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Asymptotics of Solutions
for fully Nonlinear Elliptic Problems

at Nearly Critical Growth

A. Musesti and M. Squassina

Abstract. In this paper we deal with the study of limits of solutions of a class of
fully nonlinear elliptic problems at nearly critical growth. By means of P.L. Lions’
concentration-compactness principle, we prove an alternative result for the existence
of non-trivial solutions of the limit problem.
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1. Introduction

Let Ω be a bounded domain of Rn, 1 < p < n and p∗ = np
n−p . In 1989 Guedda

and Veron [10] proved that the p−Laplacian problem at critical growth

−∆pu = up∗−1

u > 0

u = 0

in Ω

in Ω

on ∂Ω





(∗)

has no non-trivial solution u ∈ W 1,p
0 (Ω) if the domain Ω is star-shaped. As

known, this non-existence result is due to the failure of compactness for the
critical Sobolev embedding W 1,p

0 (Ω) ↪→ Lp∗(Ω), which causes a loss of global
Palais-Smale condition for the functional associated with problem (∗). On the
other hand, if for instance one considers annular domains

Ωr1,r2 =
{
x ∈ Rn : 0 < r1 < |x| < r2

}
,
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then the radial embedding

W 1,p
0,rad(Ωr1,r2) ↪→ Lq(Ωr1,r2)

is compact for each q < +∞ and one can find a non-trivial radial solution of
problem (∗) (see [11]). In particular, the existence of non-trivial solutions of
problem (∗) depends also on the topology of the domain. In the case p = 2,
the problem

−∆u = u(n+2)/(n−2)

u > 0

u = 0

in Ω

in Ω

on ∂Ω





(∗∗)

has been deeply studied and existence results have been obtained provided
that Ω satisfies suitable assumptions. In the striking paper [3], Bahri and
Coron have proved that if Ω has a non-trivial topology, i.e. if Ω has a non-
trivial homology in some positive dimension, then problem (∗∗) always admits
a non-trivial solution.

On the other hand, Dancer [8] constructed for each n ≥ 3 a contractible
domain Ωn, homeomorphic to a ball, for which problem (∗∗) has a non-trivial
solution. Therefore, we see how the existence of non-trivial solutions of prob-
lem (∗∗) is related to the shape of the domain and not just to the topology.
See also [15] and references therein for more recent existence and multiplicity
results.

We remark that, to the authors’ knowledge, this kind of achievements are
not known when p 6= 2. In our opinion, one of the main difficulties is the fact
that, differently from the case p = 2, it is not proven that all positive smooth
solutions of the equation −∆pu = up∗−1 in Rn are Talenti’s radial functions,
which attain the best Sobolev constant (see Proposition 3.1).

Now, there is a second approach in the study of problem (∗), which in
general does not require any geometrical or topological assumption on Ω,
namely to investigate the asymptotic behaviour of solutions uε of problems
with nearly critical growth

−∆pu = |u|p∗−2−εu

u = 0

in Ω

on ∂Ω

}
(∗ ∗ ∗)

as ε → 0. If Ω is a ball and p = 2, Atkinson and Peletier [2] showed in 1987 the
blow-up of a sequence of radial solutions. The extension to the case p 6= 2 was
achieved by Knaap and Peletier [12] in 1989. On a general bounded domain,
instead, the study of limits of solutions of problem (∗ ∗ ∗) was performed by
Garcia Azorero and Peral Alonso [9] around 1992.
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Let now ε > 0 and consider the general class of Euler-Lagrange equations
with nearly critical growth

−div (∇ξL(x, u,∇u)) + DsL(x, u,∇u) = |u|p∗−2−εu

u = 0

in Ω

on ∂Ω

}
(Pε)

associated with the functional fε : W 1,p
0 (Ω) → R given by

fε(u) =
∫

Ω

L(x, u,∇u) dx− 1
p∗−ε

∫

Ω

|u|p∗−εdx. (1)

As noted in [18], in general these functionals are not even locally Lipschitz un-
der natural growth assumptions. Nevertheless, via techniques of non-smooth
critical point theory (see [18] and references therein) it can be shown that for
each ε > 0 problem (Pε) admits a non-trivial solution uε ∈ W 1,p

0 (Ω).

