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Sobolev and Morrey Estimates
for Non-Smooth Vector Fields of Step Two

A. Montanari and D. Morbidelli

Abstract. We prove Sobolev-type and Morrey-type inequalities for Sobolev spaces
related to a family of non-smooth vector fields which formally satisfy the Hörmander
condition of step 2. The coefficients of the vector fields are not regular enough to
define the Carnot-Carathéodory distance. Thus the result is proved by developing a
real analysis technique which is based on an approximation procedure of Lipschitz
continuous vector fields with a family of left-invariant first order operators on a
nilpotent Lie group.
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1. Introduction

In this paper we are concerned with the Sobolev- and Morrey-type inequalities

( ∫

Ω

|f(x)| pQ
Q−p dx

)Q−p
pQ

≤ c1

( ∫

Ω

|Xf(x)|pdx

) 1
p

(1 ≤ p < Q) (1)

|f(y)− f(z)| ≤ c2

( ∫

Ω

|Xf(x)|pdx

) 1
p

ρ(y, z)α (y, z ∈ Ω, p > Q).(2)

Here Ω ⊂ Rn is a bounded set, f ∈ C1
0 (Ω) and Xf = (X1f, . . . ,Xmf) is the

degenerate gradient associated with a family of vector fields of the form

Xj =
∂

∂xj
+

n∑

k=m+1

ak
j (x)

∂

∂xk
(j = 1, . . . , m; m ≤ n),

Q = m+2(n−m) denotes the “homogeneous dimension” associated with the
Xj , α < 1 is a suitable positive number and ρ is a quasi-distance naturally
associated with the vector fields.
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Historically, the first embedding properties for degenerate Sobolev spaces
are essentially contained in the papers [6, 7, 10, 18] where the “subelliptic
estimate”

‖f‖Hε ≤ c
(‖f‖L2 + ‖Xf‖L2

)
(f ∈ C∞0 (Ω)) (3)

is proved. Here Hε denotes the classical fractional Sobolev space of a suitable
order ε ∈ (0, 1]. Obviously, the classical embedding Hε ⊂ L

2n
n−2ε furnishes the

estimate
‖f‖

L
2n

n−2ε
≤ c

(‖f‖L2 + ‖Xf‖L2

)
(f ∈ C∞0 (Ω)). (4)

A different class of significant integral inequalities involving vector fields
(see, for example, [10, 19]) are the Poincaré-type inequalities

∫

B

|f − fB | ≤ c1r

∫

c2B

|Xf | (f ∈ C1(c2B)) (5)

where B is a ball of radius r with respect to the Carnot-Carathéodory distance
(see [6] for the definition), c2B is the ball with same center of B and radius
c2r and fB = |B|−1

∫
B

f denotes the average of f on the ball. In recent years,
many papers have been devoted to the study of the so-called self-improving
properties of Poincaré inequalities (see, e.g., [1, 11, 13, 17, 22]). In these papers
it is proved that the Poincaré inequality, together with the doubling property
of the Lebesgue measure of the Carnot-Carathéodory balls, are sufficient to
construct a satisfactory theory of first order Sobolev spaces.

While this last “axiomatic” aspect of the theory has been developed in
great generality, it seems that the direct proof of inequalities (1) - (3) or (5)
in concrete situations is a very complicate matter. There are essentially two
classes of examples of vector fields in Rn for which the proof of the mentioned
inequalities is available: the vector fields satisfying Hörmander condition (see
[18, 19]) and those of Grushin-Franchi-Lanconelli type (see [8, 10]). In the
first case smooth regularity is required, while in the latter the vector fields
have to be of “diagonal form”.

In the present paper we study embedding properties for Sobolev paces
associated with families of step two which are in general non-smooth and
non-diagonal. Before stating our results we briefly quote some recent papers
in which this problem is addressed.

A first embedding result for non-smooth and non-diagonal vector fields of
step two is contained in [20], where (3) is proved with ε = 1

2 by means of a
Fourier analysis method. This procedure only requires that the coefficients of
the vector fields have second derivatives in a suitable Lp-space. However, since
the Sobolev-type inequality is obtained through (4), the embedding exponent
is in general not sharp.
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For a couple of C1 vector fields of step two in R3, inequalities (1) and
(2) are consequences of the Poincaré inequality (5), which has been proved in
[21]. The technique of the paper [21] relies on precise estimates of the Carnot-
Carathéodory distance. In the regularity assumptions of our paper it is not
even clear if the mentioned distance is finite for each pair of points.

In the recent paper [4] the Sobolev inequality (1) is proved for a pair of
Lipschitz continuous vector fields in R3, which arise in the study of regularity
properties of real hypersurfaces in C2 with Levi curvature belonging to a
suitable Sobolev space and different from zero at every point. This result
shows that embedding theorems for Sobolev spaces related to vector fields
with non-smooth coefficients are an important tool in the study of regularity
properties of some nonlinear elliptic degenerate equations. The paper [4] has
motivated the present one.

Our main result is the following.

Theorem 1.1. Consider the vector fields in Rn

Xj = ∂j +
n∑

k=m+1

ak
j ∂k (6)

with ak
j ∈ Lip(Rn). Let Q = m + 2(n −m). Assume that, for almost every

x ∈ Rn,

∂j =
∑

1≤i<k≤m

λi,k
j (x)[Xi, Xk](x) (j = m + 1, . . . , n) (7)

where

λi,k
j , Xhλi,k

j ∈ L∞ (j = m + 1, . . . , n; i, k, h = 1, . . . ,m). (8)

(here Xh and [Xi, Xk] = XiXk − XkXi denote distributional derivatives).
Then, for any bounded open set Ω ⊂ Rn, the following statements hold:

(A) (Sobolev inequality). If 1 ≤ p < Q, then

‖f‖
L

pQ
Q−p

≤ c1‖Xf‖Lp

for all f ∈ C1
0 (Ω).

(B) (Trudinger inequality). If p = Q, then

∫

Ω

exp
(( |f(x)|

c2‖Xf‖Q

) Q
Q−1

)
dx ≤ c3
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for all f ∈ C1
0 (Ω).

(C) (Morrey-type estimate). There exists a quasi-distance ρ in Ω satis-
fying

k1|x− y| ≤ ρ(x, y) ≤ k2|x− y| 12
for all x, y ∈ Ω (with | · | the Euclidean norm in Rn) and such that, if Q <
p < ∞, then

|f(x)− f(z)| ≤ c4‖Xf‖Lpρ(x, z)α (x, z ∈ Ω)

for all f ∈ C1
0 (Ω) where α = min{1

2 , 1− Q
p }.

(D) If 1 < p < Q, then the space W 1,p
0 is compactly embedded into Lq for

any q < Qp
Q−p where W 1,p

0 (Ω) denotes the closure of C∞0 (Ω) with respect to the
norm ‖Xf‖Lp(Ω).

