτ |ΓD

)
.

(45)

In the case of straight polyhedral domains, we omit the boundary terms in
the above definition.

We decompose the operator N into the linearized part, defined by (3),
and a remaining one. From assumptions (A1) and (A2) the following Taylor
expansions and corresponding estimates are valid (see, e.g., [24]):

aijστ (x) = aijστ (0) + 〈∂xaijστ (0),x〉+ ãijστ (x)

|Dsãijστ (x)| ≤ c|x|2−|s| (|s| ≤ 2, |x| ≤ 1) (46)

bjτ (x) = 〈∂xbjτ (0),x〉+ b̃jτ (x)

|Dsb̃jτ (x)| ≤ c|x|2−|s| (|s| ≤ 2, |x| ≤ 1) (47)

ciστ (x) = ciστ (0) + c̃iστ (x)
|c̃iστ (x)| ≤ c|x|(|x| ≤ 1) (48)

dτ (x) = 〈∂xdτ (0),x〉+ d̃τ (x)

|Dsd̃τ (x)| ≤ c|x|2−|s| (|s| ≤ 2, |x| ≤ 1). (49)

Inserting these Taylor expansions into (45) we get the decomposition

(Nu)τ =
{

(Au)τ − ∂j

[{〈∂uaijστ (0),u〉+ ãijστ (u)
}
∂iuσ + b̃jτ (u)

]

+ c̃iστ (u)∂iuσ + d̃τ (u), (CNu)τ

+
[{〈∂uaijστ (0),u〉+ ãijστ (u)

}
∂iuσ + b̃jτ (u)

]
nj |ΓN , uτ |ΓD

}
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shortly written as
Nu = (A,CN , I)u + Ñu. (50)

5.2.1 Domains with conical points. We investigate the mapping proper-
ties and the Fréchet differentiability of the operator Ñ as well as the continuity
of the operator v 7→ Ñ′(v) at 0. Furthermore, we prove the main result on the
existence, uniqueness and asymptotic behaviour of the solution of quasilinear
problem (1).

Theorem 5.2. Let assumptions (A1) - (A3) be satisfied. Then Ñ maps
Vd+2

~ν,p (Ω) into Y d
~µ,p and is differentiable in a neighbourhood U(0) ⊂ Vd+2

~ν,p (Ω)
with

(Ñ′(v)u)τ

=
{
− ∂j

[{〈∂uaijστ (0),v〉+ ãijστ (v)
}
∂iuσ + 〈∂uaijστ (v),u〉∂ivσ

+ 〈∂ub̃jτ (v),u〉
]

+ c̃iστ (v)∂iuσ + 〈∂uciστ (v),u〉∂ivσ + 〈∂ud̃τ (v),u〉,
[{〈∂uaijστ (0),v〉+ ãijστ (v)

}
∂iuσ

+ 〈∂uaijστ (v),u〉∂ivσ + 〈∂ub̃jτ (v),u〉
]
nj |ΓN , 0|ΓD

}
.

(51)
In particular, Ñ′(0) = (0,0,0).

Proof. Firstly, we investigate
{〈∂uaijστ (0),u〉+ãijστ (u)

}
∂iuσ in V d+1

~µ,p (Ω)
(by composition with ∂j we will get the result in V d

~µ,p(Ω) for the first two terms
of the right-hand side of (51)). Let us start with the expression 〈∂uaijστ (0),u〉∂iuσ.
Since 〈∂uaijστ (0),u〉 ∈ V d+2

~ν,p (Ω) and ∂iuσ ∈ V d+1
~ν,p (Ω), the multiplication The-

orem 4.1 yields 〈∂uaijστ (0),u〉∂iuσ ∈ V d+1
~µ,p (Ω) provided µP > 2νP −d−2+ n

p ,
i.e. δP < 2αP for all P ∈ P. Since the Fréchet derivative of a linear oper-
ator coincides with the operator itself, it follows from the product rule that
〈∂uaijστ (0),u〉∂iuσ is Fréchet differentiable and its Fréchet derivative at v is

〈∂uaijστ (0),u〉∂ivσ + 〈∂uaijστ (0),v〉∂iuσ.

