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Lq-Lr−Estimates
for Non-Stationary Stokes Equations

in an Aperture Domain

H. Abels

Abstract. This article deals with asymptotic estimates of strong solutions of Stokes
equations in aperture domains. An aperture domain is a domain, which outside a
bounded set is identical to two half spaces separated by a wall and connected inside
the bounded set by one or more holes in the wall. It is known that the corresponding
Stokes operator generates a bounded analytic semigroup in the closed subspace Jq(Ω)
of divergence free vector fields of Lq(Ω)n. We deal with Lq-Lr-estimates for the
semigroup, which are known for Rn, the half space and exterior domains.
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1. Introduction and main results

Suppose that Ω ⊂ Rn (n ≥ 3) is an aperture domain (see Figure 1) with
smooth boundary, i.e.

Ω ∪Br(0) = Rn
+ ∪ Rn

− ∪Br(0) (r > 0)

with
Rn

+ =
{
x = (x1, . . . , xn) ∈ Rn : xn > 0

}

Rn
− =

{
x = (x1, . . . , xn) ∈ Rn : xn < −d

}
(d > 0).

We consider the homogeneous non-stationary Stokes equations in (0,∞)× Ω
concerning the velocity field u(t, x) and the scalar pressure p(t, x):

∂tu−∆u +∇p = f in (0,∞)× Ω (1)
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divu = 0 in (0,∞)× Ω (2)
u|∂Ω = 0 on (0,∞)× ∂Ω (3)
Φ(u) = α in (0,∞) (4)
u|t=0 = u0 in Ω (5)

where ∂t = ∂
∂t , ∆ =

∑n
j=1

∂2

∂x2
j

, ∇ =
(

∂
∂x1

, . . . , ∂
∂xn

)T ,

Φ(u(t)) =
∫

M

N · u(t, x) dσ(x) = α(t)

is the flux through a smooth, bounded (n− 1)-dimensional manifold M with
normal vector N directed downwards dividing Ω into two unbounded con-
nected components. This flux has to be prescribed in order to get a unique
solution with u(t) ∈ Lq(Ω) with n

n−1 < q < ∞. In the case 1 < q ≤ n
n−1

the flux has to vanish, i.e. Φ(u) = 0 (see [4] for the corresponding resolvent
problem).

Figure 1: An aperture domain

In this paper we only deal with the case f = 0 and Φ(u) = 0. We
consider the asymptotic behaviour of the solutions u(t). The general case
can be derived from this case depending on the asymptotic behaviour of f(t)
and α(t). Since the Stokes operator Aq generates a bounded semigroup in

Jq(Ω) = {u ∈ C∞0 (Ω)n : divu = 0}‖·‖q the estimate ‖u(t)‖q ≤ C‖u0‖q holds.

The goal of this paper is to prove the following decay rate measuring u(t)
and u0 in the norm of Lq for different 1 < q < ∞.

Theorem 1.1. Let 1 < q ≤ r < ∞. Then there is a constant C =
C(Ω, q, r) such that

‖u(t)‖Lr(Ω) ≤ Ct−σ‖u0‖Lq(Ω) (6)

with σ = n
2 ( 1

q − 1
r ) for all t > 0 and u0 ∈ Jq(Ω).
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Theorem 1.2. Let 1 < q ≤ r < n. Then there is a constant C =
C(Ω, q, r) such that

‖∇u(t)‖Lr(Ω) ≤ Ct−σ− 1
2 ‖u0‖Lq(Ω) (7)

with σ = n
2 ( 1

q − 1
r ) for all t > 0 and u0 ∈ Jq(Ω).

These inequalities are known for other unbounded domains. In [12] Ukai
showed these estimates for 1 < q < ∞ if the domain is the half-space Rn

+. This
is done by using an explicit solution formula in terms of Riesz operators and
the heat kernel in Rn

+. In the case of an exterior domain, Iwashita [8] showed
the validity of (6) for 1 < q ≤ r < ∞ and that of (7) for 1 < q ≤ r ≤ n.

The proof of Theorems 1.1 and 1.2 uses a similar technique as in [8]. It
consists of first showing a local estimate of the Lq-norm of u(t) and then com-
paring the full Lq-norm with suitable solutions of the non-stationary Stokes
equations in Rn

+. The local estimate is derived from an asymptotic expansion
of the resolvent of the Stokes operator in the aperture domain around 0 in
special weighted Lq-spaces. The resolvent expansion is constructed by using
a similar resolvent expansion of the Stokes operator in the half-space Rn

+. For
the latter expansion we combine Ukai’s solution formula [12] with an resolvent
expansion of the Laplace operator ∆ in Rn, based on the results of Murata
[9].

Remark 1.3. With the methods of this article we can not prove Theorem
1.2 for the case r = n, which is done by Iwashita in the case of the exterior
domain. This is due to a slightly weaker estimate of the local part of the
Lq-norm (see Corollary 6.2 and [8: Theorem 1.2/(i)]). We get this condition
because we have to deal with weighted Lq-spaces of the kind Lq(Ω;ωsq) such
that ωsq is a Muckenhoupt weight (see preliminaries); this condition on the
weights is not needed in [8].

The Lq-Lr-estimate can be used to construct solutions of the instationary
Navier-Stokes equations with arbitrary flux Φ(u) as perturbation of steady-
state solution. For the case n = 2 this problem is still unsolved. Unfortunately,
the used approach can not be applied to a two-dimensional aperture domain.
The reason is that we can not prove Theorem 4.1 since there is no number σ
with 1 < σ < n

2 , n = 2. The restriction σ < n
2 is due to the restriction to

Muckenhoupt weights. The condition σ > 1 is necessary for the perturbation
argument used in the proof of Theorem 4.1. – We have to assure that the
resolvent of the Stokes operator in Rn

+ considered as map between different
weighted Lq-spaces exists for z = 0.
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2. Preliminaries and notation

We will consider the resolvent expansion in a scale of weighted Lq-spaces

Lq(Ω;ωsq) =
{

f : Ω → R measurable
∣∣∣ ‖f‖Lq(Ω;ωsq) < ∞

}
(s ∈ R)

where

‖f‖Lq(Ω;ωsq) =
( ∫

Ω

|f(x)|qωsq(x) dx

) 1
q

.