The constants k1 and k2 depend on Ω and on the Lipschitz constants of
the ak

j ’s in (6)w. The constants c1, c2, c3, c4 depend on p, Ω, on the Lipschitz
constants of the coefficients ak

j and on the L∞-norm of the functions in (8).

Hypotheses (6) and (7) in the smooth case ensure Hörmander condition
of step 2. Let us remark that hypothesis (6) is not restrictive. Indeed, given a
family X1, . . . , Xm of Lipschitz continuous vector fields linearly independent
at a point x̄, we can find a new family Yj =

∑m
j=1 Mj,kXk (j = 1, . . . , m)

of form (6), where (Mj,k)j,k=1,...,m is a non-singular matrix with Lipschitz
continuous entries in a neighborhood of x̄.

Our method is inspired to some results of Rothschild and Stein [23] and
to those of Citti, Lanconelli and Montanari [4], where a version of (1) for a
pair of vector fields in R3 is proved. The main idea is to approximate the
operators Xj at each fixed point with a family of vector fields which are left
invariant on a nilpotent Lie group of step two. However, Rothschild and Stein
in [23] first introduce local coordinates naturally associated with the vector
fields and then, in this new system of canonical coordinates, they approximate
the vector fields. Their procedure requires high regularity on the coefficients.
Since our coefficients are only Lipschitz continuous, we will first approximate
the vector fields with a family of smooth and left invariant first order operators
on a nilpotent Lie group of step two and then we will introduce a change of
variables. Our “freezing method” has been first introduced by Citti in [2]
for C1,α coefficients and then adapted to Lipschitz continuous vector fields in
[3]. A consequence of our different approximation appears for p > 2Q, since
the exponent α = min( 1

2 , 1 − Q
p ) in Morrey estimate, for a function f with

degenerate gradient in Lp, is worse than the usual exponent 1 − Q
p , which

arises in the smooth case.
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We conclude the introduction by remarking that our results hold in the
class of compactly supported functions. This is a consequence of the fact
that our method relies on several integrations by part. Moreover, the quasi-
distance ρ in Morrey estimate is not the Carnot-Carathéodory distance. It
would be interesting to study the Carnot-Carathéodory distance and to discuss
the validity of a Poincaré inequality (for non-compactly supported functions)
in the regularity assumptions of the present paper.

The present paper is organized as follows. In Section 2 we introduce at
any point x̄ ∈ Rn some “frozen” vector fields Xj,x̄ and we show that there
exists an explicit change of variable which transforms them into a nilpotent
family independent on the point x̄. We then define the quasi-distance ρ and
get various estimates of derivatives of the fundamental solution Γx̄ of the
operator

∑m
j=1 X2

j,x̄ in term of ρ. In Section 3 we prove statements (A) and
(B) of Theorem 1.1 by means of a representation formula for f ∈ C1

0 (Ω) in
term of Γx̄. In Section 4 we prove statements (C) and (D) of Theorem 1.1 by
varying the point x̄ in our representation formula.

In this paper we will use the following notations:
c is a generic constant which may change even in a single string of es-

timates; we write a ' b to state that there exist two constants c1 > 0 and
c2 > 0 such that c1b ≤ a ≤ c2b; ‖f‖p or ‖f‖Lp will denote the Lp-norm of
a function f on the set Ω; |A| stands for the Lebesgue measure of the set
A ⊂ Rn; a vector field X =

∑n
k=1 ak(x)∂k will be identified with the vector

function
(
a1(x), . . . , an(x)

)
.

2. Freezing method and the quasi-distance ρ

In this section, starting from a family of m vector fields of form (9), we
introduce at any point x̄ ∈ Rn some “frozen” vector fields Xj,x̄ and we show
that the latter (modulo an explicit change of variable) can be transformed
into a family Hj (j = 1, . . . , m) which does not depend on the point x̄.

Consider in Rn the vector fields

Xj = ∂j +
n∑

k=m+1

ak
j ∂k (j = 1, . . . , m) (9)

where the ak
j = ak

j (x) are Lipschitz continuous real-valued functions defined
on Rn. Assume that the fields are of step 2, in the sense of (7). This ensures
that the total number m(m−1)

2 of commutators [Xi, Xj ] (1 ≤ i < j) satisfies
m(m−1)

2 ≥ n−m. Fix a family

A ⊂ {
(i, l) : 1 ≤ i < l ≤ m

}
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with n−m objects and a bijective correspondence

g : {m + 1, . . . , n} → A, g(k) = (g1(k), g2(k))

h = g−1 : A → {m + 1, . . . , n}. (10)

For any k = m + 1, . . . , n and i, j = 1, . . . , m let

bk
i,j =

{
1 if (i, j) = g(k)
0 otherwise.

(11)

Define for any fixed x̄ ∈ Rn

ak
j,x̄(x) = ak

j (x̄) +
m∑

i=1

bk
i,j(xi − x̄i) (x ∈ Rn)

Xj,x̄ = ∂j +
n∑

k=m+1

ak
j,x̄∂k.

(12)

In the sequel we will use the following elementary properties:

|ak
j,x̄(x)− ak

j (x)| ≤ c|x− x̄|
Xia

k
j,x̄(x)−Xia

k
j,ȳ(x) = 0

(x, x̄, ȳ ∈ Rn) (13)

where the constant c depends on the Lipschitz constants of the ak
j ’s.

If 1 ≤ l < j ≤ m, then

[Xl,x̄, Xj,x̄] = ∂l

( ∑
k=m+1,...,n

i=1,...,m

bk
i,j(xi − x̄i)∂k

)

− ∂j

( ∑
k=m+1,...,n

i=1,...,m

bk
i,l(xi − x̄i)∂k

)

=
∑

k>m

(
bk
l,j∂k − bk

j,l∂k

)

=
∑

k>m

bk
l,j∂k

=
∂

∂xh(l,j)
.

(14)
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Define, for a fixed x̄ ∈ Rn and for all u ∈ Rn,

φx̄(u) = exp
( m∑

j=1

ujXj,x̄ +
∑

(l,j)∈A
uh(l,j)[Xl,x̄, Xj,x̄]

)
(x̄)

= exp
( m∑

j=1

ujXj,x̄ +
∑

(l,j)∈A
uh(l,j)∂h(l,j)

)
(x̄)

= exp
( m∑

j=1

ujXj,x̄ +
n∑

k=m+1

uk∂k

)
(x̄).

The exponential map φx̄(u) can be explicitly written by solving the Cauchy
problem

γ̇(s) =
m∑

j=1

uj

{
ej +

n∑

k=m+1

(
ak

j (x̄) +
j−1∑

i=1

bk
i,j(γi(s)− x̄i)

)
ek

}
+

n∑

k=m+1

ukek

γ(0) = x̄





and letting φx̄(u) = γ(1) (ej denotes the Euclidean versor). If

i ≤ m, then γi(s) = x̄i + uis

k > m, then γ̇k(s) =
m∑

j=1

uja
k
j (x̄) +

∑

1≤i<j≤m

ujb
k
i,juis + uk.

