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Some Embeddings into the Multiplier Spaces
Associated to Besov and Lizorkin-Triebel Spaces

D. Drihem and M. Moussai

Abstract. We study the set of pointwise multipliers in the Lizorkin-Triebel space
F s,q

p and of the corresponding multiplier set in the Besov space Bs,q
p , where we

give sufficient conditions on the parameters s, p and p1 such that the embeddings

F
n/p1,∞
p1 ∩ L∞ ↪→ M(F s,q

p ) and B
n/p1,∞
p1 ↪→ M(Bs,q

p ) hold.
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1. Introduction

We propose a study of set M(F s,q
p ) of pointwise multipliers in the Lizorkin-

Triebel space F s,q
p and of the corresponding multiplier set in the Besov space

Bs,q
p . Let us recall that

- M(F s,2
p ) = F s,2

p,unif (1 < p < ∞, s > n
p ) (Strichartz [9]).

- M(Bs,p
p ) = Bs,p

p,unif (1 ≤ p ≤ ∞, s > n
p ) (Peetre [6]).

- M(Bs,p
p ) (1 ≤ p ≤ ∞, s > 0) has been characterized in terms of capacities

by Maz’ya and Shaposnikova [5].
- M(F s,q

p ) = F s,q
p,unif (1 ≤ p < ∞, 1 ≤ q ≤ ∞, s > n

p ) (Franke [2]).

- M(Bs,q
p ) 6= Bs,q

p,unif (1 ≤ q < p ≤ ∞, s > n
p ) (Bourdaud [1]).

- M(Bs,q
1 ) (1 ≤ q ≤ ∞, s > 0) has been characterized in Fourier analytic

terms by Netrusov (see, for example, [7]).
- M(Bs,q

p ) = Bs,q
p,unif (1 ≤ p ≤ q ≤ ∞, s > n

p ) (Sickel and Smirnov [9]).

In this paper we consider essentially the case s = n
p and this contribution is

the continuation of Runst and Sickel’s work [7].
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2. Preliminaries

All functions, spaces etc. are defined on the Euclidean space Rn. We set
D = D(Rn), Lp = Lp(Rn) etc. If f ∈ S, then

Ff(ξ) = f̂(ξ) = 1
(2π)n

∫

Rn

f(x) exp(−ix · ξ) dx (ξ ∈ Rn)

denotes the Fourier transform of f and F−1f its inverse transform.
Let φ ∈ D such that φ ≥ 0, supp φ ⊂ {ξ ∈ Rn : 1 ≤ |ξ| ≤ 3} and∑

j∈Z φ(2−jξ) = 1. It follows that the function ξ → ϕ(ξ) = 1−∑
j≥1 φ(2−jξ)

is in C∞ with support in the ball |ξ| ≤ 3 and one has ϕ(ξ) +
∑

j≥1 φ(2−jξ) =
1 (ξ ∈ Rn). To this partition of unity we associate the convolution operators
∆k (k ∈ N) and Qj (j ∈ N ∪ {0}) defined by

(∆kf)∧(ξ) = φ(2−kξ)f̂(ξ) and (Qjf)∧(ξ) = ϕ(2−jξ)f̂(ξ).

We set ∆0 = Q0. The Littlewood-Paley decomposition is the identity

f = Qkf +
∑

j≥k+1

∆jf

(
Qkf =

∑

j≤k

∆jf

)

of all f ∈ S ′. The series converges in S ′.
The support of ∆k(∆jf∆lg) is not empty in one of the following cases:

l ≤ k + 1

j ≤ k + 1

l, j ≥ k

and k − 2 ≤ j ≤ k + 4

and k − 2 ≤ l ≤ k + 4

and |l − 1| ≤ 1.

Then we can write the product

fg =
∑

k≥0

(
∆k(1) + ∆k(2) + ∆k(3)

)
(fg) (1)

where
∆k(1)(fg) = ∆k(∆̃kf ·Qk+1g)

∆k(2)(fg) = ∆k(Qk+1f · ∆̃kg)

∆k(3)(fg) =
∑

j≥k∆k(∆jf ·∆jg)

with ∆̃k =
∑k+4

j=k−2 ∆j and ∆k =
∑k+1

j=k−1 ∆j .
Now, we recall the definition of Besov and Lizorkin-Triebel spaces. For

more details about equivalent norms, embeddings etc. see [6, 7, 10].
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Definition 2.1. For s ∈ R and 1 ≤ p, q ≤ ∞ the Besov space is

Bs,q
p =

{
f ∈ S ′ :

( ∑

j≥0

2sjq‖∆jf‖q
p

) 1
q

< ∞
}

.

For s ∈ R, 1 ≤ p < ∞ and 1 ≤ q ≤ ∞ the Lizorkin-Triebel space is

F s,q
p =

{
f ∈ S ′ :

∥∥∥∥
( ∑

j≥0

2sjq|∆jf |q
) 1

q
∥∥∥∥

p

< ∞
}

.