Analogously we define the weighted Sobolev spaces as

Wm
q (Ω;ωsq) =

{
f ∈ L1,loc(Ω)

∣∣∣ Dαf ∈ Lq(Ω;ωsq) ∀ |α| ≤ m
}

and
Wm

0,q(Ω;ωsq) = C∞0 (Ω)
W m

q (Ω;ωsq)
.

Recall that f ∈ L1,loc(Ω) means that f ∈ L1(Ω ∩ B) for all balls B with
Ω ∩B 6= ∅. Moreover,

Dαf(x) = ∂α1
x1
· · · ∂αn

xn
f(x) (α ∈ Nn

0 ).

By Ẇm
q (Ω; ωsq) we denote the corresponding homogeneous Sobolev space of

L1,loc-functions f with Dαf ∈ Lq(Ω;ωsq) for all |α| = m. Finally,

Jq(Ω; ωsq
n ) = {u ∈ C∞0 (Ω)n : divu = 0}Lq(Ω;ωsq

n )
.

For simplicity we often will skip the exponent n if we deal with spaces of
vector fields, e.g. we write f ∈ Lq(Ω) instead of f ∈ Lq(Ω)n. If X and Y
are two Banach spaces, we denote by L(X,Y ) the space of all bounded linear
maps T : X → Y . Furthermore, L(X) = L(X, X).

In [8, 9] the simple weight ω(x) = 〈x〉 := (1 + |x|2) 1
2 is used. For −n

q <

s < n
q′ the weight 〈x〉sq is an element of the Muckenhoupt class Aq. This is

the class of all measurable functions ω : Rn → [0,∞) with

1
|B|

∫

B

ω(x) dx

(
1
|B|

∫

B

ω(x)−
q′
q dx

) q

q′
≤ A < ∞

where B is an arbitrary ball in Rn and A is independent of B. The weights
ω ∈ Aq have the important property that singular integral operators like the
Riesz transforms

Rjf(x) := F−1

[
iξj

|ξ| f̂(ξ)
]

= cn lim
ε→0

∫

Rn\Bε(x)

xj − yj

|x− y|n+1
f(y) dy
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(j = 1, . . . , n) are continuous on Lq(Rn; ω) into itself. Here F [u](ξ) = û(ξ)
denotes the Fourier transform with respect to x. See, for example, [11: Chap-
ter V,§4.2/Theorem 2] for the continuity and [10: Chapter III, Section 1] for
Riesz transforms.

We will also use the partial Riesz transforms

Sjf(x) = F−1
ξ′ 7→x′

[
iξj

|ξ′| f̃(ξ′, xn)
]

= cn−1 lim
ε→0

∫

Rn−1\Bε(x′)

x′j − y′j
|x′ − y′|n f(y′, xn) dy

(
j = 1, . . . , n − 1; x = (x′, xn), ξ = (ξ′, ξn)

)
for functions f defined on Rn

+ or
Rn. These partial Riesz transforms are used in Ukai’s solution formula.

Unfortunately, the weight 〈x〉sq considered for fixed xn as weight in Rn−1

is in the class Aq only if −n−1
q < s < n−1

q′ . Therefore we will use the slightly
weaker weight

ωn(x) =
n∏

i=1

〈xi〉 1
n .

For this weight ωn(x)sq considered for fixed xn is in Aq on Rn for −n
q < s < n

q′ .
This is easily derived from the special product structure and the fact that
〈xi〉 s

n is a one-dimensional weight in Aq.
Therefore we get

Lemma 2.1. Let Ω = Rn or Ω = Rn
+, 1 < q < ∞, −n

q < s < n
q′ and

ωn(x) =
∏n

i=1〈xi〉 1
n . Then the (partial) Riesz transforms are continuous from

Lq(Ω;ωsq
n ) into itself.

Moreover, we introduce

Σδ = {z ∈ C \ {0} : |argz| < δ}
Σδ,ε = Σδ ∩Bε(0).

Recall the Helmholtz decomposition of a vector field f ∈ Lq(Ω; ωsq
n )n, i.e. the

unique decomposition f = f0 +∇p with f0 ∈ Jq(Ω;ωsq
n ) and p ∈ Ẇ 1

q (Ω; ωsq
n ).

The existence and continuity of the corresponding Helmholtz projection

Pq : Lq(Ω;ωsq
n )n → Jq(Ω;ωsq

n ), f 7→ Pqf = f0

is proved in [3: Theorem 5] for the case that Ω = Rn or Ω = Rn
+, or that Ω is

a bounded domain. For the case of an aperture domain and s = 0 the result
is proved in [4: Theorem 2.6].

Furthermore, we define the Stokes operator

Aq = −Pq∆
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in Jq(Ω) with D(Aq) = W 2
q (Ω) ∩W 1

0,q(Ω) ∩ Jq(Ω). Note that the resolvent of
Aq satisfies the estimate

‖(z + Aq)−1f‖Lq(Ω) ≤ Cδ|z|−1‖f‖Lq(Ω) (8)

for z ∈ Σδ (δ ∈ (0, π)) if Ω is an aperture domain (see [9: Theorem 2.5]).
Therefore −Aq generates an analytic semigroup.

3. The resolvent expansion in Rn
+

We consider the resolvent equations system

(z −∆)u +∇p = f in Rn
+ (9)

divu = 0 in Rn
+ (10)

u|∂Rn
+

= 0 on ∂Rn
+. (11)

Let R0(z) = (z −∆)−1 denote the resolvent of the Laplace operator in Rn.

Lemma 3.1. Let 1 ≤ p ≤ ∞, 0 < δ < π, α ∈ Nn
0 with |α| ≤ 2, |α|2 < σ <

n+|α|
2 , −n

p < s′ < s < n
p′ and s′ = s− 2σ + |α|. Then

DαR0(z) =
[σ]−1∑

j=0

zjDαG0j + G0r(z)

where

G0r(z) = O(zσ−1) in L(
Wm

p (Rn;ωsp
n ),Wm+2−|α|

p (Rn;ωs′p
n )

)

for z → 0 with z ∈ Σδ.