Thus, integrating over [0, 1],

φx̄(u) = γ(1) =
m∑

j=1

(x̄j +uj)ej +
n∑

j=m+1

(
x̄j +uj +Aj(x̄) ·u+ 1

2Bju ·u)
ej (15)

where we have introduced the notation

Aj(x̄) · u =
m∑

i=1

aj
i (x̄)ui

Bju · v =
m∑

i,l=1

bj
i,luivl = ug1(j)vg2(j)

(the last equality follows from (11)). Denote by ψx̄ the inverse map of φx̄.
Then

u = ψx̄(x) =
m∑

j=1

(xj − x̄j)ej

+
n∑

j=m+1

{
xj − x̄j − (x− x̄) ·Aj(x̄)− 1

2Bj(x− x̄) · (x− x̄)
}

ej .

(16)
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In order to write now the vector field Xj,x̄ in the coordinates u recall first that,
if j = m + 1, . . . , n, then ∂

∂xj
= ∂

∂uj
. If j ≤ m, the derivative ∂j transforms as

follows:

∂

∂xj
=

n∑

k=1

∂uk

∂xj

∂

∂uk

=
m∑

k=1

∂uk

∂xj

∂

∂uk
+

n∑

k=m+1

∂uk

∂xj

∂

∂uk

=
∂

∂uj
+

n∑

k=m+1

∂

∂xj

{
(x− x̄)k −Ak(x̄) · (x− x̄)− 1

2
Bk(x− x̄) · (x− x̄)

} ∂

∂uk

=
∂

∂uj
+

n∑

k=m+1

{
− ak

j (x̄)− ∂

∂xj

(1
2
Bk(x− x̄) · (x− x̄)

)} ∂

∂uk

=
∂

∂uj
−

n∑

k=m+1

ak
j (x̄)

∂

∂xk
− 1

2

n∑

k=m+1

∂

∂xj

(
(x− x̄)g1(k) · (x− x̄)g2(k)

) ∂

∂xk

where we used the property Bkξ · ξ = ξg1(k)ξg2(k). Then the definition of Xj,x̄

gives

Xj,x̄ =
∂

∂xj
+

n∑

k=m+1

ak
j (x̄)

∂

∂xk
+

∑
k=m+1,...,n

i=1,...,m

bk
i,j(xi − x̄i)

∂

∂xk

=
∂

∂uj
− 1

2

n∑

k=m+1

∂

∂xj
(x− x̄)g1(k)(x− x̄)g2(k)

∂

∂xk
+

∑
k=m+1,...,n

i=1,...,m

bk
i,j(x− x̄)i

∂

∂xk

=
∂

∂uj
− 1

2

∑

{k: g1(k)=j}
(x− x̄)g2(k)

∂

∂xk

− 1
2

∑

{k: g2(k)=j}
(x− x̄)g1(k)

∂

∂xk
+

n∑

k=m+1

∑

{i: (i,j)=g(k)}
(x− x̄)i

∂

∂xk

=
∂

∂uj
− 1

2

∑

{k: g1(k)=j}
ug2(k)

∂

∂uk
+

1
2

∑

{k: g2(k)=j}
ug1(k)

∂

∂uk

=
∂

∂uj
− 1

2

∑

{l: (j,l)∈A}
ul

∂

∂uh(j,l)
+

1
2

∑

{l: (l,j)∈A}
ul

∂

∂uh(l,j)

= Hj .

The vector fields Hj (j = 1, . . . ,m) are homogeneous of degree 1 with respect
to the family of dilations (D(λ))λ>0 defined by

D(λ)(ξ1, . . . , ξn) =
(
λξ1, . . . , λξm, λ2ξm+1, . . . , λ

2ξn

)
(ξ ∈ Rn).
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Moreover, the vector fields Hj are left invariant on the Lie Group (Rn, ◦),
where the law “◦” is defined for u, v ∈ Rn by

u ◦ v =
m∑

j=1

(uj + vj)ej +
n∑

j=m+1

(
uj + vj + 1

2 (Bju · v −Bjv · u)
)
ej .

Obviously, u−1 = −u and

u−1 ◦ v =
m∑

j=1

(vj − uj)ej +
n∑

j=m+1

(
vj − uj − 1

2 (Bju · v −Bjv · u)
)
ej . (17)

We now use the change of variable φx̄ in order to get precise estimates
of the fundamental solution (and of its derivatives) of the operator Lx̄ =∑m

j=1 X2
j,x̄ in term of a suitable quasi-distance.

Proposition 2.1. Let Ω ⊂ Rn be a bounded set. Let ak
j ∈ Lip(Ω) (j =

1, . . . , m; k = m + 1, . . . , n). Consider the function

ρ(x, y) =
m∑

j=1

|yj − xj |+
n∑

j=m+1

∣∣(y − x)j −Aj(x) · (y − x)
∣∣ 1
2 (x, y ∈ Ω). (18)

Then there exist two constants c1 > 0 and c2 > 0 depending on Ω and on the
Lipschitz norm of ak

j , such that

ρ(x, y) ≤ c1ρ(y, x)

ρ(x, y) ≤ c2(ρ(x, z) + ρ(z, y))

}
(x, y, z ∈ Ω).

Moreover, there are constants c3 > 0 and c4 > 0 such that

c−1
3 |x− y| ≤ ρ(x, y) ≤ c3|x− y| 12 (x, y ∈ Ω) (19)

|{y : ρ(x, y) < r}| = c4r
Q

(
r > 0, Q = m + 2(n−m)

)
. (20)

Proof. We start by showing (19) and estimate

|x− y| ≤
m∑

j=1

|xj − yj |+
n∑

j=m+1

{
|xj − yj −Aj(x) · (y − x)|+ |Aj(x) · (y − x)|

}

≤
m∑

j=1

|xj − yj |+ c

n∑

j=m+1

|xj − yj −Aj(x) · (y − x)| 12 + c

m∑

j=1

|yj − xj |

≤ cρ(x, y).
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Here we have used the boundedness of Ω and of |Aj(x)| (x ∈ Ω). Again, by
the boundedness of Ω and of |Aj(x)| (x ∈ Ω) together with the Euclidean
triangle inequality, we get the estimate ρ(x, y) ≤ c |x− y| 12 .