We will use the following assertions throughout the paper.

Lemma 2.1. If 0 < δ < 1 and 1 ≤ q ≤ ∞, then for every sequence
(εj)j∈N ∈ `q of positive numbers one has

∥∥∥∥∥
(

δj
∑

k≤j

δ−kεk

)

j

∥∥∥∥∥
`q

+

∥∥∥∥∥
(

δ−j
∑

k≥j

δkεk

)

j

∥∥∥∥∥
`q

≤ 2
1− δ

‖(εj)j‖`q . (2)

Lemma 2.2 (Bernstein’s inequality). If 1 ≤ p ≤ q ≤ ∞ and α ∈ Nn,
then there exists a constant C > 0 such that

‖f (α)‖q ≤ CR|α|+n( 1
p− 1

q )‖f‖p (3)

for all f ∈ Lp with suppf̂ ⊂ {ξ ∈ Rn : |ξ| ≤ R}.

Inequality (2) follows by using Young’s inequality in `q. Similarly, for (3)
we apply Young’s inequality to f (α) = θα

R ∗ f where θR(x) = Rnθ(Rx) (x ∈
Rn, R > 0) such that θ ∈ C∞ and θ̂(ξ) = 1 if |ξ| ≤ 1.

We finish now this section by recalling the definition of the pointwise
multipliers space of a Banach space E (in our work E = F s,q

p or E = Bs,q
p ),

denoted by M(E). This is the set of all functions m such that ‖mf‖E ≤
C‖f‖E (f ∈ E). M(E) is a Banach space with the norm equal to the infinum
of the above constants C. Concerning the properties of M(F s,q

p ) and M(Bs,q
p )

we do not go into details, referring the reader to [2, 6, 7].
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3. Embedding into M(F s,q
p )

In this section we shall formulate the result for Lizorkin-Triebel space.

Theorem 3.1. Let s ∈ R, 1 ≤ p ≤ p1 < ∞, 1 ≤ q ≤ ∞, r ≥ n
p1

and
n
p1
− r + n

p − n < s < r. Then

F r,∞
p1

∩ L∞ ↪→ M(F s,q
p ).

Proof. We treat only the case r = n
p1

. The case r > n
p1

is given in [7:
Subsections 4.4.3 and 4.4.4] and the papers of Marschall [3, 4]. Let f ∈ F s,q

p

and g ∈ F
n
p1

,∞
p1 ∩ L∞. For the estimate ‖fg‖F s,q

p
we need decomposition (1)

and the maximal inequality
∥∥∥∥∥
( ∑

k≥0

(∆∗,a
k f)q

) 1
q

∥∥∥∥∥
p

≤ C

∥∥∥∥∥
( ∑

k≥0

|∆kf |q
) 1

q

∥∥∥∥∥
p

(4)

satisfied for all f ∈ S ′ and a > n
min(p,q) , where (∆∗,a

k f)(x) = supy∈Rn
|(∆kf)(x−y)|
(1+|2ky|)a

(see [10: Theorem 2.3.6] or [7]).

Estimate of ∆k(1)(fg). Let us set

C =
∫

Rn

|(F−1φ)(y)|(1 + |y|)ady.

Since
‖Qk+1g‖∞ ≤ C‖g‖∞ (5)

we obtain |∆k(1)(fg)| ≤ C‖g‖∞(∆∗,a
k f). Taking a > n

min(p,q) and applying (4)
yield ∥∥∥∥∥

( ∑

k≥0

2sqk|∆k(1)(fg)|q
) 1

q

∥∥∥∥∥
p

≤ C‖g‖∞‖f‖F s,q
p

.

Estimate of ∆k(2)(fg). We consider the case p < p1. Let a1 and a2 in
R+ such that

|∆k(2)(fg)| ≤ C(∆∗,a1
k g)

∑

j≤k+1

∆∗,a2
j f.

By Lemma 2.1 we have

( ∑

k≥0

2sqk|∆k(2)(fg)|q
) 1

q

≤ C

( ∑

k≥0

2kq(s− n
p1

)(∆∗,a2
k f)q

) 1
q

sup
l≥0

(
2l n

p1 ∆∗,a1
l g

)
.

(6)
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Combining Hölder’s inequality (where 1
p = 1

p1
+ 1

p2
) with (4) by taking a1 > n

p1

and a2 > n
min(p2,q) shows that the left-hand side of (6) in Lp-norm is bounded

by
C‖g‖

F
n
p1

,∞
p1

‖f‖
F

s− n
p1

,q

p2

and it remains to use the inclusion F s,q
p ↪→ F

s− n
p1

,q
p2 .