Proof. The proof is the same as [9: Lemma 2.3/(i)]. It is based on the
estimate for the convolution operator with the heat kernel E0(t)

‖DαE0(t)‖L(Lp(Rn;ωsp),Lp(Rn;ωs′p)
) ≤ |t|− |α|2 〈t〉−σ (12)

for ω(x) = ωn(x), t ∈ Σδ0 , 0 < δ0 < π
2 , α ∈ Nn

0 , 0 ≤ σ < n
2 and −n

p < s′ <

s < n
p′ with s′ = s − 2σ. This estimate is proved in [9: Lemma 2.2] for the
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case ω(x) = 〈x〉. But this case implies the estimate for ω(x) = ωn(x) since

‖DαE0(t)f‖Lp(Rn;ωs′p
n )

≤
∥∥∥∥∥

∫

Rn−1

∣∣∣∣∣D
α′ e

− |x′−y′|2
4t

(4πt)
n−1

2

∣∣∣∣∣

×
∥∥∥∥∥

∫

R
∂αn

xn

e−
|xn−yn|2

4t√
4πt

f(y′, yn) dyn

∥∥∥∥∥
Lp

(
R;〈xn〉

s′p
n

)dy′
∥∥∥∥∥

Lp

(
Rn−1;ω

s′p n−1
n

n−1 (x′)
)

≤ C|t|−αn
2 〈t〉− σ

n

×
∥∥∥∥∥

∫

Rn−1

∣∣∣∣∣D
α′ e

− |x′−y′|2
4t

(4πt)
n−1

2

∣∣∣∣∣‖f(y′, ·)‖
Lp

(
R;〈xn〉

sp
n

)dy′
∥∥∥∥∥

Lp

(
Rn−1;ω

s′p n−1
n

n−1 (x′)
)

≤ C

(
n∏

i=1

|t|−αi
2 〈t〉− σ

n

)
‖f‖Lp(Rn;ωsp

n )

= C|t|− |α|2 〈t〉−σ‖f‖Lp(Rn;ωsp
n )

with α = (α′, αn)

Remark 3.2. The operators G0j and G0r(z) are given by

G0j =
∫ ∞

0

E0(t)
(−t)j

j!
dt (13)

G0r(z) =
∫ ∞

0

E0(t)f[σ](zt) dt with f[σ](zt) = e−zt −
[σ]−1∑

j=0

(−zt)j

j!
. (14)

We recall Ukai’s solution formula for the homogeneous non-stationary Stokes
equations in Rn

+ (see [13]), i.e. (1) - (3) and (5) for Ω = Rn
+, f = 0 with

compatibility condition divu0 = 0 in Rn
+ and un

0 = 0, u0 = (u′0, u
n
0 ) on ∂Rn

+.
Let Rj and Sj be as above. Moreover, let rf = f |Rn

+
, γf = f |∂Rn

+
and e

be the extension operator from Rn
+ to Rn with value 0. Finally, let E(t)

be the solution operator for the heat equation in Rn
+, which is derived from

E0(t) by odd extension from Rn
+ to Rn. Then the solution (u(t), p(t)) of the

non-stationary Stokes equations in Rn
+ is

u(t) = WE(t)V u0

p(t) = −Dγ∂nE(t)V1u0

where

W =
(

I −SU
0 U

)
and V =

(
V2

V1

)
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with
S = (S1, . . . , Sn−1)T

U = rR′ · S(R′ · S + Rn)e

V1u0 = −S · u′0 + un
0

V2u0 = u′0 + Sun
0

R′ = (R1, . . . , Rn−1)T

and D is the Poisson operator for the Dirichlet problem of the Laplace equation
in Rn

+.
Using this result, we get:

Theorem 3.3. Let 1 < q < ∞, 0 < δ < π, n ≥ 3, |α|
2 < σ < n+|α|

2 ,
α ∈ Nn

0 with |α| ≤ 2,−n
q < s′ ≤ 0 ≤ s < n

q′ and s′ = s− 2σ + |α|. Then there
exist operators R+(z) and P+(z) with

DαR+(z) ∈ L(
Lq(Rn

+; ωsq
n ),W 2−|α|

q (Rn
+;ωs′q

n )
)

P+(z) ∈ L(
Lq(Rn

+; ωsq
n ), Ẇ 1

q (Rn
+; ωs′q

n )
)

depending continuously on z ∈ Σδ ∪ {0} such that:

1. u = R+(z)f and p = P+(z)f with f ∈ Lq(Rn
+;ωsq

n ) is a solution of
problem (9)− (11) for z ∈ Σδ.

2. R+(z) ∈ L(
Lq(Rn

+;ωsq
n ),W 2

q (Rn
+)

)
and P+(z) ∈ L(

Lq(Rn
+; ωsq

n ), Ẇ 1
q (Rn

+)
)

for every z ∈ Σδ.
3. The asymptotic expansions

DαR+(z) =
[σ]−1∑

j=0

zjDαGj + O(zσ−1) in L(
Lq(Rn

+;ωsq
n ),W 2−|α|

q (Rn
+;ωs′q

n )
)

P+(z) =
[σ]−1∑

j=0

zjP+,j + O(zσ−1) in L(
Lq(Rn

+; ωsq
n ), Ẇ 1

q (Rn
+; ωs′q

n )
)

if |α| = 2

hold for z → 0, z ∈ Σδ.

Proof. Because of the Helmholtz decomposition in weighted Lq-Spaces
(see [5: Theorem 5]) we can assume without loss of generality that f ∈
Jq(Ω;ωsq). Therefore the asymptotic expansion for R+(z) simply follows from
the expansion of R0(z), equations (13) - (14), the continuity of the Riesz trans-
forms Sj and Rj in Lq(Rn; ωsq

n ) and Lq(Rn
+; ωsq

n ) if −n
q < s < n

q′ and the fact

R+(z)f =
∫ ∞

0

e−tzWE(t)V f dt.
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In order to get the result for DαR+(z) (|α| ≤ 2) we use the relations

∂nU = (I − U)|∇′| = −(I − U)
∑n−1

i=1 Si∂i

∂iS = S∂i (i = 1, . . . , n)

∂iU = U∂i (i = 1, . . . , n− 1)

and prove the expansion in the same way as in the case α = 0. We note that
the first equation is a consequence of

Fx′ 7→ξ′ [Uf ](ξ′, xn) = |ξ′|
∫ xn

0

e−|ξ|(xn−yn)f̃(ξ′, xn) dyn (15)

(see the proof of [12: Theorem 1.1]); the other equations are obvious. Finally,
we get the expansion of ∇P+(z) in the same way using |∇′|Dγ = ∂nU−U∂n

Because of estimate (12) and Ukai’s formula we also easily get

Lemma 3.4. Let u(t) = WE(t)V u0 with u0 ∈ Jq(Rn
+; ωsq

n ) denote the
solution of the homogeneous non-stationary Stokes equations (1)− (3), (5) for
Ω = Rn

+ and f = 0. Then

‖u(t)‖
Lq(Rn

+;ωs′q
n )

≤ C(1 + t)−σ‖u0‖Lq(Rn
+;ωsq

n )

with 1 < q < ∞, −n
q < s′ ≤ 0 ≤ s < n

q′ , s′ = s− 2σ and t ≥ 0.