Let uε be a solution of problem (Pε). The main goal of this paper is to
prove that if the weak limit of (|∇uε|p)ε>0 has no blow-up points in Ω, then
the limit problem

−div (∇ξL(x, u,∇u)) + DsL(x, u,∇u) = |u|p∗−2u

u = 0

in Ω

on ∂Ω

}
(P0)

has a non-trivial solution (the weak limit of (uε)ε>0), provided that fε(uε) → c
with

p∗−p−γ
pp∗ (νS)

n
p < c < 2 p∗−p−γ

pp∗ (νS)
n
p (2)

where ν > 0 and γ ∈ (0, p∗−p) will be introduced later on. In our framework,
(2) plays the role of a generalized second critical energy range (if γ = 0 and
ν = 1, one finds the usual range Sn/p

n < c < 2Sn/p

n for problem (∗ ∗ ∗)).
The plan of the paper is as follows:

In Section 2 we shall state our main results. Section 3 contains some
preliminary lemmas, namely the lower bounds of the non-vanishing Dirac
masses and of the non-trivial weak limits. In Section 4 we prove our main
results. In Section 5 we see that at the mountain pass levels the sequence
(uε)ε>0 blows up. Finally, Section 6 contains a non-existence result.
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2. The main results

Let Ω be any bounded domain of Rn. In the following, the space W 1,p
0 (Ω)

will be endowed with the standard norm ‖u‖p
1,p =

∫
Ω
|∇u|pdx and ‖ · ‖p will

denote the usual norm of Lp(Ω).
Assume that L : Ω×R×Rn → R is measurable in x for all (s, ξ) ∈ R×Rn,

of class C1 in (s, ξ) a.e. in Ω, that L(x, s, ·) is strictly convex and L(x, s, 0) = 0.
Moreover, assume the following:

(A1) There exists b0 > 0 such that

L(x, s, ξ) ≤ b0|s|p + b0|ξ|p (3)

for a.e. x ∈ Ω and for all (s, ξ) ∈ R× Rn.
(A2) There exists b1 > 0 such that for each δ > 0 there exists aδ ∈ L1(Ω)

with
|DsL(x, s, ξ)| ≤ aδ(x) + δ|s|p∗ + b1|ξ|p (4)

for a.e. x ∈ Ω and for all (s, ξ) ∈ R × Rn. Moreover, there exist
a1 ∈ Lp′(Ω) and ν > 0 such that

|∇ξL(x, s, ξ)| ≤ a1(x) + b1|s|
p∗
p′ + b1|ξ|p−1, (5)

∇ξL(x, s, ξ) · ξ ≥ ν|ξ|p (6)

for a.e. x ∈ Ω and for all (s, ξ) ∈ R× Rn.
(A3) For a.e. x ∈ Ω and for all (s, ξ) ∈ R× Rn,

DsL(x, s, ξ)s ≥ 0 (7)

and there exists γ ∈ (0, p∗ − p) such that

(γ + p)L(x, s, ξ)−∇ξL(x, s, ξ) · ξ −DsL(x, s, ξ)s ≥ 0 (8)

for a.e. x ∈ Ω and for all (s, ξ) ∈ R× Rn.

Remark 2.1. The growth conditions of (A1) and (A2) and the assump-
tions in (A3) are natural in the fully nonlinear setting and were considered
in [18], and in a stronger form in [1, 16] (see also Remark 6.2). Notice that
when L is p−homogeneous with respect to ξ, then condition (8) becomes
DsL(x, s, ξ)s ≤ γL(x, s, ξ) for a.e. x ∈ Ω and for all (s, ξ) ∈ R× Rn.

As an example, taking A ∈ C1(R) ∩ L∞(R) with A′ ∈ L∞(R), A(s) ≥ ν
and γA(s) ≥ A′(s)s ≥ 0 for each s ∈ R, the class of Lagrangians

L(x, s, ξ) =
1
p
A(s)|ξ|p
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satisfies all the previous requirements. For instance,
(
γ−1 + arctan(s2)

)|ξ|p/p
belongs to this class for each γ ∈ (0, p∗ − p).

Remark 2.2. We stress that although as noted in the introduction fε fails
to be differentiable, one may compute the derivatives along the L∞−directions,
namely

f ′ε(u)(ϕ) =
∫

Ω

∇ξL(x, u,∇u)·∇ϕdx+
∫

Ω

DsL(x, u,∇u)ϕdx−
∫

Ω

|u|p∗−2−εuϕdx

for all u ∈ W 1,p
0 (Ω) and for all ϕ ∈ W 1,p

0 ∩ L∞(Ω).

The following is a general property due to Brézis and Browder [5].

Proposition 2.3. Let u, v ∈ W 1,p
0 (Ω) be such that DsL(x, u,∇u)v ≥ 0

and

〈w, ϕ〉 =
∫

Ω

∇ξL(x, u,∇u) · ∇ϕdx +
∫

Ω

DsL(x, u,∇u)ϕdx (ϕ ∈ C∞c (Ω))

with w ∈ L1
loc(Ω) ∩W−1,p′(Ω). Then DsL(x, u,∇u)v ∈ L1(Ω) and

〈w, v〉 =
∫

Ω

∇ξL(x, u,∇u) · ∇v dx +
∫

Ω

DsL(x, u,∇u)v dx.