In order to check that ρ is a quasi-distance we first prove that ρ(x, y) ≤
c ρ(y, x). Indeed,

ρ(x, y) =
m∑

j=1

|xj − yj |+
n∑

j=m+1

|yj − xj −Aj(x) · (y − x)| 12

≤
m∑

j=1

|xj − yj |+
n∑

j=m+1

|yj − xj −Aj(y) · (y − x)| 12

+
n∑

j=m+1

|(Aj(x)−Aj(y)) · (y − x)| 12

≤ ρ(y, x) + c |x− y|

≤ c ρ(y, x)

by (19). The “triangle inequality” can be proved as follows:

ρ(x, y) =
m∑

j=1

|xj − yj |+
n∑

j=m+1

|yj − xj −Aj(x) · (y − x)| 12

≤
m∑

j=1

(|yj − zj |+ |zj − xj |
)

+
n∑

j=m+1

{
|yj − zj −Aj(z) · (y − z)| 12

+ |zj − xj + Aj(z) · (y − z)−Aj(x) · (y − x)| 12
}

= ρ(z, y) +
m∑

j=1

|zj − xj |+
n∑

j=m+1

|zj − xj −Aj(x) · (z − x)| 12

+
n∑

j=m+1

|(Aj(x)−Aj(z) · (z − y)| 12

≤ ρ(z, y) + ρ(x, z) + c |x− z| 12 |z − y| 12

≤ c
(
ρ(z, y) + ρ(x, z)

)
.

Estimate (20) of the measure can be obtained by the change of variable

y 7→ ξ, ξj =
{

yj − xj if 1 ≤ j ≤ m
yj − xj −Aj(x) · (y − x) if m + 1 ≤ j ≤ n.
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The change of variable has Jacobian 1 and thus

∣∣{y : ρ(x, y) < r}
∣∣ =

∫

ρ(x,y)<r

dy =
∫
∑

j≤m
|ξj |+

∑
j>m

|ξj |
1
2 <r

dξ = c rQ

and the proof is finished

By Proposition 2.1, ρ is equivalent to the symmetric function ρ̃(x, y) =
ρ(x, y) + ρ(y, x) which turns out to be a quasi-distance. The set Ω, equipped
with the Lebesgue measure and the quasi-distance ρ̃ is a Homogeneous space,
in the sense of Coifman and Weiss. Then the following result holds.

Corollary 2.2. The “fractional integration” operator defined by

Tµf(x) =
∫

Ω

f(y) dy

ρ(x, y)Q−µ
(x ∈ Ω; 0 < µ < Q)

satisfies

‖Tµf‖ pQ
Q−µp

≤ c5‖f‖p

(
1 < p < Q

µ , f ∈ Lp(Ω)
)
(21)

sup
λ>0

λ|{x : |Tµf(x)| > λ}|Q−µ
Q ≤ c6‖f‖L1

(
f ∈ L1(Ω)

)
(22)

∫

Ω

exp
( |Tµf(x)|

c7‖f‖Q
µ

) Q
Q−µ ≤ c8

(
f ∈ L

Q
µ (Ω)

)
. (23)

Proof. The proof of (21) and (22) is contained in [15], while (23) is proved
in [16]

Let Γx̄(x, ·) be the fundamental solution of the hypoelliptic operator
∑m

j=1 X2
j,x̄

with pole at x. In the following proposition we give some pointwise estimates
concerning Γx(x, y).

Proposition 2.3. Assume that ak
j ∈ Lip(Rn) and define ak

j,x as in (12).
Given an integer k > 0, denote by Xk

x any derivative of the form Xj1,xXj2,x · · ·Xjk,x (ji ∈
{1, ..., m}). Denote also

(
ax(y)− a(y)

)k =
k∏

l=1

(
akl

jl,x
(y)− akl

jl
(y)

)

(ji ∈ {1, ..., m} and ki ∈ {m + 1, ..., n}). Then there exists a constant c > 0
such that

|Xk
xΓx(x, y)| ≤ c

1
ρ(x, y)Q−2+k

(x, y ∈ Ω). (24)
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Moreover, there exists a constant ε ∈ (0, 1) such that if x, y, z ∈ Ω and
ρ(z, x) ≤ ερ(x, y), then

∣∣Xk
xΓx(x, y)−Xk

z Γz(z, y)
∣∣ ≤ c ρ(z, x)

1
2

1
ρ(x, y)Q+k− 3

2
(25)

if x, y, z ∈ Ω with ρ(z, x) ≤ ερ(x, y).

Remark 2.4. In the smooth case estimate the right-hand side in (25)
has the better form c ρ(z,x)

ρ(x,y)Q+k−1 .

Proof of Proposition 2.3. It is easy to check that the fundamental
solution of

∑m
j=1 X2

j,x̄ can be written as

Γx̄(x, y) = ΓH(ψx̄(x), ψx̄(y))

where ΓH denotes the fundamental solution of the sub-Laplacian
∑

H2
j . In

particular, if x = x̄, we have

Γx(x, y) = ΓH(ψx(x), ψx̄(y)) = ΓH(0, ψx̄(y)) = ΓH(ψx̄(y))

by a slight abuse of notation. Thus

|Xk
xΓx(x, y)| = |HkΓH(ψx(y))| ≤ c

1
‖ψx(y)‖Q−2+k

.

The last inequality is a standard estimate concerning the fundamental solution
of a sub-Laplacian on a Carnot Group (see [7]). Here we let

‖u‖ =
n∑

j=1

|uj |+
n∑

j=m+1

|uj | 12 .

The function u 7→ ‖u‖ is homogeneous of degree 1 with respect to the family
of dilations (D(λ))λ>0. Hence in the sequel we will call it homogeneous norm.

Now, by the explicit form (16) of ψx, the proof of (24) can be concluded
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as follows:

‖ψx(y)‖ =
∥∥∥∥

m∑

j=1

(y − x)jej

+
n∑

j=m+1

{
(y − x)j − (y − x) ·Aj(x) + 1

2Bj(y − x) · (y − x)
}

ej

∥∥∥∥

=
m∑

j=1

|yj − xj |

+
n∑

j=m+1

∣∣∣(y − x)j − (y − x) ·Aj(x) + 1
2Bj(y − x) · (y − x)

∣∣∣
1
2

'
m∑

j=1

|yj − xj |+
n∑

j=m+1

∣∣(y − x)j − (y − x) ·Aj(x)
∣∣ 1
2

= ρ(x, y).

The last equivalence is a consequence of the estimate

|Bj(y − x) · (y − x)| 12 ≤ c

m∑

k=1

|yk − xk|.