8. Resolvent expansions in aperture domains

We consider the resolvent equations system

(z −∆)u +∇p = f in Ω (16)
divu = 0 in Ω (17)
u|∂Ω = 0 on ∂Ω (18)
Φ(u) = 0 (19)

for an aperture domain Ω.

Theorem 4.1. Let 1 < q < ∞, 0 < δ < π, n ≥ 3, 1 < σ < n
2 , σ 6∈ Z,

−n
q < s′ ≤ 0 ≤ s < n

q′ and s′ := s−2σ. Then there are an ε > 0 and operators

R(z) ∈ L(
Lq(Ω;ωsq

n ),W 2
q (Ω; ωs′q

n )
)

P (z) ∈ L(
Lq(Ω;ωsq

n ), Ẇ 1
q (Ω; ωs′q

n )
)
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depending continuously on z ∈ Σδ,ε ∪ {0} with the following properties:

1. The pair u = R(z)f and p = P (z)f is a solution of problem (16)−(19).

2. R(z) ∈ L(
Lq(Ω; ωsq

n ), W 2
q (Ω)

)
for every z ∈ Σδ,ε.

3. The operator-valued function R(z) (z ∈ Σδ,ε0) has an expansion

R(z) =
[σ]−1∑

j=0

zjGj + Gr(z)

in L(
Lq(Ω;ωsq

n ),W 2
q (Ω; ωs′q

n )
)

where Gr(z) = O(zσ−1) for z → 0.

Proof. We use the technique used in the proof of [8: Theorem 3.1]. Let
Ω∪Br(0) = Rn

+∪Rn
−∪Br(0). We choose b,R ∈ R such that b > R > r+3 and

denote Rn
± = Rn

+ ∪Rn
−, Ω± = Ω∩Rn

± and Ωb = Ω∩Bb(0). Let ϕ,ψ ∈ C∞(Ω)
be cut-off functions with

ϕ(x) =
{

1 for |x| > R
0 for |x| < R− 1 and ψ(x) =

{
1 for |x| > R− 2
0 for |x| < R− 3.

We identify ψf with its extension by 0 to Rn
±. Moreover, we define

R±(z) : Lq(Rn
±; ωsq

n ) → W 2
q (Rn

±;ωs′q
n )

by

R±(z)g(x) =
{

R+(z)(g|Rn
+
)(x) if x ∈ Rn

+

R−(z)(g|Rn
−)(x) if x ∈ Rn

−.

The operator
P±(z) : Lq(Rn

±;ωsq
n ) → Ẇ 1

q (Rn
±; ωs′q

n )

is defined analogously. Let fb := f |Ωb
and

(L,P ) : Lq(Ωb)n → W 2
q (Ωb)n × Ẇ 1

q (Ωb)

be the solution operator of the Stokes equation in the bounded domain Ωb.
Define

R1(z) ∈ L(
Lq(Ω; ωsq

n ), W 2
q (Ω;ωs′q

n )
)

by
R1(z)f = ϕR±(z)(ψf) + (1− ϕ)Lfb.

Similarly, define
Π(z) ∈ L(

Lq(Ω; ωsq
n ), Ẇ 1

q (Ω;ωs′q
n )

)
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by
Π(z)f = ϕP±(z)(ψf) + (1− ϕ)Pfb.

Obviously, the operator R1(z) has the same type of expansion as R±(z). Let

P±(z) =
[σ]−1∑

j=0

zjP±,j + P±,r(z)

with
P±,r(z) = O(zσ−1) in L(

Lq(Rn
±; ωsq

n ), Ẇ 1
q (Rn

±;ωs′q
n )

)

be the expansion for P±(z). We choose P±,jf, P±,rf ∈ Ẇ 1
q (Rn

±) such that
∫

DR∩Ω

P±,0f dx =
∫

DR∩Ω

Pfb dx

∫

DR∩Ω

P±,r(z)f dx = 0,

∫

DR∩Ω

P±,jf dx = 0 (j = 1, . . . , [σ]− 1)

where DR = {x ∈ Ω : R− 1 < |x| < R}. Applying Poincaré’s inequality

‖f‖q ≤ C

(
‖∇f‖q +

∣∣∣∣
∫

D

f(x) dx

∣∣∣∣
)

for a bounded domain D with C0-boundary (see [2: Chapter 5/Theorem 4.19])
it follows that

‖P±,0f − Pfb‖Lq(DR∩Ω) ≤ C
(‖∇P±,0f‖Lq(DR∩Ω) + ‖∇Pfb‖Lq(Ωb)

) ≤ C‖f‖Lq(Ω;ωsq
n )

‖P±,jf‖Lq(DR∩Ω) ≤ C‖∇P±,jf‖Lq(DR∩Ω) ≤ C‖f‖Lq(Ω;ωsq
n )

‖P±,r(z)f‖Lq(DR∩Ω) ≤ C‖∇P±,r(z)f‖Lq(DR∩Ω) ≤ C|z|σ−1‖f‖Lq(Ω;ωsq
n ).