From now on, by solution of problem (Pε) we shall always mean weak
solution, namely f ′ε(uε) = 0 in the sense of distributions. The next lemma is
our starting point.

Lemma 2.4. For each ε > 0, (Pε) admits a non-trivial solution uε ∈
W 1,p

0 (Ω).

Proof. See [18: Theorem 1.1]

We point out that, in our general framework, the technical aspects in the
verification of the Palais-Smale condition for fε are, in our opinion, interesting
and not trivial.

Note that since L(x, s, 0) = 0, in view of (6) one obtains

L(x, s, ξ) ≥ ν
p |ξ|p (9)

for a.e. x ∈ Ω and for all (s, ξ) ∈ R× Rn.

Lemma 2.5. Let (uε)ε>0 ⊂ W 1,p
0 (Ω) be a sequence of solutions of problem

(Pε) such that lim
ε→0

fε(uε) < +∞. Then (uε)ε>0 is bounded in W 1,p
0 (Ω).
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Proof. For each ε > 0 we have f ′ε(uε)(ϕ) = 0 for each ϕ ∈ C∞c (Ω). On
the other hand, taking into account (7), by Proposition 2.3 one can also take
ϕ = uε. Therefore, in view of (8) and (9) one obtains

lim
ε→0

fε(uε) = lim
ε→0

(
fε(uε)− 1

p∗−εf ′ε(uε)(uε)
)

= lim
ε→0

( ∫

Ω

L(x, uε,∇uε) dx

− 1
p∗−ε

∫

Ω

∇ξL(x, uε,∇uε) · ∇uε dx

− 1
p∗−ε

∫

Ω

DsL(x, uε,∇uε)uεdx

)

≥ lim
ε→0

p∗−p−ε−γ
p∗−ε

∫

Ω

L(x, uε,∇uε) dx

≥ p∗−p−γ
pp∗ ν lim

ε→0

∫

Ω

|∇uε|pdx.

In particular, (uε)ε>0 is bounded in W 1,p
0 (Ω)

Let us now recall the classical P.L. Lions’ concentration-compactness prin-
ciple

Lemma 2.6. Let (uε)ε>0 ⊂ W 1,p
0 (Ω) be bounded and let u be its weak

limit. Then there exist two bounded positive measures µ and σ such that

|∇uε|p ⇀ µ, |uε|p
∗

⇀ σ (in the sense of measures) (10)

µ ≥ |∇u|p +
∞∑

j=1

µjδxj (µj ≥ 0) (11)

σ = |u|p∗ +
∞∑

j=1

σjδxj (σj ≥ 0) (12)

µj ≥ Sσ
p

p∗
j (13)

where δxj denotes the Dirac measure at xj ∈ Ω and S denotes the best Sobolev
constant for the embedding W 1,p

0 (Ω) ↪→ Lp∗(Ω).

Proof. See, e.g., [13: Lemma I.1] or [14]

Under assumptions (A1)− (A3), the following is our main result.

Theorem 2.7. Assume that (uε)ε>0 ⊂ W 1,p
0 (Ω) is a sequence of solutions

of problem (Pε) such that fε(uε) → c and

p∗−p−γ
pp∗ (νS)

n
p < c < 2 p∗−p−γ

pp∗ (νS)
n
p .
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Then µj = 0 for j ≥ 2 and the following alternative holds:

(a) µ1 = 0 and u is a non-trivial solution of problem (P0).
(b) µ1 6= 0 and u = 0.

This result extends [9: Theorem 9] to a class of fully nonlinear elliptic
problems.

Theorem 2.8. Let (uε)ε>0 be any sequence of solutions of problem (Pε)
with

lim
ε→0

fε(uε) = p∗−p−γ
pp∗ (νS)

n
p .

Then u = 0.

As we shall see in Section 5, this is also the behaviour when one considers
critical levels of mountain-pass type.

3. The weak limit of (uε)ε>0

Let us briefly summarize the main properties of the best Sobolev constant
[19].

Proposition 3.1. Let 1 < p < n and S be the best Sobolev constant, i.e.

S = inf
{∫

Ω

|∇u|pdx : u ∈ W 1,p
0 (Ω) with

∫

Ω

|u|p∗dx = 1
}

. (14)

Then the following facts hold:

(a) S is independent on Ω ⊂ Rn.
(b) The infimum (14) is never achieved on bounded domains Ω ⊂ Rn.
(c) The infimum (14) is achieved if Ω = Rn by the family of functions on

Rn

Tδ,x0(x) =
(

nδ
(

n−p
p−1

)p−1
)n−p

p2 (
δ + |x− x0|

p
p−1

)−n−p
p (15)

with δ > 0 and x0 ∈ Rn. Moreover, Tδ,x0 is a solution of −∆pu = up∗−1 on
Rn.