In order to prove (25) we first prove the implication

ρ(x, z) ≤ ερ(x, y) =⇒
∥∥ψx(y)−1 ◦ ψz(y)

∥∥ ≤ c
√

ε‖ψx(y)‖ (26)

where the constant c > 0 does not depend on x, y ∈ Ω. The group law (17)
gives

ψx(y)−1 ◦ ψz(y)

=
m∑

j=1

[
(yj − zj)− (yj − xj)

]
ej

+
n∑

j=m+1

{[
yj − zj − (y − z) ·Aj(z)− 1

2Bj(y − z) · (y − z)
]
ej

−
[
(y − x)j − (y − x) ·Aj(x)− 1

2Bj(y − x) · (y − x)
]
ej

− 1
2

[
Bj(y − x) · (y − z)−Bj(y − z) · (y − x)

]}
ej

=
m∑

j=1

(xj − zj)ej +
n∑

j=m+1

{
xj − zj −Aj(z) · (y − z) + Aj(x) · (y − x)

− 1
2

[
Bj(y − x) · (x− z) + Bj(y − z) · (x− z)

]}
.
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The homogeneous norm is

∥∥ψx(y)−1 ◦ ψz(y)
∥∥

=
m∑

j=1

|xj − zj |+
n∑

j=m+1

∣∣∣xj − zj −Aj(z) · (y − z) + Aj(x) · (y − x)

− 1
2

[
Bj(y − x) · (x− z) + Bj(y − z) · (x− z)

]∣∣∣
1
2

≤
m∑

j=1

|xj − zj |+
n∑

j=m+1

∣∣xj − zj −Aj(z) · (x− z)
∣∣ 1
2

+
n∑

j=m+1

∣∣∣(Aj(z)−Aj(x)) · (x− y)

− 1
2

[
Bj(y − x) · (x− z) + Bj(y − z) · (x− z)

]∣∣∣
1
2

≤ ρ(z, x) + c
(|z − x| |x− y|)

1
2

≤ cρ(z, x) + ρ(x, y)
1
2 ρ(z, x)

1
2

≤ c
√

ερ(x, y)

(27)

as soon as ρ(x, z) ≤ ερ(x, y). Thus (26) is proved. Then, if ρ(x, z) ≤ ερ(x, y)
and ε > 0 is small enough, by (26),(27) and the standard Calderon-Zygmund
type estimate for the derivatives of the fundamental solution of sub-Laplacians
on Carnot groups, we get

∣∣Xk
xΓx(x, y)−Xk

z Γz(z, y)
∣∣ =

∣∣HkΓH(ψx(y))−HkΓH(ψz(y))
∣∣

≤ c
‖ψx(y)−1 ◦ ψz(y)‖
‖ψx(y)‖Q+k−1

.

Deleting the last line in (27) we get the estimate

‖ψx(y)−1 ◦ ψz(y)‖ ≤ c ρ(x, y)
1
2 ρ(z, x)

1
2

which ends the proof of (25)
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3. Sobolev and Trudinger inequalities

In this section we prove part (A) and (B) of Theorem 1.1. The proof will be
a consequence of the following proposition.

Proposition 3.1. Let Ω ⊂ Rn be a bounded open set. Denote by ρ the
function introduced in Proposition 2.1. Then there exists a constant c > 0
such that for any f ∈ C∞0 (Ω) the estimate

|f(x)| ≤ c

∫

Ω

|Xf(y)|
ρ(x, y)Q−1

dy

holds.

Proof. Representing the function f ∈ C∞0 (Ω) by means of the funda-
mental solution Γx(x, y) of the operator

∑m
j=1 X2

j,x with pole at x we have

f(x) =
m∑

j=1

∫

Ω

Xj,xΓx(x, y)Xj,xf(y) dy

=
m∑

j=1

∫

Ω

Xj,xΓx(x, y)(Xj,x −Xj + Xj)f(y) dy

=
m∑

j=1

∫

Ω

Xj,xΓx(x, y)
n∑

k=m+1

(
ak

j,x(y)− ak
j (y)

) ∂

∂yk
f(y) dy

+
m∑

j=1

∫

Ω

Xj,xΓx(x, y)Xjf(y) dy

=: I1(x) + I ′1(x).

(28)

Proposition 2.3 gives the desired estimate of I ′1

|I ′1(x)| ≤ c

∫ |Xf(y)|
ρ(x, y)Q−1

dy.

Rewrite now (7) in the form

∂yk
=

m∑

i,l=1

λ̃i,l
k (y)XiXl (29)

where we let λ̃i,l
k = λi,l

k if i < l, λ̃i,l
k = −λl,i

k if i > l and λ̃i,i
k = 0. The functions

λi,l
k also satisfy hypothesis (8). Thus the evaluation of I1 will be ensured by

the estimate of the integral

J(x) =
∫

Xj,xΓx(x, y)
(
ak

j,x(y)− ak
j (y)

)
λ̃i,l

k (y)XiXlf(y) dy (30)
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(i, j, l = 1, . . . ,m and k = m+1, . . . , n). We now integrate by part in (30). In
order to deal correctly with the singular terms we first truncate the domain
of integration. Write for brevity

g(x, y) = Xj,xΓx(x, y)
(
ak

j,x(y)− ak
j (y)

)
λ̃i,l

k (y). (31)

Since by (24) and (20) the function y 7→ Xj,xΓx(x, y) is integrable in Ω and
all the remaining functions appearing in integral (30) are bounded we have

J(x) = lim
ε→0

Jε(x) where Jε(x) =
∫

Ωε

g(x, y)XiXlf(y) dy

and
Ωε = Ω \ {

y : Γx(x, y) > ε2−Q
}
.

Recall that the functions λ̃i,l
k are bounded together with their distributional

derivatives Xiλ̃
i,l
k . Then, by the results of [12, 14], there exists a family

(λ̃i,l
k )σ (σ > 0) of smooth functions on Ω such that (λ̃i,l

k )σ → λ̃i,l
k and

Xi(λ
i,l
k )σ → Xiλ̃

i,l
k in L2(K) as σ → 0, where K is the support of f . Ap-

proximating the functions λ̃i,l
k in the described way, we can apply on the set

Ωε the integration by part formula

∫

Ωε

g(y)Xv(y) dy

=
∫

∂Ωε

g(y)v(y)X(y) · ν(y) dσ(y)−
∫

Ωε

(
Xg(y) + div X(y)g(y)

)
v(y) dy

where v and g are Lipschitz-continuous functions, X =
∑n

j=1 aj∂j is a Lipschitz-
continuous vector field, divX(y) =

∑n
j=1 ∂ja

j(y), ν(y) is the outer normal
to Ωε at the point y, dσ denotes the surface measure and X(y) · ν(y) =∑n

j=1 aj(y)νj(y). Thus

Jε(x) =
∫

∂Ωε

g(x, y)Xlf(y)Xi(y) · ν(y) dσ(y)−
∫

Ωε

(Xi + div Xi)g(x, y)Xlf(y) dy

=: J ′ε(x) + J ′′ε (x).

We first show that J ′ε(x) → 0 as ε → 0. Denote by ∇ the Euclidean gradient.
Then

Xi(y) · ν(y) = Xi(y) · ∇Γx(x, y)
|∇Γx(x, y)| =

XiΓx(x, y)
|∇Γx(x, y)| .
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Moreover, by also using (14) and (10),

XiΓx(x, y) = (Xi −Xi,x)Γx(x, y) + Xi,xΓx(x, y)

=
n∑

k=m+1

(ak
i − ak

i,x)(y)∂yk
Γx(x, y) + Xi,xΓx(x, y)

=
n∑

k=m+1

(ak
i − ak

i,x)(y)
[
Xg1(k),x, Xg2(k),x

]
Γx(x, y) + Xi,xΓx(x, y),

hence

|g(x, y)XiΓx(x, y)|
≤ c ρ(x, y)|Xj,xΓx(x, y)|

×
(
|Xi,xΓx(x, y)|+ ρ(x, y)

n∑

k=m+1

∣∣[Xg1(k),x, Xg2(k),x

]
Γx(x, y)

∣∣
)

≤ c (ρ(x, y))3−2Q.