The expression ãijστ (u) belongs to V d+1
~µ−~ν+d+1−n/p,p(Ω) due to the composition

Theorem 4.2 (set s = 2, use the assumption µP > 2νP −d−2+ n
p and estimate

(A)) and is Fréchet differentiable due to Theorem 4.3. Its derivative at v is
given by 〈∂uãijστ (v),u〉 (see (17)). It follows from the multiplication Theorem
4.1 that ãijστ (u)∂iuσ ∈ V d+1

~µ,p (Ω). The product rule shows that the Fréchet
derivative of ãijστ (u)∂iuσ at v coincides with

〈∂uãijστ (v),u〉∂ivσ + ãijστ (v)∂iuσ.
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Thus the derivative of
{〈∂uaijστ (0),u〉+ ãijστ (u)

}
∂iuσ

is given by
{〈∂uaijστ (0),v〉+ ãijστ (v)

}
∂iuσ + 〈∂uaijστ (v),u〉∂ivσ.

The expression b̃jτ (u) belongs to V d+1
~µ,p (Ω) due to composition Theorem 4.2

for s = 2 and assumption (47). It is only necessary to require that µP > 2νP −
d− 3 + n

p , i.e. δP < 2αP + 1. Theorem 4.3 gives the Fréchet differentiability
of b̃jτ (u).

Similar arguments are applied to the expressions c̃iστ (u)∂iuσ and d̃τ (u)
setting s = 1 in Theorem 4.2. The mapping properties and the Fréchet dif-
ferentiability of the boundary expressions follow immediately from the above
considerations

Theorem 5.3. Let assumptions (A1) - (A3) be satisfied. Then the map-
ping

Vd+2
~ν,p (Ω) 3 v 7→ Ñ′(v) ∈ L(

Vd+2
~ν,p (Ω), Y d

~µ,p

)

is continuous at v = 0.

Proof. Let {vm}∞m=1 ⊂ Vd+2
~ν,p (Ω) be a sequence with property ‖vm‖Vd+2

~ν,p
(Ω) →

0 as m →∞. We have to show that ‖Ñ′(vm)‖L(Vd+2
~ν,p

(Ω),Y d
~µ,p

) → 0, i.e.

sup
‖u‖

V
d+2
~ν,p

(Ω)
=1

‖Ñ′(vm)u‖Y d
~µ,p
→ 0

as m →∞. We start with the term

−∂j

[{〈∂uaijστ (0),vm〉+ ãijστ (vm)
}
∂iuσ

]

to get

sup
‖u‖

V
d+2
~ν,p

(Ω)
=1

∥∥− ∂j

[{〈∂uaijστ (0),vm〉+ ãijστ (vm)
}
∂iuσ

]∥∥
V d

~µ,p
(Ω)

≤ sup
‖u‖

V
d+2
~ν,p

(Ω)
=1

∥∥{〈∂uaijστ (0),vm〉+ ãijστ (vm)
}
∂iuσ

∥∥
V d+1

~µ,p
(Ω)

≤ sup
‖u‖

V
d+2
~ν,p

(Ω)
=1

∥∥〈∂uaijστ (0),vm〉+ ãijστ (vm)
∥∥

V d+1
~ξ,p

(Ω)
· ‖∂iuσ‖V d+1

~ν,p
(Ω)

≤ ∥∥〈∂uaijστ (0),vm〉+ ãijστ (vm)
∥∥

V d+1
~ξ,p

(Ω)

(52)
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where ~ξ = (ξP )P∈P with

ξP = µP − νP + d + 1− n
p = d + 1 + αP − δP − n

p .