The next result establishes uniform lower bounds for the Dirac masses.

Lemma 3.2. If µj 6= 0, then σj ≥ ν
n
p S

n
p and µj ≥ ν

n
p∗ S

n
p .

Proof. Let xj ∈ Ω the point which supports the Dirac measure of coeffi-
cient σj . Denoting with B(xj , δ) the open ball of center xj and radius δ > 0,
we can consider a function ψδ ∈ C∞c (Rn) such that 0 ≤ ψδ ≤ 1, |∇ψδ| ≤ 2

δ ,
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ψδ(x) = 1 if x ∈ B(xj , δ) and ψδ(x) = 0 if x 6∈ B(xj , 2δ). By Proposition 2.3
we have

0 = f ′ε(uε)(ψδuε)

=
∫

Ω

uε∇ξL(x, uε,∇uε) · ∇ψδ dx +
∫

Ω

ψδ∇ξL(x, uε,∇uε) · ∇uεdx

+
∫

Ω

ψδDsL(x, uε,∇uε)uεdx−
∫

Ω

|uε|p
∗−εψδdx.

(16)

Applying Hölder inequality and (5) to the first term of the decomposition and
keeping into account that (uε)ε>0 is bounded in W 1,p

0 (Ω), one finds constants
c1, c2 > 0 such that

lim
ε→0

∣∣∣∣
∫

Ω

uε∇ξL(x, uε,∇uε) · ∇ψδdx

∣∣∣∣

≤
(∫

B(xj ,2δ)

|a1|
p

p−1 dx

) p−1
p

(∫

B(xj ,2δ)

|u|p∗dx

) 1
p∗ ( ∫

B(xj ,2δ)

|∇ψδ|ndx

) 1
n

+ b1

(∫

B(xj ,2δ)

|u|p∗dx

)n−1
n ( ∫

B(xj ,2δ)

|∇ψδ|n dx

) 1
n

(17)

+ b̃1

(∫

B(xj ,2δ)

|u|p∗dx

) 1
p∗ ( ∫

B(xj ,2δ)

|∇ψδ|ndx

) 1
n

≤ c1

( ∫

B(xj ,2δ)

|u|p∗dx

) 1
p∗

+ c2

( ∫

B(xj ,2δ)

|u|p∗dx

)n−1
n

= βδ

with βδ → 0 as δ → 0. Then, taking into account (6) and (7) one has

0 ≥ −βδ + lim
ε→0

ν

∫

Ω

|∇uε|pψδdx− lim
ε→0

Ln(Ω)
ε

p∗
(∫

Ω

|uε|p
∗
ψδdx

) p∗−ε
p∗

≥ −βδ + ν

∫

Ω

ψδdµ−
∫

Ω

ψδdσ.

Letting δ → 0, it results νµj ≤ σj . By means of (13) the proof is complete

In the next result we obtain uniform lower bounds for the non-zero weak
limits.

Lemma 3.3. If u 6= 0, then
∫
Ω
|∇u|pdx > ν

n
p∗ S

n
p and

∫
Ω
|u|p∗dx >

ν
n
p S

n
p .
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Proof. By Lemma 3.2 we may assume that µ has at most r Dirac masses
µ1, . . . , µr at x1, . . . , xr, respectively. Let now 0 < δ < 1

4 min{|xi−xj | : i 6= j}
and ψδ ∈ C∞c (Rn) be such that 0 ≤ ψδ ≤ 1, |∇ψδ| ≤ 2

δ , ψδ(x) = 1 if
x ∈ B(xj , δ) and ψδ(x) = 0 if x 6∈ B(xj , 2δ). Taking into account (7), for each
ε, δ > 0 we have

∫

Ω

DsL(x, uε,∇uε)uε(1− ψδ) dx ≥ 0.

Then, since one can choose (1− ψδ)uε as test, by (6) one obtains

0 = f ′ε(uε)((1− ψδ)uε)

=
∫

Ω

∇ξL(x, uε,∇uε) · ∇uε(1− ψδ) dx

−
∫

Ω

uε∇ξL(x, uε,∇uε) · ∇ψδdx

+
∫

Ω

DsL(x, uε,∇uε)uε(1− ψδ) dx

−
∫

Ω

|uε|p
∗−ε(1− ψδ) dx (18)

≥ ν

∫

Ω

|∇uε|p(1− ψδ) dx

−
∫

Ω

uε∇ξL(x, uε,∇uε) · ∇ψδdx

− Ln(Ω)
ε

p∗
(∫

Ω

|uε|p
∗
(1− ψδ) dx

) p∗−ε
p∗

.