The function Xlf is bounded on Ω and vanishes on ∂Ω. Thus, for any fixed
x we have

|J ′ε(x)| =
∣∣∣∣∣
∫

{Γx(x,y)=ε2−Q}
g(x, y)Xlf(y)Xi(y) · ν(y) dσ(y)

∣∣∣∣∣

≤ c

ε2Q−3

∫

{Γx(x,y)=ε2−Q}

1
|∇Γx(x, y)| dσ(y).

Define
F (r) = 1

rQ−1

∫

{Γx(x,y)=r2−Q}

1
|∇Γx(x, y)| dσ(y).

Then, by the coarea formula [5: p. 118] with f(y) = (Γx(x, y))
1

2−Q and by
the change of variables (16), we get

∫ ε

0

F (r) dr = (Q− 2)
∫ ε

0

( ∫

{r=f(y)}

1
|∇f(y)| dσ(y)

)
dr

= (Q− 2)
∫

{Γx(x,y)>ε2−Q}
dy

= (Q− 2)
∫

{ΓH(ξ)>ε2−Q}
dξ

= (Q− 2)εQ

∫

{ΓH(ξ)>1}
dξ.
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Hence, by differentiating the previous equality with respect to ε, we get F (ε) =
cεQ−1 and

|J ′ε(x)| ≤ c

εQ−2
F (ε) = c ε.

The last term tends to zero as ε → 0.
In order to rewrite J ′′ε = J ′′ε (x) we use the explicit form (31) of g:

J ′′ε = −
∫

Ωε

Xi

[
Xj,xΓx(x, y)

(
ak

j,x(y)− ak
j (y)

)
λ̃i,l

j (y)
]
Xlf(y) dy

−
∫

Ωε

div Xi(y)
[
Xj,xΓx(x, y)

(
ak

j,x(y)− ak
j (y)

)
λ̃i,l

j (y)
]
Xlf(y) dy

= −
∫

Ωε

XiXj,xΓx(x, y)
(
ak

j,x(y)− ak
j (y)

)
λ̃i,l

j (y)Xlf(y) dy

−
∫

Ωε

Xj,xΓx(x, y)
(
Xia

k
j (y)−Xia

k
j,x(y)

)
λ̃i,l

j (y)Xlf(y) dy

−
∫

Ωε

Xj,xΓx(x, y)
(
ak

j,x(y)− ak
j (y)

)
Xiλ̃

i,l
j (y)Xlf(y) dy

−
∫

Ωε

div Xi(y)
[
Xj,xΓx(x, y)

(
ak

j,x(y)− ak
j (y)

)
λ̃i,l

j (y)
]
Xhf(y) dy

=: Bε(x) + B1,ε(x) + B2,ε(x) + B3,ε(x).

Rewrite the term Bε using Xi = Xi −Xi,x + Xi,x:

Bε(x) =
n∑

h=m+1

∫

Ωε

(
ah

i (y)− ah
i,x(y)

)

× ∂yh
Xj,xΓ(x, y)

(
ak

j,x(y)− ak
j (y)

)
λ̃i,l

k (y)Xlf(y) dy

+
∫

Ωε

Xi,xXj,xΓ(x, y)
(
ak

j,x(y)− ak
j (y)

)
λ̃i,h

k (y)Xlf(y) dy

=: B4,ε(x) + B5,ε(x).

We now show that each of the integrals Bk,0(x) (k = 1, . . . , 5) is well
defined. This guarantees that Bk,0(x) = limε→0 Bk,ε(x). More precisely, we
will show that |Bk,0(x)| ≤ T1(|Xf |)(x).

Since λ̃i,h
k ∈ L∞ and |Xia

k
j,x| ≤ c, we see that

|B1,0(x)| ≤ c

∫

Ω

|Xj,xΓ(x, y)||Xlf(y)| dy.

Then the term B1,0 can be estimated using the same arguments of I ′1 (see (28)).
The estimate of the term B2,0 can be done using the Lipschitz continuity of
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the fields (which, by also (19), gives |ak
j,x(y) − ak

j (y)| ≤ c |x − y| ≤ c ρ(x, y))
and the boundedness of Xiλ̃

i,h
k . Then

|B2,0(x)| ≤ c

∫

Ω

|Xj,xΓx(x, y)| ρ(x, y)|Xiλ̃
i,h
k (y)| |Xlf(y)| dy

≤ c T2(|Xf |)(x)

≤ c T1(|Xf |)(x).

The term B3,0 can be evaluated with an argument similar to the one used for
B2,0. By (14) and (10) the term B4,0 is controlled by an expression of the
form

|B4,0(x)| ≤ c

∫

Ω

|X3
xΓx(x, y)(ax − a)2(y)|Xf(y)| dy ≤ c T1(|Xf |)(x).

We used here the notations introduced in the statement of Proposition 2.3.
Finally, the estimate of B5,0 can be obtained with a similar argument

Proof of the Sobolev and Trudinger inequalities. The proof of the
Sobolev inequality for 1 < p < Q and the Trudinger inequality follows from the
“representation formula” proved in the Proposition 3.1 and from the continuity
estimates of Corollary 2.2. In the case p = 1 Corollary 2.2 provides the weak
inequality

sup
λ>0

λ|{|f | > λ}|Q−1
Q ≤ c ‖Xf‖L1

which, by the truncation technique used in [9: p. 564], can be improved to

the desired estimate
( ∫

Ω
|f | Q

Q−1
)Q−1

Q ≤ c
∫
Ω
|Xf |

4. Morrey estimate and compact embedding

In the following proposition we give an estimate of the difference between the
values of a function f at two different points in term of integrals involving the
degenerate gradient of f and suitable kernels. This will enable us to prove
the Morrey estimate (C) in Theorem 1.1 and a fractional-type estimate which
will provide the compact embedding (D) in Theorem 1.1.

Proposition 4.1. Let f ∈ C∞0 (Ω). Then

|f(x)− f(z)| ≤ c

∫

Ω

K(x, z; y)|Xf(y)| dy (x, z ∈ Ω)
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where the kernel K is a sum of a finite number of terms of the form

Rk(x, z; y) =
∣∣∣Xk+1

x Γx(x, y)
(
ax(y)− a(y)

)k −Xk+1
z Γz(z, y)

(
az(y)− a(y)

)k
∣∣∣

(32)
(k = 0, 1, 2) and

R(x, z; y) =
∣∣∣XxΓx(x, y)

(
ax(y)− a(y)

)−XzΓz(z, y)
(
az(y)− a(y)

)∣∣∣. (33)

In (32) and (33) we used the notations of Proposition 2.3. Moreover, if
ρ(x, z) ≤ ε ρ(x, y), then

K(x, y; z) ≤ c
ρ(z, x)

1
2

ρ(x, y)Q− 1
2
. (34)

Proof. For x, z ∈ Ω and f ∈ C∞0 write f(x) and f(z) as in (28). Then

f(x)− f(z) =
(
I1(x)− I1(z)

)
+

(
I ′1(x)− I ′1(z)

)
.