Here we used multiplication Theorem 4.1 and the continuity of the differential
operators ∂j : V d+1

~µ,p (Ω) → V d
~µ,p(Ω) and ∂i : V d+2

~ν,p (Ω) → V d+1
~ν,p (Ω). Further-

more, we have

‖〈∂uaijστ (0),vm〉‖V d+1
~ξ,p

(Ω) ≤ c‖vm‖Vd+2
~ν,p

(Ω)

due to the continuity of the imbedding Vd+2
~ν,p (Ω) → Vd+1

~ξ,p
(Ω), which is valid

for νP − d− 2 < ξP − d− 1, i.e. δP < 2αP (see Lemma 3.4), and

‖ãijστ (vm)‖V d+1
~ξ,p

(Ω) → 0

due to the continuity of the composition operator

Ãijστ : Vd+2
~ν,p (Ω) → V d+1

~ξ,p
(Ω), Ãijστu = ãijστ ◦ u

at 0 which is guaranteed by Theorem 4.2 provided δP < 2αP . Thus (52) tends
to 0 as ‖vm‖Vd+2

~ν,p
(Ω) → 0.

Let us investigate the term

−∂j

[〈∂uaijστ (vm),u〉∂ivm,σ

]
.

Here we write vm = (vm,1, . . . , vm,k). There holds

sup
‖u‖

V
d+2
~ν,p

(Ω)
=1

∥∥− ∂j

[〈∂uaijστ (vm),u〉∂ivm,σ

]∥∥
V d

~µ,p
(Ω)

≤ sup
‖u‖

V
d+2
~ν,p

(Ω)
=1

∥∥〈∂uaijστ (vm),u〉∂ivm,σ

∥∥
V d+1

~µ,p
(Ω)

≤ sup
‖u‖

V
d+2
~ν,p

(Ω)
=1

∥∥∂uaijστ (0) + ∂uãijστ (vm)
∥∥
Vd+1

~ζ,p
(Ω)

× ‖u‖Vd+2
~ν,p

(Ω) · ‖∂ivm,σ‖V d+1
~ν,p

(Ω)

≤
∥∥∂uaijστ (0) + ∂uãijστ (vm)

∥∥
Vd+1

~ζ,p
(Ω)

· ‖vm,σ‖V d+2
~ν,p

(Ω)

(53)

where ~ζ = (ζP )P∈P with

ζP = µP − 2νP + 2d + 3− 2n
p = d + 1 + 2αP − δP − n

p .
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Firstly, the Nemytskij operator

v → ∂uãijστ ◦ v

is continuous from Vd+2
~ν,p (Ω) into V d+1

~ζ,p
(Ω). This follows from Theorems 4.2

and 4.3 provided

d + 1− ζP − n
p < 2(d + 2− νP − n

p ),

i.e. δP < 4αP . Secondly, the constant ∂uaijστ (0) belongs to V d+1
~ζ,p

(Ω) provided
δP < 2αP . These two properties guarantee that∥∥∂uaijστ (0) + ∂uãijστ (vm)

∥∥
Vd+1

~ζ,p
(Ω)

remains bounded and therefore (53) tends to 0. The remaining terms in (51)
can be treated analogously

In the proofs of Theorems 5.2 and 5.3 we did not exploit the definitions
(21) - (22) where the numbers αP and δP are connected with the eigenvalues
of AP . In fact, the proofs remain valid if αP and δP are arbitrary real numbers
satisfying assumption (A3). Thus the assumptions of Theorems 5.2 and 5.3
can be relaxed.

Theorem 5.4. Let µ′P = d+2− n
p −βP with βP ≥ 0 and let assumptions

(A1) - (A2) be satisfied. Then Ñ maps Vd+2
~µ′,p(Ω) → Y d

~µ′,p and is differentiable
in a neighbourhood U(0) ⊂ Vd+2

~µ′,p(Ω). Furthermore, the mapping

Vd+2
~µ′,p(Ω) 3 v 7→ Ñ ′(v) ∈ L(

Vd+2
~µ′,p(Ω), Y d

~µ′,p
)

is continuous at v = 0.