On the other hand, arguing as for (17), one obtains

lim
ε→0

∣∣∣∣
∫

Ω

uε∇ξL(x, uε,∇uε) · ∇ψδdx

∣∣∣∣ ≤ βδ (19)

for each δ > 0. Now, it results

lim
ε→0

∫

Ω

|∇uε|p(1− ψδ) dx =
∫

Ω

(1− ψδ) dµ

≥
∫

Ω

|∇u|p(1− ψδ) dx +
r∑

j=1

µj(1− ψδ(xj))

=
∫

Ω

|∇u|pdx + o(1)

(20)
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as δ → 0 and

lim
ε→0

∫

Ω

|uε|p
∗
(1− ψδ) dx =

∫

Ω

(1− ψδ) dσ

=
∫

Ω

|u|p∗(1− ψδ) dx +
r∑

j=1

σj(1− ψδ(xj))

=
∫

Ω

|u|p∗dx + o(1)

(21)

as δ → 0. Therefore, in view of (19) - (21), by letting δ → 0 and ε → 0 in
(18) one concludes that

ν

∫

Ω

|∇u|pdx ≤
∫

Ω

|u|p∗dx. (22)

As Ω is bounded, by Proposition 3.1/(b) one has
∫
Ω
|∇u|pdx > S

(∫
Ω
|u|p∗dx

) p
p∗

which combined with (22) yields the assertion

Lemma 3.4. Let (uε)ε>0 ⊂ W 1,p
0 (Ω) be a sequence of solutions of problem

(Pε) and let u be its weak limit. Then u is a solution of problem (P0).

Proof. For each ε > 0 and ϕ ∈ C∞c (Ω),
∫

Ω

∇ξL(x, uε,∇uε) · ∇ϕ dx +
∫

Ω

DsL(x, uε,∇uε)ϕ dx =
∫

Ω

|uε|p
∗−2−εuεϕdx.

(23)
Since (uε)ε>0 is bounded in W 1,p

0 (Ω), up to a subsequence, u satisfies

∇uε ⇀ ∇u

uε → u

uε(x) → u(x)

in Lp(Ω)

in Lp(Ω)

for a.e. x ∈ Ω





as ε → 0. Moreover, by [7: Theorem 1], up to a further subsequence, we have
∇uε(x) → ∇u(x) for a.e. x ∈ Ω. Therefore, in view of (5) one deduces that

∇ξL(x, uε,∇uε) ⇀ ∇ξL(x, u,∇u) in Lp′(Ω,Rn). (24)

By (4) - (6) one finds a constant M > 0 such that for each δ > 0

|DsL(x, s, ξ)| ≤ M∇ξL(x, s, ξ) · ξ + aδ(x) + δ|s|p∗ (25)

for a.e. x ∈ Ω and for all (s, ξ) ∈ R × Rn. If we test equation (23) with the
functions

ϕε = ϕ exp{−Mu+
ε } (ε > 0)
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where 0 ≤ ϕ ∈ W 1,p
0 ∩ L∞(Ω), we obtain

∫

Ω

∇ξL(x, uε,∇uε) · ∇ϕ exp{−Mu+
ε }dx

−
∫

Ω

|uε|p
∗−2−εuεϕ exp{−Mu+

ε }dx

+
∫

Ω

[
DsL(x, uε,∇uε)−M∇ξL(x, uε,∇uε) · ∇u+

ε

]
ϕ exp{−Mu+

ε }dx = 0.

Since by inequalities (7) and (25) for each ε > 0 and δ > 0 we have
[
DsL(x, uε,∇uε)−M∇ξL(x, uε,∇uε)·∇u+

ε

]
ϕ exp{−Mu+

ε }−δ|uε|p
∗ ≤ aδ(x),

arguing as in [18: Theorem 3.4] one obtains

lim sup
ε→0

∫

Ω

[
DsL(x, uε,∇uε)−M∇ξL(x, uε,∇uε) · ∇u+

ε

]
ϕ exp{−Mu+

ε }dx

≤
∫

Ω

[
DsL(x, u,∇u)−M∇ξL(x, u,∇u) · ∇u+

]
ϕ exp{−Mu+}dx.