The second term I ′1(x)− I ′1(z) has the appropriate form, since

∣∣I ′1(x)− I ′1(z)
∣∣ ≤

m∑

j=1

∫

Ω

∣∣Xj,xΓx(x, y)−Xj,zΓz(z, y)
∣∣ |Xjf(y)| dy

and the kernel
∣∣Xj,xΓx(x, y) −Xj,zΓz(z, y)

∣∣ is of type (32) with k = 0. Now
we will integrate by part the first term I1(x)− I1(z) by using (29):

I1(x)− I1(z) =
m∑

j=1

n∑

k=m+1

∫ {
Xj,xΓx(x, y)(ak

j,x − ak
j )(y)

−Xj,zΓz(x, y)(ak
j,z − ak

j )(y)
}

∂yk
f(y) dy

=
m∑

j=1

n∑

k=m+1

m∑

i,l=1

∫ {
Xj,xΓx(x, y)(ak

j,x − ak
j )(y)

−Xj,zΓz(x, y)(ak
j,z − ak

j )(y)
}

λ̃i,l
k (y)XiXlf(y) dy

=
∫

S(x, z; y)Xlf(y) dy

where the kernel S is defined by the last equality through an integration
by part. Denote X∗

i = −Xi − div(Xi) and write for brevity Γx instead of
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Γx(x, y). By omitting the summation symbol on the indices j, i, k and l, the
kernel S = S(x, z; y) has the following form (take also (13) into account):

S = X∗
i

{(
Xj,xΓx(ak

j,x − ak
j )(y)−Xj,zΓz(ak

j,z − ak
j )(y)

)
λ̃i,l

k (y)
}

= −
{

Xj,xΓx(Xia
k
j,x −Xia

k
j )(y)−Xj,zΓz(Xia

k
j,z −Xia

k
j )(y)

}
λ̃i,l

k (y)

−
{

XiXj,xΓx(ak
j,x − ak

j )(y)−XiXj,zΓz(ak
j,z − ak

j )(y)
}

λ̃i,l
k (y)

−
{

Xj,xΓx(ak
j,x − ak

j )(y)−Xj,zΓz(ak
j,z − ak

j )(y)
}

Xiλ̃
i,l
k (y)

−
(
Xj,xΓx(ak

j,x − ak
j )(y)−Xj,zΓz(ak

j,z − ak
j )(y)

)
divXi(y)λ̃i,l

k (y)

= −
{

(Xj,xΓx −Xj,zΓz)(Xia
k
j,x −Xia

k
j )(y)

}
λ̃i,l

k (y)

−
{

(Xi −Xi,x)Xj,xΓx(ak
j,x − ak

j )(y)− (Xi −Xi,z)Xj,zΓz(ak
j,z − ak

j )(y)
}

λ̃i,l
k (y)

−
{

Xi,xXj,xΓx(ak
j,x − ak

j )(y)−Xi,zXj,zΓz(ak
j,z − ak

j )(y)
}

λ̃i,l
k (y)

−
{

Xj,xΓx(ak
j,x − ak

j )(y)−Xj,zΓz(ak
j,z − ak

j )(y)
}

Xiλ̃
i,l
k (y)

−
{

Xj,xΓx(ak
j,x − ak

j )(y)−Xj,zΓz(ak
j,z − ak

j )(y)
}

divXi(y)

=: −A1 −A2 −A3 −A4 −A5.

Recall that, by (14) and (10), for any ξ ∈ Rn and s = m + 1, . . . , n,

∂

∂ys
=

[
Xg1(s),ξ, Xg2(s),ξ

]

Write this last equality with ξ = x and ξ = z. Thus

A2 =
n∑

s=m+1

{
(as

i − as
i,x)(y)

[
Xg1(s),x, Xg2(s),x

]
Xj,xΓx(ak

j,x − ak
j )(y)

− (as
i − as

i,z)(y)
[
Xg1(s),z, Xg2(s),z

]
Xj,zΓz(ak

j,z − ak
j )(y)

}
λ̃i,l

k (y).

Then each of the terms |A1|, |A2|, |A3| can be estimated (using λ̃i,l
j ∈ L∞) by

a kernel of the form Rk(x, z; y) in (32) with k = 0, 1, 2.

The terms |A4| and |A5| can be estimated (using Xj λ̃
i,l
k , divXj ∈ L∞) by

the less singular kernel R defined in (33). The estimate of the kernel Rk can
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be obtained by means of (25):

Rk(x, z; y) ≤ ∣∣Xk+1
x Γx(x, y)−Xk+1

z Γz(z, y)
∣∣ |(ax(y)− a(y))k|

+ |Xk+1
z Γz(z, y)| ∣∣(ax(y)− a(y))k − (az(y)− a(y))k

∣∣

≤ c
ρ(z, x)

1
2

ρ(x, y)Q+k− 1
2

ρ(x, y)k

+ c
1

ρ(z, y)Q+k−1

∣∣(ax(y)− a(y))k − (az(y)− a(y))k
∣∣.

(35)

The estimate of the last line is non-trivial only if k = 2. By (12) and (13),
∣∣(ax(y)− a(y))2 − (az(y)− a(y))2

∣∣

=
∣∣∣(ak1

j1,x − ak1
j1

)(y)(ak2
j2,x − ak2

j2
)(y)− (ak1

j1,z − ak1
j1

)(y)(ak2
j2,z − ak2

j2
)(y)

∣∣∣

≤
∣∣∣
{
(ak1

j1,x − ak1
j1

)(y)− (ak1
j1,z − ak1

j1
)(y)

}
(ak2

j2,z − ak2
j2

)(y)
∣∣∣

+
∣∣∣(ak1

j1,z − ak1
j1

)(y)
{
(ak2

j2,z − ak2
j2

)(y)− (ak2
j2,x − ak2

j2
)(y)

}∣∣∣

≤ c |z − y| |z − x|.
(36)

and the proof is finished

Proof of the Morrey estimate. Let f ∈ C∞0 (Ω). Write

Ik(x, z) =
∫

Ω

Rk(x, z; y)|Xf(y)| dy.

Starting from Proposition 4.1 estimate (C) of Theorem 1.1 will be proved as
soon as we will be able to show that |Ik(x, z)| ≤ cρα(x, z). Fix ε > 0 and
write

Ik(x, z) =
∫

ρ(x,z)≥ερ(x,y)

Rk(x, z; y)|Xf(y)| dy +
∫

ρ(x,z)≤ερ(x,y)

Rk(x, z; y)|Xf(y)| dy

=: I ′k(x, z) + I ′′k (x, z).