Because of these inequalities and the identity

∇Π(z)f = ϕ∇P±(z)(ψf) + (1− ϕ)∇Pfb + (∇ϕ)(P±(z)(ψf)− Pf)

the operator Π(z) has the same type of expansion as P±(z).
It remains to correct the divergence of R1(z)f . For this we apply Bogov-

skii’s Theorem (see, e.g., [6: Theorem 3.2]) to div(R1(z)f) = ∇ϕ·{R±(z)(ψf)−
Lfb}, which has compact support in DR. We note that
∫

DR

div(R1(z)f) = −
∫

BR∩Rn
±

div
(
(1− ϕ)R±(z)(ψf)

)
dx−

∫

Ωb

div(ϕLfb) dx

= −
∫

∂(BR∩Rn
±)

N · (1− ϕ)R±(z)(ψf) dσ −
∫

∂Ωb

N · ϕLfb dσ

= 0.
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Since divR1(z)f ∈ W 2
q (DR) ∩ W 1

0,q(DR), we get a compact operator Q(z) :
Lq(Ω;ωsq

n ) → W 2
0,q(DR) with divQ(z)f = divR1(z)f . The operator Q(z)

depends continuously on z ∈ Σδ ∪ {0}.
We identify Q(z)f with its extension by zero to a function Q(z)f ∈

W 2
0,q(Ω;ωs′q

n ). Now let

R2(z) := R1(z)−Q(z) ∈ L(
Lq(Ω;ωsq

n ),W 2
q (Ω; ωs′q

n )
)
.

Then R2(z)f solves

(z −∆)R2(z)f +∇Π(z)f = f + S(z)f

divR2(z)f = 0

R2(z)f = 0

in Ω

in Ω

on ∂Ω

for all f ∈ Lq(Ω;ωsq
n ), where

S(z)f = −{
2(∇ϕ) · ∇+ (∆ϕ)

}{
R±(z)(ψf)− Lfb

}

+ z(1− ϕ)Lfb + (∆− z)Q(z)f +∇ϕ
(
P±(z)(ψf)− Pfb

)
.

Since suppS(z)f ⊆ DR, we conclude S(z) ∈ L(Lq(Ω; ωsq
n )). The term (∆ −

z)Q(z) ∈ L(Lq(Ω;ωsq
n )) is a compact operator since Q(z) : Lq(Ω;ωsq

n ) →
W 2

0,q(DR) is compact. Furthermore, S(z) − (∆ − z)Q(z) : Lq(Ω;ωsq
n ) →

W 1
q (DR) is continuous, so S(z) ∈ L(Lq(Ω;ωsq

n )) is a compact operator. More-
over, S(z) is continuous in z ∈ Σδ ∪ {0} and has the same type of expansion
in L(Lq(Ω;ωsq

n )) as R±(z) in L(
Lq(Ω;ωsq

n ),W 2
q (Ω;ωs′q

n )
)
.

In the following Lemma 4.2 we show that I +S(0) is injective. Since S(0)
is compact, the Fredholm alternative yields that (I +S(0))−1 ∈ L(Lq(Ω;ωsq

n ))
exists. Therefore (I + S(z))−1 exists for all z ∈ Σδ,ε for some ε > 0. More
precisely,

(I + S(z))−1 = (I + S(0))−1
∞∑

k=0

[
(S(0)− S(z))(I + S(0))−1

]k

for all z ∈ Σδ,ε0 , where ε0 > 0 is chosen so small that

‖S(z)− S(0)‖ ≤ 1
2‖(I + S(0))−1‖ (z ∈ Σδ,ε0).

Since S(z) and therefore all powers (S(0) − S(z))k have an expansion in
L(Lq(Ω;ωsq

n )) of the same type as R±(z), the inverse (I + S(z))−1 has the
same.

If we now set R(z) = R2(z)(I +S(z))−1 and P (z) = Π(z)(I +S(z))−1, we
get the solution operators of the resolvent problem with the desired expan-
sion
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Lemma 4.2. Let S(z) denote the same operator as in the proof of The-
orem 4.1. Then I + S(0) ∈ L(Lq(Ω;ωsq

n )) is injective.

Proof. It is known [3, 4] that the Stokes equations in an aperture domain
have a unique solution (u, p̃) ∈ [

Ẇ 2
p (Ω) ∩ Ẇ 1

p∗(Ω)
]n × Ẇ 1

p (Ω) ( 1
p∗ = 1

p − 1
n

with 1 < p < n) for given force f ∈ Lp(Ω) and prescribed flux Φ(u) = α ∈ R.
We calculate the flux of R2(0). Since M ⊂ Br, the identity R2(0)f(x) =

Lfb(x) holds for all x ∈ M . Denote by B+ the connected component of
Br(0) \M “above” M . Then we conclude that

0 =
∫

B+

divLfb dx =
∫

∂B+

Lfb ·N dσ =
∫

M

Lfb ·N dσ =
∫

M

R2(0)f ·N dσ.

Therefore we get R2(0)f = 0 and Π(0) = const if we show that R2(0)f ∈[
Ẇ 2

p (Ω) ∩ Ẇ 1
p∗(Ω)

]n and Π(0)f ∈ Ẇ 1
p (Ω).

Let (I+S(0))f = 0. That means f = −S(0)f , and therefore the support of
f is contained in Ωb. This implies f ∈ Lp(Ω; ωsp

n ) for all s ∈ R and 1 ≤ p ≤ q.
Claim. ∇2R2(0)f,∇Π(0)f ∈ Lp(Ω) for all 1 < p ≤ q and ∇R2(0)f ∈

Lp∗(Ω) with 1
p∗ = 1

p − 1
n and 1 < p < min{q, n}.

Proof of claim. For i, j ∈ {1, . . . , n} there holds

∂i∂jR2(0)f = ϕ∂i∂jR±(0)(ψf) + ∂i∂j [(1− ϕ)Lfb] + (∂iϕ)∂jR±(0)(ψf)

+ (∂jϕ)∂iR±(0)(ψf) + (∂i∂jϕ)R±(0)(ψf)− ∂i∂jQ(0)f.

The support of every term except the first one is contained in Ωb. Therefore
each of these function is an element of Lp(Ω) for every 1 ≤ p ≤ q.

Considering the first term, Theorem 3.3 tells us that

∂i∂jR±(0) ∈ L(
Lp(Rn

±; ωsp
n ), Lp(Ω, ωs′p

n )
)

for all −n
p < s′ ≤ 0 ≤ s < n

p′ , s′ = s−2σ +2 and 1 < σ < n
2 . Since f ∈ Ls

p(Ω)
for arbitrary s ∈ R and 1 ≤ p ≤ q, we can apply Theorem 3.3 for s′ = 0 and
s = 2σ − 2. Therefore we choose 1 < σ < n

2 such that n
n−2σ+2 < p which

is equivalent to 2σ − 2 < n
p′ . Thus we get ∂i∂jR±(0)(ψf) ∈ Lp(Ω) for every

1 < p ≤ q. With the same choice of s and s′ we see that ∇Π(0)f ∈ Lp(Ω) for
all 1 < p ≤ q.