Therefore, taking into account (24) and since as ε → 0
∫

Ω

|uε|p
∗−2−εuεϕdx →

∫

Ω

|u|p∗−2uϕdx

for each 0 ≤ ϕ ∈ W 1,p
0 ∩ L∞(Ω), one may conclude that

∫

Ω

∇ξL(x, u,∇u) · ∇ϕ exp{−Mu+}dx

−
∫

Ω

|u|p∗−2uϕ exp{−Mu+}dx

+
∫

Ω

[
DsL(x, u,∇u)−M∇ξL(x, u,∇u) · ∇u+

]
ϕ exp{−Mu+}dx ≥ 0

(26)

for each 0 ≤ ϕ ∈ W 1,p
0 ∩L∞(Ω). Testing now (26) with ϕk = ϕϑ

(
u
k

)
exp{Mu+}

where 0 ≤ ϕ ∈ C∞c (Ω) and ϑ is smooth, ϑ = 1 in
[− 1

2 , 1
2

]
and ϑ = 0 in

(−∞,−1] ∪ [1, +∞), it follows that
∫

Ω

∇ξL(x, u,∇u) · ∇ϕk exp{−Mu+}dx

−
∫

Ω

|u|p∗−2uϕϑ
(

u
k

)
dx

+
∫

Ω

[
DsL(x, u,∇u)−M∇ξL(x, u,∇u) · ∇u+

]
ϕϑ

(
u
k

)
dx ≥ 0



196 A. Musesti and M. Squassina

which, arguing again as in [18: Theorem 3.4], yields as k → +∞
∫

Ω

∇ξL(x, u,∇u) · ∇ϕdx +
∫

Ω

DsL(x, u,∇u)ϕdx ≥
∫

Ω

|u|p∗−2uϕdx

for each 0 ≤ ϕ ∈ C∞c (Ω). Analogously, testing with ϕε = ϕ exp{−Mu−ε }, one
obtains the opposite inequality, i.e. u is a solution of problem (P0)

4. Proofs of the main results

Let now (uε)ε>0 be a sequence of solutions of problem (Pε) with fε(uε) → c
and

p∗−p−γ
pp∗ (νS)

n
p < c < 2p∗−p−γ

pp∗ (νS)
n
p . (27)

Then there exist a subsequence of (uε)ε>0 and two bounded positive measures
µ and σ verifying (10) - (13).

Proof of Theorem 2.7. Let us first show that there exists at most one
j such that µj 6= 0. Suppose that µj 6= 0 for j = 1, . . . , r; in view of Lemma
3.2 one has µj ≥ ν

n
p∗ S

n
p . Following the proof of Lemma 2.5, we obtain

c = lim
ε→0

fε(uε)

≥ p∗ − p− γ

pp∗
ν lim

ε→0

∫

Ω

|∇uε|pdx

≥ p∗ − p− γ

pp∗
ν

∫

Ω

dµ

≥ p∗ − p− γ

pp∗
ν

r∑

j=1

µj

≥ r
p∗ − p− γ

pp∗
(νS)

n
p .

Taking into account (27) one has

2 p∗−p−γ
pp∗ (νS)

n
p > c ≥ r p∗−p−γ

pp∗ (νS)
n
p ,

hence r ≤ 1. Now, arguing again as in Lemma 2.5 one obtains

2 p∗−p−γ
pp∗ (νS)

n
p > c = lim

ε→0
fε(uε)

≥ p∗−p−γ
pp∗ ν lim

ε→0

∫

Ω

|∇uε|pdx

≥ p∗−p−γ
pp∗

(
ν

∫

Ω

|∇u|pdx + νµ1

)
.
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If both summands were non-zero, by Lemmas 3.2 and 3.3 we would obtain

ν

∫

Ω

|∇u|pdx > (νS)
n
p

νµ1 ≥ (νS)
n
p

and thus a contradiction. Vice versa, let us assume that u = 0 and µ1 = 0.
Let 0 ≤ ψ ∈ C1

c (Ω). By testing our equation with ψuε and using Hölder
inequality, one gets

∫

Ω

uε∇ξL(x, uε,∇uε) · ∇ψ dx

+
∫

Ω

ψ∇ξL(x, uε,∇uε) · ∇uεdx

+
∫

Ω

DsL(x, uε,∇uε)ψuεdx =
∫

Ω

|uε|p
∗−εψdx

≤
(∫

Ω

|uε|p
∗
ψ dx

) p∗−ε
p∗

Ln(Ω)
ε

p∗

(28)

Since (uε)ε>0 is bounded in W 1,p
0 (Ω), by (5) there exists a constant C > 0

such that ∣∣∣∣
∫

Ω

uε∇ξL(x, uε,∇uε) · ∇ψ dx

∣∣∣∣ ≤ C ‖uε‖p

which by uε → 0 in Lp(Ω) yields

lim
ε→0

∫

Ω

uε∇ξL(x, uε,∇uε) · ∇ψ dx = 0.