Now we are in position to prove the main results for domains with conical
points.

Proof of Theorem 4.7. According to Theorem 5.3 the nonlinear oper-
ator

Ñ : Vd+2
~ν,p (Ω) → Y d

~µ,p

is Fréchet differentiable in a neighbourhood of u = 0. The same property is
valid for the operator Ñ acting between the spaces

Ñ : Dd+2
~µ,p (Ω) → Y d

~µ,p

because the space Dd+2
~µ,p (Ω) is continuously imbedded into Vd+2

~ν,p (Ω) due to
Lemma 3.13. By (50) and the fact that the linear part is Fréchet differen-
tiable between the above spaces, the operator N is Fréchet differentiable from
Dd+2

~µ,p (Ω) into Y d
~µ,p. From Theorem 5.2 we know that the Fréchet derivative

N′(0) coincides with the operator (A,CN, I) which is an isomorphism due to
Theorem 3.14. Furthermore, Theorem 5.3 shows that the mapping v 7→ Ñ′(v)
and therefore also the mapping v 7→ N′(v) are continuous at 0. Thus we can
apply Local Invertibility Theorem 2.2 and obtain the assertion
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Proof of Theorem 4.9. The proof is the same as for Theorem 4.7 ap-
plying Theorem 5.4 instead of Theorems 5.2 and 5.3, taking into account
that the operator N′(0) : Vd+2

~µ,p (Ω) → Y d
~µ′,p is an isomorphism thanks to the

assumption on βP due to Theorem 3.7 and the assumption (U)

Remark 5.5. Theorem 4.9 can be used for an alternative proof of Theo-
rem 4.7. Applying Theorem 4.9 we can proceed as in [28] to get an asymptotic
expansion of the solution for (f ,h,g) ∈ Y d

~µ,p. Namely, u ∈ Vd+2
~µ′,p(Ω) solution

of problem (1) is also a solution of

N′(0)u = (f ,h,g)− Ñu.

In order to apply Theorem 3.7 we have to assure that Ñ maps Vd+2
~µ′,p(Ω)

into Y d
~µ,p. Actually, this property follows from assumptions (A1) - (A3) (see

Theorem 5.2), which cannot be weakened due to the term

∂j

{〈∂uaijστ (0),u〉∂iuσ

}
.

Thus the results of Theorem 4.7 can not be improved in this way.
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5.2.2 Straight polyhedral domains. Similarly to Subsection 5.2.1 we de-
rive the main results for polyhedral domains.

Theorem 5.6. Assume that (A1”) and (A2) hold and α < 1
4 and β <

1
2 . Then Ñ maps H2

α,β(Ω) ∩ H̊1(Ω) into L2(Ω) and is differentiable in a
neighbourhood of 0 with

(Ñ′(v)u)τ = −∂j

[{〈∂uaijστ (0),v〉+ ãijστ (v)
}
∂iuσ

+ 〈∂uaijστ (v),u〉∂ivσ + 〈∂ub̃jτ (v),u〉
]

+ c̃iστ (v)∂iuσ + 〈∂uciστ (v),u〉∂ivσ + 〈∂ud̃τ (v),u〉.

In particular, Ñ′(0) = 0.

Proof. As in Theorem 5.2 we have to show that the mappings

u → uν∂iuσ

u → ãijστ (u)∂iuσ

u → b̃jτ (u)

are differentiable in a neighbourhood of 0 as operators from H2
α,β(Ω) into

H1
0,0(Ω), and similarly that

u → c̃iστ (u)∂iuσ

u → d̃τ (u)

are differentiable in a neighbourhood of 0 as operators from H2
α,β(Ω) into

L2(Ω). Under the assumptions α < 1
4 and β < 1

2 the multiplication Theorem
4.4 guarantees that the expression uν∂iuσ belongs to H1

0,0(Ω), the differentia-
bility following from the fact that the product of two differentiable mappings
is differentiable.