The same argumentation can be applied to

∂iR2(0)f = ϕ∂iR±(0)(ψf) + ∂i[(1− ϕ)Lfb] + (∂iϕ)R±(0)(ψf)− ∂iQ(0)f.

In this case
∂iR±(0) ∈ L(

Lr(Ω;ωsr
n ), Lr(Ω; ωs′r

n )
)
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holds for all −n
r < s′ ≤ 0 ≤ s < n

r′ , s′ := s − 2σ + 1, 1 < σ < n
2 . The choice

of s′ = 0 and s = 2σ − 1 yields the condition 2σ − 1 < n
r′ . Since 1

r + 1
n = 1

p ,
this condition is equivalent to 2σ− 2 < n

p′ which is equivalent to p > n
n−2σ+2 .

This proves the claim.

Thus R2(0)f = 0 and ∇Π(0)f = 0. Since suppQ(0) ⊆ {x : R− 1 ≤ |x| ≤
R}, it is obvious that for x ∈ Ω

R2(0)f(x) =
{

R±(0)(ψf)(x) = 0 if |x| ≥ R
Lfb(x) = 0 if |x| ≤ R− 1

∇Π(0)f(x) =
{∇P±(0)(ψf)(x) = 0 if |x| ≥ R
∇Pfb(x) = 0 if |x| ≤ R− 1.

This implies f = 0 for |x| ≥ R since

∆R±(0)(ψf) +∇P±(0)(ψf) = ψf in Rn
±.

Similarly we get f = 0 for x ∈ Ω with |x| ≤ R− 1 since −∆Lfb +∇Pfb = fb

in Ωb. The support of
(
R±(0)(ψf), P±(0)(ψf)

)
and of (Lfb, Pfb) is contained

in D̃ = {x ∈ Ω : R − 1 < |x| < b}. Therefore both terms solve the Stokes
problem

−∆u +∇p = f in D̃

divu = 0 in D̃

u = 0 on ∂D̃.

This implies that R±(0)(ψf) = Lfb and ∇P±(0)(ψf) = ∇Pfb in D̃ because
of the unique solvability of the Stokes equations in a bounded domain. Hence
Q(z)f = 0, Lfb = R2(0)f = 0 and ∇Pfb = ∇Π(0)f = 0 in D̃ and finally
f = 0 in the whole domain

5. Decay of the semigroup in weighted spaces

Let Aq = −Pq∆ denote the Stokes operator for an aperture domain Ω.

Theorem 5.1. Let n ≥ 3, 1 < σ < n
2 , 1 < q < ∞, −n

q < s′ ≤ 0 ≤ s < n
q′

and s′ = s− 2σ. Then there exists a constant C = C(q, s, s′) such that

‖e−tAqf‖
Lq(Ω;ωs′q

n )
≤ C(1 + t)−σ‖f‖Lq(Ω;ωsq

n ) (t ≥ 0)

for all f ∈ Jq(Ω) ∩ Lq(Ω;ωsq
n ). Furthermore,

‖e−tAqf‖
W 2

q (Ω;ωs′q
n )

≤ C(1 + t)−σ max
{‖f‖W 2

q (Ω), ‖f‖Lq(Ω;ωsq
n )

}
(t ≥ 0)
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for all f ∈ D(Aq) ∩ Lq(Ω;ωsq
n ).

Proof. The proof of the inequalities is nearly the same as the proof of [8:
Theorem 1.1]. So we give only a sketch.

Since the semigroup e−tAq is bounded in Jq(Ω), the first estimate is sat-
isfied for 0 < t < 1. The second estimate holds for 0 < t < 1 because of the
estimates

‖f‖W 2
q (Ω) ≤ c‖(I + Aq)f‖Lq(Ω) ≤ C‖f‖W 2

q (Ω) (20)

for all f ∈ D(Aq) (the first inequality is a consequence of [4: Theorem 2.1],
the second inequality is obvious). For t ≥ 1 consider the representation of the
semigroup

e−tAq = 1
2πi

∫

Γ

etz(z + Aq)−1dz

where the curve Γ coincides outside a ball Bε(0) (0 < ε < ε0) with the rays
e±φit̃ (t̃ > 0) with π

2 < φ < δ (δ and ε0 are the same numbers as in Theorem
4.1). We split the curve Γ into two parts

Γ1 =
{
z ∈ Γ : 0 < |z| < ε

}

Γ2 =
{
z ∈ Γ : ε ≤ |z|}.

So we get

e−tAqf = 1
2πi

∫

Γ1

etzR(z)f dz + 1
2πi

∫

Γ2

etz(z + Aq)−1f dz

for all f ∈ Jq(Ω) ∩ Lq(Ω; ωsq
n ) since R(z)f = (z + Aq)−1f for z ∈ Σδ,ε. Using

the resolvent estimate ‖(z + Aq)−1f‖q ≤ C|z|−1‖f‖q we easily get

∥∥∥∥ 1
2πi

∫

Γ2

etz(z + Aq)−1dzf

∥∥∥∥
Lq(Ω;ωs′q

n )

≤ C

∫ ∞

ε

ets cos φ

s
ds ‖f‖Lq(Ω)

≤ C(ε, φ)
e−ct

t
‖f‖Lq(Ω;ωsq

n )

with some constant C = C(ε, φ) > 0. Analogously we get

∥∥∥∥ 1
2πi

∫

Γ2

etz(z + Aq)−1dzf

∥∥∥∥
W 2

q (Ω;ωs′q
n )

≤ C

∫ ∞

ε

ets cos φ

s
ds ‖f‖W 2

q (Ω)

≤ C(ε, φ)
e−ct

t
‖f‖W 2

q (Ω)

if we use (20) for f ∈ D(Aq).
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We use the resolvent expansion of Theorem 4.1 to estimate the first inte-
gral. Since

∑[σ]−1
j=0 zjGj is holomorphic in C, there holds

∥∥∥∥∥
[σ]−1∑

j=0

∫

Γ1

etzzjGjdz

∥∥∥∥∥
L(Lq(ωsq

n ),W 2
q (ωs′q

n ))

≤ Ceεt cos(φ) = Ce−ct

with C > 0. In order to estimate the remainder term we deform the curve Γ1

to a curve Γ∗ which coincides with z = e±φit̃ (t̃ ∈ [0, ε]). Therefore

∥∥∥∥ 1
2πi

∫

Γ1

etzGr(z) dz

∥∥∥∥
L(Lq(ωsq

n ),W 2
q (ωs′q

n ))

≤ C

∫ ∞

0

eλt cos(φ)λσ−1dλ = C ′t−σ.