Moreover, since by (7) we get

∫

Ω

DsL(x, uε,∇uε)ψuεdx ≥ 0,

taking into account (6) and passing to the limit in (28) we get

∀ ψ ∈ Cc(Ω) : ψ ≥ 0 =⇒ ν

∫

Ω

ψ dµ ≤
∫

Ω

ψ dσ. (29)

On the other hand, µ1 = 0 and u = 0 imply σ = 0. Then, since µ ≥ 0, by
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(29) we get µ = 0. In particular, by (3), (6) and (7) one gets

c = lim
ε→0

fε(uε)

= lim
ε→0

[ ∫

Ω

L(x, uε,∇uε) dx

− 1
p∗−ε

∫

Ω

∇ξL(x, uε,∇uε) · ∇uεdx

− 1
p∗−ε

∫

Ω

DsL(x, uε,∇uε)uεdx

]

≤ b0 lim
ε→0

(∫

Ω

|uε|pdx +
∫

Ω

|∇uε|pdx

)

= b0

∫

Ω

dµ

= 0,

which is not possible. Therefore, either µ1 = 0 and u 6= 0, or µ1 6= 0 and
u = 0

Remark 4.1. If (27) is replaced by the (k + 1)-th critical energy range

k p∗−p−γ
pp∗ (νS)

n
p < c < (k + 1) p∗−p−γ

pp∗ (νS)
n
p

for k ∈ N, in a similar way one proves that µj = 0 for any j ≥ k +1 and there
holds:

(a) If µj = 0 for every j ≥ 1, then u is a non-trivial solution of problem
(P0).

(b) If µj 6= 0 for every 1 ≤ j ≤ k, then u = 0.

Remark 4.2. Let f0 : W 1,p
0 (Ω) → R be the functional associated with

problem (P0) and let 0 6= u ∈ W 1,p
0 (Ω) be a solution of problem (P0) (obtained

as weak limit of (uε)ε>0). Then

f0(u) > p∗−p−γ
pp∗ (νS)

n
p . (30)

Indeed,
f0(u) = f0(u)− 1

p∗ f
′
0(u)(u)

≥ p∗−p−γ
p∗

∫

Ω

L(x, u,∇u) dx

≥ p∗−p−γ
pp∗ ν

∫

Ω

|∇u|pdx
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which yields (30) in view of Lemma 3.3. This, in some sense, explains why
one chooses c greater than p∗−p−γ

pp∗ (νS)
n
p in Theorem 2.7.

Let now (uε)ε>0 be a sequence of solutions of problem (Pε) with fε(uε) →
c and

lim
ε→0

fε(uε) = p∗−p−γ
pp∗ (νS)

n
p .

Proof of Theorem 2.8. Let us first note that

f0(u) ≤ lim
ε→0

fε(uε) + 1
p∗

∞∑

j=1

σj . (31)

Indeed, taking into account that by [6: Theorem 3.4]

∫

Ω

L(x, u,∇u) dx ≤ lim
ε→0

∫

Ω

L(x, uε,∇uε) dx,

(31) follows by combining Hölder inequality with (12).

Now assume by contradiction that u 6= 0. Then there exists j0 ∈ N such
that µj0 6= 0 and σj0 6= 0, otherwise by Remark 4.2 and (31) we would get

p∗−p−γ
pp∗ (νS)

n
p < f0(u) ≤ lim

ε→0
fε(uε) = p∗−p−γ

pp∗ (νS)
n
p .

Arguing as in Lemma 2.5 and applying Lemma 3.2, we obtain

p∗−p−γ
pp∗ (νS)

n
p = lim

ε→0
fε(uε)

≥ p∗−p−γ
pp∗

(
ν

∫

Ω

|∇u|pdx + νµj0

)

≥ p∗−p−γ
pp∗ ν

∫

Ω

|∇u|pdx + p∗−p−γ
pp∗ (νS)

n
p

which implies u = 0 – a contradiction
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5. Mountain-pass critical values

In this section, we shall investigate the asymptotics of (uε) in the case of
critical levels of min-max type. We assume that L is p-homogeneous with
respect to ξ and satisfies a stronger assumption, i.e.

L(x, s, ξ) ≤ 1
p |ξ|p (32)

for a.e. x ∈ Ω and for all (s, ξ) ∈ R× Rn. In particular, it results that ν ≤ 1.
Let uε be a critical point of fε associated with the mountain pass level

cε = inf
η∈Cε

max
t∈[0,1]

fε(η(t)) (33)

where
Cε =

{
η ∈ C

(
[0, 1],W 1,p

0 (Ω)
)

: η(0) = 0 and η(1) = wε

}

and wε ∈ W 1,p
0 (Ω) is chosen in such a way that fε(wε) < 0.

Lemma 5.1. The inequality lim
ε→0

fε(uε) ≤ 1
nS

n
p holds.