For the expression ãijστ (u)∂iuσ, we first show that the mapping

u → ãijστ (u)

is differentiable from H2
α,β(Ω) into H2

α+ε,β+ε(Ω) with ε > 0 as small as we
want. For this purpose, we decompose ãijστ as

ãijστ (x) =
k∑

γ,δ=1

tγ,δxγxδ + âijστ (x)
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where tγ,δ are real constants and âijστ satisfies

|Dγ âijστ (x)| ≤ C|x|3−|γ| (|γ| ≤ 3).

The first mapping

u →
k∑

γ,δ=1

tγ,δuγuδ

is differentiable from H2
α,β(Ω) into H2

α,β(Ω) due to Theorem 4.4. Thus it is
differentiable from H2

α,β(Ω) into H2
α+ε,β+ε(Ω) since ε > 0. For the remaining

part
u → âijστ (u)

we simply use Theorem 4.6 with d = d′ = 2, α′ = α+ ε, β′ = β + ε and s = 3.
Theorem 4.4 allows then to conclude that the mapping

u → ãijστ (u)∂iuσ

is differentiable from H2
α,β(Ω) into H1

0,0(Ω). The other mappings are treated
similarly

Theorem 5.7. Under the assumptions of Theorem 5.6, the mapping

D0,0(Ω) 3 v 7→ Ñ′(v) ∈ L(
D0,0(Ω),L2(Ω)

)

is continuous at v = 0.

Proof. Let {vm}∞m=1 ⊂ D0,0(Ω) be a sequence with property ‖vm‖D0,0(Ω) →
0 as m →∞. For the sake of shortness, we analyze only the term

−∂j

[{〈∂uaijστ (0),vm〉+ ãijστ (vm)
}
∂iuσ

]
,

the other terms being managed in the same way using the results from Sub-
section 4.1.2. We get

sup
‖u‖D0,0(Ω)=1

∥∥− ∂j

[{〈∂uaijστ (0),vm〉+ ãijστ (vm)
}
∂iuσ

]∥∥
L2(Ω)

≤ sup
‖u‖D0,0(Ω)=1

∥∥{〈∂uaijστ (0),vm〉+ ãijστ (vm)
}
∂iuσ

∥∥
H1

0,0(Ω)

≤ sup
‖u‖D0,0(Ω)

∥∥〈∂uaijστ (0),vm〉+ ãijστ (vm)
∥∥

H2
α+ε,β+ε

(Ω)
‖∂iuσ‖H1

α,β
(Ω)

for ε > 0 small enough due to Theorem 4.4 since α < 1
4 and β < 1

2 . Since
Theorem 3.15 shows that D0,0(Ω) is continuously embedded into H2

α,β(Ω),
the previous estimate becomes

sup
‖u‖D0,0(Ω)=1

∥∥− ∂j

[{〈∂uaijστ (0),vm〉+ ãijστ (vm)
}
∂iuσ

]∥∥
L2(Ω)

≤ C
(‖vm‖H2

α,β
(Ω) + ‖ãijστ (vm)‖H2

α+ε,β+ε
(Ω)

)

for some constant C > 0. Theorem 5.6 implies that this right-hand side tends
to 0 as m →∞. Therefore the assertion follows
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We are now ready to give the

Proof of Theorem 4.1. We first apply Theorem 5.6 to the nonlinear
operator Ñ with α = 1

2 − α0 + ε and β = 1 − β0 + ε, with an arbitrarily
small ε > 0. By Theorem 3.15, we deduce that N is Fréchet differentiable
from D0,0(Ω) into L2(Ω) in the neighbourhood of u = 0 with A′(0) = A.
Moreover, Theorem 5.7 shows the continuity of the Fréchet derivative at 0.
Thus the assertion follows due to Theorem 2.2
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