Collecting all estimates we proved the theorem

6. The Lq-Lr-estimate

In order to get an estimate of ‖e−tAqf‖Lq(Ωb) where Ωb = Ω∩Bb(0), we need
the following

Lemma 6.1. Let 1 < q < ∞ and −n
q < s′ < 0. Then

‖e−tAqf‖
Lq(Ω;ωs′q

n )
≤ C(1 + t)

s′
2 ‖f‖Lq(Ω)

for all f ∈ Jq(Ω) and

‖e−tAqf‖
W 2

q (Ω;ωs′q
n )

≤ C(1 + t)
s′
2 ‖f‖W 2

q (Ω)

for all f ∈ D(Aq).

Corollary 6.2. Let 1 < q < ∞. Then for every 0 ≤ s < n
2q there is a

constant C = C(s, q, Ω) with

‖e−tAqf‖Lq(Ωb) ≤ C(1 + t)−s‖f‖Lq(Ω)

for all f ∈ Jq(Ω) and

‖e−tAqf‖W 2
q (Ωb) ≤ C(1 + t)−s‖f‖W 2

q (Ω)

for all f ∈ D(Aq).
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Proof of Lemma 6.1. If 1 < p < n
2 , then n

p > 2. So we can we apply
Theorem 5.1 with s = 0. Therefore we get

‖e−tApf‖
W m

p (Ω;ωs̃′p
n )

≤ C(1 + t)
s̃′
2 ‖f‖W m

p (Ω) (21)

for m = 0, 2, f ∈ Jp(Ω) resp. f ∈ D(Ap) and −n
p < s̃′ < −2. In order to get

the statement of the lemma we interpolate estimates (21) and

‖e−tArf‖W m
r (Ω) ≤ C‖f‖W m

r (Ω)

(
m = 0, 2; f ∈ Jr(Ω) resp. D(Ar)

)
(22)

for suitable p close to 1 and large r. For this we need the statement about
complex interpolation

(
Lp(Ω; ωs̃′p

n ), Lr(Ω)
)
[θ]

= Lq(Ω;ωs̃′p(1−θ)
n )

with 0 < θ < 1 and 1
q = 1−θ

p + θ
r (see, for example, [1: Theorem 5.5.3]).

Now let 1 < q < ∞ and −n
q < s′ < 0 be given as in the assumptions. We

set s̃′ = s′
1−θ and 1

q = 1−θ
p + θ

r for 0 < θ < 1. Then we choose 0 < θ < 1 such
that

−n

p
(1− θ) < s′ < −2(1− θ) ⇐⇒ −n

p
< s̃′ < −2

which exists if 1 < p < min{n
2 , q}. If we furthermore use (Jp(Ω), Jr(Ω))[θ] =

Jq(Ω) (see Appendix), we get with these chosen θ and p and the corresponding
r that

‖e−tAqf‖
Lq(Ω;ωs′q

n )
≤ C

[
(1 + t)

s̃′
2
]1−θ‖f‖Lq(Ω) = C(1 + t)

s′
2 ‖f‖Lq(Ω)

for f ∈ Jq(Ω). Complex interpolation with the same parameters yields the
estimate for f ∈ D(Aq). For this we use the second estimate of Theorem
5,1 and

(D(Ap),D(Ar)
)
[θ]

= D(Aq). The latter equation will be proved in
Appendix

Proof of Theorem 1.1. The proof is similar to that of [8: Theorem 1.2]
but a little bit shorter. It is sufficient to show the statement for 0 < σ < 1

2
since we can reduce the general case to this statement (choose q = q0 < q1 <
. . . < qk = r such that σi := n

2 ( 1
qi
− 1

qi+1
) < 1

2 and apply the statement to qi

and qi+1).

Step 1: The inequality holds for t ≥ 2. Let ũ0 := e−Aqu0. Then ũ0 ∈
D(Aq) and ‖ũ0‖W 2

q (Ω) ≤ C‖u0‖Lq(Ω). Moreover, let ũ(t) := e−tAq ũ0 and
p̃(t) ∈ Ẇ 1

q (Ω) be the pressure corresponding to ũ(t). Let Ω ∪ Br(0) = Rn
+ ∪

Rn
− ∪ Br(0) and b > r + 1. We choose a cut-off function ψ ∈ C∞(Ω) with
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ψ(x) = 1 for |x| ≥ b and ψ(x) = 0 for |x| ≤ b−1. Then div(ψũ(t)) = ∇ψ·ũ(t) ∈
W 1

0,q(Db) with Db =
{
x ∈ Ω : b − 1 < |x| < b

}
and

∫
Db
∇ψ · ũ(t) dx = 0.

Applying Bogovskii’s theorem [6: Theorem 3.2] we know that there exists a
v0(t) ∈ W 2

0,q(Db) with divv0(t) = div(ψũ(t)) and

‖v0(t)‖W 2
q (Db) ≤ C‖ũ(t)‖W 1

q (Db). (23)

Therefore we have

‖∂tv0(t)‖W 1
q (Db) ≤ C‖e−tAqAqũ0‖Lq(Db) ≤ C(1 + t)−s̃‖ũ0‖W 2

q (Ω) (24)

with an arbitrary 0 ≤ s̃ < n
2q . If we define v1(t) = ψũ(t)− v0(t), it solves the

equations

∂tv1(t)−∆v1(t) +∇(ψp̃(t)) = h(t) in (0,∞)× Rn
± (25)

divv1(t) = 0 in (0,∞)× Rn
± (26)

v1(t)|∂Rn
± = 0 in (0,∞) (27)

v1(0) = v1 (28)

with v1 = ψũ0 − v0(0) and

h(t) = −{
2(∇ψ) · ∇+ (∆ψ)

}
ũ(t)− (∂t −∆)v0(t) + (∇ψ)p̃(t).