Now we study the case 1 ≤ p = p1 < ∞. Let v > 1 such that 1 < p < v <
∞ and s− n

p + n
v = s1 < 0. Set 1

u = 1
p + 1

v . Then by Hölder’s inequality

2(s+ n
v )k‖∆k(2)(fg)‖u ≤ C2(s+ n

v )k‖∆̃kg‖p

∑

j≤k+1

‖∆jf‖v

≤ C‖g‖
B

n
p

,∞
p

2s1k
∑

j≤k+1

2−s1j(2s1j‖∆jf‖v).

By applying Lemma 2.1 we obtain

( ∑

k≥0

2(s+ n
v )kp‖∆k(2)(fg)‖p

u

) 1
p

≤ C‖g‖
B

n
p

,∞
p

‖f‖B
s1,p
v

.

Since B
s+ n

v ,p
u ↪→ F s,q

p ↪→ Bs1,p
v and F

n
p ,∞

p ↪→ B
n
p ,∞
p we obtain the desired

estimation.

Estimate of ∆k(3)(fg). The difficult part of the product is given by∑
k≥0 ∆k(3) fg. To get a bound for the norm of this expression one may use

[7: Proposition 4.4.2/4(i)]:

∥∥∥∥∥
∑

k≥0

∆k(3)(fg)

∥∥∥∥∥
F

s+ n
p1

,∞
t

≤ C‖g‖
F

n
p1

,∞
p1

‖f‖F s,q
p

(7)

where 1
t = 1

p + 1
p1

and s + n
p1

> n max(0, 1
t − 1) is needed. This gives the

correct bound for s (see the necessary conditions in [7: Section 4.3]) in view

of the embedding Fn,∞
1 ↪→ F

n
p1

,∞
p1 . Observe that F

s+ n
p1

,∞
t ↪→ F s,q

p

Remark 3.1. It is well known that the Hölder-Zygmund space Cρ is not
included in M(F s,q

p ) for 0 < ρ < |s| (see [10: p. 143]). Hence, if 1 ≤ p ≤ p1 <
∞, r ≥ n

p1
and n

p1
− r + n

p − n < s < r, then Cρ \ F r,∞
p1

6⊆ M(F s,q
p ).
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4. Embedding into M(Bs,q
p )

We give now the corresponding result for Bs,q
p , where the following theorem

improves the previous results obtained in [6: p. 146], [7: p. 173] and [10: p.
154].

Theorem 4.1. Let s ∈ R, 1 ≤ p ≤ p1 ≤ ∞, 1 ≤ q ≤ ∞, r ≥ n
p1

and
n
p1
− r + n

p − n < s < r. Then

Br,∞
p1

∩ L∞ ↪→ M(Bs,q
p ).

Proof. As in the proof of Theorem 3.1, we consider only the case r = n
p1

.

Let f ∈ Bs,q
p and g ∈ B

n
p1

,∞
p1 ∩ L∞. We will estimate ‖fg‖Bs,q

p
by using

(1). We systematically use the fact that ∆k and Qk are bounded operators in
L(Lp, Lp).

Estimate of ∆k(1)(fg). We begin by

‖∆k(1)(fg)‖p ≤ C‖∆̃kf‖p‖Qk+1g‖∞. (8)

Then (5) and (8) give the desired estimation.

Estimate of ∆k(2)(fg). The fact that ‖∆jf‖p2 ≤ C2jn( 1
p− 1

p2
)‖∆jf‖p

(Lemma (2.2) where 1
p = 1

p1
+ 1

p2
and Hölder’s inequality imply

2sk‖∆k(2)(fg)‖p ≤ C‖g‖
B

n
p1

,∞
p1

2k(s− n
p1

)
∑

j≤k+1

2j n
p1 ‖∆jf‖p

≤ C‖g‖
B

n
p1

,∞
p1

2k(s− n
p1

)
∑

j≤k+1

2j( n
p1
−s)(2js‖∆jf‖p).

We conclude by Lemma 2.1 (since s < n
p1

).

Estimate of ∆k(3)(fg). As in (7) we have
∥∥∥∥∥

∑

k≥0

∆k(3)(fg)

∥∥∥∥∥
B

s+ n
p1

,∞
t

≤ C‖g‖
B

n
p1

,∞
p1

‖f‖Bs,q
p

(9)

where 1
t = 1

p + 1
p1

and s+ n
p1

> n max(0, 1
t −1) is needed. In [7] only the limit

case s + n
p1

= nmax(0, 1
t − 1) is considered, but (9) is in the same spirit

Remark 4.1. As in Remark 3.1, if 0 < ρ < |s|, 1 ≤ p ≤ p1 ≤ ∞, r ≥ n
p1

and n
p1
− r + n

p − n < s < r, then Cρ \Br,∞
p1

6⊆ M(Bs,q
p ).
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