The estimate of I ′k is easy. Indeed, by (24) and the Lipschitz continuity of the
ak

j ’s we can estimate I ′k by the Hölder inequality as

I ′k ≤ c ‖Xf‖Lp

( ∫

ρ(x,z)≥ερ(x,y)

dy

ρ(x, y)
(Q−1)p

p−1

+
∫

ρ(x,z)≥ερ(x,y)

dy

ρ(z, y)
(Q−1)p

p−1

) p−1
p

(37)
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Both the integrals herein are well defined (the function 1
ρβ is integrable near

0 if and only if β < Q and p > Q ⇔ (Q−1)p
p−1 < Q). By the triangle inequality,

ρ(z, y) ≤ c
(
ρ(z, x) + ρ(x, y)

) ≤ c ρ(z, x),

on the integration set. Then {ρ(x, z) > ε ρ(x, y)} is included in {ρ(x, z) ≥
c ρ(z, y)}. Thus the second integral in (37) can be estimated by the first one.
Using polar coordinates we have

I ′k(x, z) ≤ c ‖Xf‖Lp

( ∫

ρ(x,y)≤cρ(x,z)

dy

ρ(x, y)
(Q−1)p

p−1

) p−1
p

≤ c ‖Xf‖Lp

( ∫ cρ(x,z)

0

tQ−1dt

t
(Q−1)p

p−1

) p−1
p

= c ‖Xf‖Lpρ(x, z)1−
Q
p .

By estimate (34) and the Hölder inequality we get

I ′′k ≤ c ‖Xf‖Lpρ(x, z)
1
2

( ∫

ρ(x,z)≤ερ(x,y)

dy

ρ(x, y)
(Q− 1

2 )p

p−1

) p−1
p

.

Using polar coordinates we have

I ′′k (x, z) ≤ c ρ(x, z)
1
2 ‖Xf‖Lp

( ∫ M

cρ(x,z)

tQ−1dt

t
(Q− 1

2 )p

p−1

) p−1
p

≤ c ‖Xf‖Lpρ(x, z)α

with α = min{ 1
2 , 1− Q

p }
Proof of the compact embedding. We prove that for every 1 < p < Q

and q < Qp
Q−p there exists s > 0 such that the inequality

( ∫

Ω×Ω

|f(x)− f(z)|q
|x− z|n+qs

dxdz

) 1
q

≤ c

( ∫

Ω

|Xf(x)|pdx

) 1
p

. (38)

holds. This, together with the classical compact embedding W s,q
0 (Ω) ⊂ Lq(Ω)

will prove the claim.
Let s̄ = s̄(p, q) ∈ (0, 1) be the solution of

pQ

Q− (1− s̄)p
= q, i.e. s̄ = 1− q − p

pq
Q. (39)
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This choice of s̄ ensures that ‖T1−s̄f‖q ≤ c ‖f‖p for f ∈ Lp (by (21) with
µ = 1 − s̄). Fix now s < min{ s̄

3 , 1
8} and estimate the fractional norm of a

function f as follows: by Proposition 4.1, |f(x) − f(z)| is less than a sum of
a finite number of terms of the form

∫
Ω

Rk(x, z; y)|Xf(y)| dy, with Rk as in
(32), plus a finite number of less singular terms which we will not take into
account in the sequel. Thus it suffices to evaluate the integral

J =
∫

Ω×Ω

1
|x− z|n+qs

∣∣∣∣
∫

Rk(x, z; y)|Xf(y)| dy

∣∣∣∣
q

dxdz. (40)

For any integral of this form we can assume by symmetry that the integration
takes place over the set where

∣∣Xk+1
x Γx(x, y)(ax − a)k(y)

∣∣ ≥ ∣∣Xk+1
z Γz(z, y)(az − a)k(y)

∣∣. (41)

The change of variable z = x + h and an application of the Minkowski in-
equality give

J ≤ c

∫

Ω

∫

{h:x+h∈Ω}

1
|h|n+qs

∣∣∣∣
∫

Ω

Rk(x, x + h; y)|Xf(y)| dy

∣∣∣∣
q

dhdx

≤ c

∫

Ω

[ ∫

Ω

|Xf(y)|
{ ∫

Ax,y

Rk(x, x + h; y)q

|h|n+qs
dh

} 1
q

dy

]q

dx

where we let Ax,y =
{
h : x + h ∈ Ω and (41) holds

}
. Now write (for a

suitably small ε > 0)

∫

Ax,y

Rk(x, x + h; y)q

|h|n+qs
dh

=
∫

{ρ(x,x+h)≥ερ(x,y)}∩Ax,y

Rk(x, x + h; y)q

|h|n+qs
dh

+
∫

{ρ(x,x+h)≤ερ(x,y)}∩Ax,y

Rk(x, x + h; y)q

|h|n+qs
dh

=: I1 + I2.

By (41), Rk(x, x + h; y) ≤ c
ρ(x,y)Q−1 and the inequality ρ(x, x + h) ≤ c |h| 12

furnishes

I1 ≤ c

∫

|h| 12≥ερ(x,y)

dh

|h|n+qsρ(x, y)(Q−1)q
=

c

ρ(x, y)(Q−1+2s)q
≤ c

ρ(x, y)(Q−(1−s̄))q
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because 2s < s̄. The estimate of I2 follows from the estimates of Rk given in
Proposition 4.1. More precisely (recall also that, since s < 1

8 , q
2 − 4qs > 0),

I2 ≤ c

∫

ρ(x,x+h)≤ερ(x,y)

1
|h|n+qs

ρ(x, x + h)
q
2

ρ(x, y)q(Q− 1
2 )

dh

≤
∫

ρ(x,x+h)≤ερ(x,y)

c

|h|n+qs

ρ(x, x + h)4qsρ(x, x + h)
q
2−4qs

ρ(x, y)q(Q− 1
2 )

dh

≤ c

∫

|h|≤cερ(x,y)

|h|2qs

|h|n+qs

ρ(x, y)
q
2−4qs

ρ(x, y)q(Q− 1
2 )

dh

= c

∫

|h|<cρ(x,y)

dh

|h|n−qs

c

ρ(x, y)(Q−1+4s)q

=
c

ρ(x, y)q(Q−(1−3s))

≤ c

ρ(x, y)q(Q−(1−s̄))

because 3s < s̄.
Thus, the estimates of I1 and I2, together with (39), give

( ∫

Ω×Ω

dxdz

|x− z|n+qs
|f(x)− f(z)|q

) 1
q

≤ c ‖T1−s̄(|Xf |)‖q ≤ c ‖Xf‖p.

and the proof is finished
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elliptique. Math. Ann. 303 (1995), 713 – 746.

[23] Rothschild, L. and E. M. Stein: Hypoelliptic differential operators and nilpotents
groups. Acta Math. 137 (1976), 247 – 320.

Received 26.03.2001