Proof. Let x0 ∈ Ω and δ > 0, and consider the functions Tδ,x0 as in (15).
By Proposition 3.1/(c) one has

‖∇Tδ,x0‖p
p,Rn = ‖Tδ,x0‖p∗

p∗,Rn = S
n
p .

Moreover, taking a function φ ∈ C∞c (Ω) with 0 ≤ φ ≤ 1 and φ = 1 in a
neighbourhood of x0 and setting vδ = φTδ,x0 , it results

‖∇vδ‖p
p = S

n
p + o(1)

‖vδ‖p∗
p∗ = S

n
p + o(1)

}
(δ → 0) (34)

(see [10: Lemma 3.2]).
We want to prove that, for any t ≥ 0,

lim
ε→0

fε(tvδ) ≤ 1
nS

n
p + o(1) (δ → 0).

By (32) one has

lim
ε→0

fε(tvδ) = tp
∫

Ω

L(x, tvδ,∇vδ) dx− lim
ε→0

tp∗−ε

p∗−ε

∫

Ω

|vδ|p
∗−εdx

≤ tp

p

∫

Ω

|∇vδ|pdx− tp∗

p∗

∫

Ω

|vδ|p
∗
dx.

Keeping into account (34) and the fact that tp

p − tp∗

p∗ ≤ 1
n for every t ≥ 0, one

gets

lim
ε→0

fε(tvδ) ≤ tp

p S
n
p − tp∗

p∗ S
n
p + o(1) ≤ 1

nS
n
p + o(1) (δ → 0).

Now choose t0 > 0 such that fε(t0vδ) < 0; by (33) we have

lim
ε→0

fε(uε) ≤ lim
ε→0

max
s∈[0,1]

fε(st0vδ) ≤ 1
nS

n
p + o(1)

and this, by letting δ → 0, ends up the proof
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Theorem 5.2. Suppose that the number of non-zero Dirac masses is
[

pp∗

(p∗ − p− γ)nν
n
p

]

where [x] denotes the integer part of x. Then u = 0.

Proof. Keeping into account the previous lemma and arguing as in Lemma
2.5,

1
nS

n
p ≥ lim

ε→0
fε(uε)

≥ p∗−p−γ
pp∗ ν

( ∫

Ω

|∇u|pdx +
r∑

j=1

µj

)

≥ p∗−p−γ
pp∗ ν

∫

Ω

|∇u|pdx + r p∗−p−γ
pp∗ ν

n
p S

n
p

where r denotes the number of non-vanishing masses. Hence it must be

0 ≤ r ≤
[

pp∗

(p∗ − p− γ)nν
n
p

]
.

In particular, if r is maximum and u 6= 0, by virtue of Lemma 3.3 one obtains

p∗−p−γ
pp∗ ν

n
p S

n
p > p∗−p−γ

pp∗ ν

∫

Ω

|∇u|pdx > p∗−p−γ
pp∗ ν

n
p S

n
p

which is a contradiction

6. Final remarks

Assume that L(x, s, ξ) is of class C1 in Ω×R×Rn and, additionally, that the
vector-valued function

∇ξL(x, s, ξ) =
(

∂L
∂ξ1

(x, s, ξ), . . . ,
∂L
∂ξn

(x, s, ξ)
)

is of class C1 in Ω× R× Rn.

Theorem 6.1. Let Ω be star-shaped with respect to the origin and assume
that

p∗∇xL(x, s, ξ) · x− nDsL(x, s, ξ)s ≥ 0

for (x, s, ξ) ∈ Ω×R×Rn. Then (P0) has no non-trivial solution u in C2(Ω)∩
C1(Ω).
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Proof. Let L̂ : Ω× R× Rn → R by defined by setting

L̂(x, s, ξ) = L(x, s, ξ)− 1
p∗ |s|p

∗

for all (x, s, ξ) ∈ Ω× R× Rn. Then apply the Pucci-Serrin inequality [17]

nL̂+∇xL̂ · x− aDsL̂s− (a + 1)∇ξL̂ · ξ ≥ 0

with the choice a = n−p
p

Remark 6.2. If Ω is star-shaped and L does not depend on x, then prob-
lem (P0) admits no non-trivial solution in C2(Ω)∩C1(Ω) when DsL(s, ξ)s ≤ 0,
which is the opposite of (7). In particular, (7) seems to be a natural assump-
tion.

Remark 6.3. As noted in the introduction, if Ω is star-shaped and
L(ξ) = |ξ|p/p, in [10] it is proven that problem (P0) has no non-trivial so-
lution in W 1,p

0 (Ω). In particular, by Theorem 2.7 one has µ1 6= 0.

Acknowledgement. The authors wish to thank M. Degiovanni for pro-
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