Moreover, supph(t) ⊆ Db. We choose the pressure p̃(t) such that
∫

Db
p̃(t) dx =

0. If we now apply (23) - (24), Poincaré’s inequality [2: Theorem 4.19] and
Corollary 6.2, we get

‖h(t)‖Lq(Db) ≤ C
(
‖ũ(t)‖W 1

q (Db) + ‖v0(t)‖W 2
q (Db) + ‖∂tv0(t)‖Lq(Db) + ‖p̃(t)‖Lq(Db)

)

≤ C
(
(1 + t)−

s̃
2 ‖ũ0‖W 2

q (Ω) + ‖∇p̃(t)‖Lq(Ωb)

)

≤ C
(
(1 + t)−

s̃
2 ‖ũ0‖W 2

q (Ω) + ‖∂tũ(t)‖Lq(Db) + ‖ũ(t)‖W 2
q (Db)

)

≤ C(1 + t)−
s̃
2 ‖ũ0‖W 2

q (Ω)

with an arbitrary s̃ such that 0 ≤ s̃ < n
q .

Let E±(t) denote the semigroup of the Stokes operator in Rn
± and P±

denote the Helmholtz projection in Lq(Rn
±;ωsq

n ). Since v1(t) solves (25) -
(28), the identity

v1(t) = E±(t)v1 +
∫ t

0

E±(t− τ)P±h(τ) dτ
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holds. Because of Corollary 3.4 and the Lq − Lr-estimate in the half space
[12: Theorem 3.1] the semigroup E±(t) satisfies

‖E±(t)f‖Lr(Rn
±) ≤ Ct−σ‖f‖Lq(Rn

±)

‖E±(t)f‖Lq(Rn
±) ≤ C(1 + t)−

s
2 ‖f‖Lq(Rn

±;ωsq
n )

with 1 < q ≤ r < ∞, 0 ≤ s < n
q′ and σ = n

2 ( 1
q − 1

r ) for all t > 0 and
f ∈ Jq(Rn

±) resp. f ∈ Jq(Rn
±; ωsq

n ). Using both inequalities we get

‖E±(t)f‖Lr(Rn
±) ≤ Ct−σ

∥∥∥E±
( t

2

)
f
∥∥∥

Lq(Rn
±)
≤ Ct−σ(1 + t)−

s
2 ‖f‖Lq(Rn

±;ωsq
n )

for f ∈ Jq(Rn
±;ωsq

n ) and t > 0. Therefore we conclude

‖E±(t)v1‖Lr(Rn
±) ≤ Ct−σ‖v1‖Lq(Rn

±) ≤ Ct−σ‖ũ0‖Lq(Ω)

and ∥∥∥∥
∫ t

0

E±(t− τ)P±h(τ) dτ

∥∥∥∥
Lr(Rn

±)

≤ C

∫ t

0

(t− τ)−σ(1 + t− τ)−
s
2 ‖P±h(τ)‖Lq(Rn

±;ωsq
n )︸ ︷︷ ︸

≤C‖h(τ)‖Lq(Rn
±;ωsq

n )

dτ

≤ C

∫ t

0

(t− τ)−σ(1 + t− τ)−
s
2 ‖h(τ)‖Lq(Db)dτ

≤ C

∫ t

0

(t− τ)−σ(1 + t− τ)−
s
2 (1 + τ)−

s̃
2 dτ ‖ũ0‖W 2

q (Ω).

We now choose 0 ≤ s < n
q′ and σ ≤ s̃

2 < n
2q such that s

2 + s̃
2 > 1, s

2 + σ 6= 1
and s̃

2 6= 1 (this is possible since n
2q + n

2q′ = n
2 > 1). If we apply Lemma A.2

(see Appendix) with this choice of s and s̃, we get
∥∥∥∥
∫ t

0

E±(t− τ)P±h(τ) dτ

∥∥∥∥
Lr(Rn

±)

≤ Ct−σ‖ũ0‖W 2
q (Ω)

and therefore
‖v1(t)‖Lr(Rn

±) ≤ Ct−σ‖ũ0‖W 2
q (Ω).

Since u(t, x) = v1(t, x) for all x ∈ Ω \ Ωb, the previous estimates, Corollary
6.2 and Sobolev’s embedding theorem imply that

‖ũ(t)‖Lr(Ω) ≤ ‖ũ(t)‖Lr(Ωb) + ‖v1(t)‖Lr(Ω\Ωb)

≤ C
(‖ũ(t)‖W 2

q (Ωb) + ‖v1(t)‖Lr(Ω\Ωb)

)

≤ Ct−σ‖ũ0‖W 2
q (Ω)

≤ Ct−σ‖f‖Lq(Ω).
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Since ũ(t) = e−(t+1)Aqu0, we have proved the theorem for t ≥ 2

Step 2: The inequality holds for t < 2. The case t < 2 is proved in
the same way as in the proof of [8: Theorem 1.2] using Sobolev’s embedding
theorem and an interpolation method

Proof of Theorem 1.2. Because of the semigroup property of e−tAq and
Theorem 1.1 it suffices to prove the statement for σ = 0, i.e. 1 < q = r < n.
The proof for the case t < 2 uses the same interpolation method as in the
proof of Theorem 1.2.

So let t ≥ 2 and v1(t), v0(t), h(t) be the functions used in the proof of
Theorem 1.1. Then

∇v1(t) = ∇E±(t)v1 +
∫ t

0

∇E±(t− τ)P±h(τ) dτ.

The estimate for the Stokes semigroup in Rn
± yields

‖∇E±(t)v1‖Lq(Rn
±) ≤ Ct−

1
2 ‖v1‖Lq(Rn

+).

Now we choose 0 ≤ s < n
q′ and 1 ≤ s̃ < n

q with s
2 + s̃

2 > 1, s̃
2 6= 1 and 1

2 + s
2 6= 1.

So we get because of Corollary 6.2 and Lemma A.2 (see Appendix)

∥∥∥∥
∫ t

0

∇E±(t− τ)P±h(τ) dτ

∥∥∥∥
Lq(Rn

±)

≤ C

∫ t

0

(t− τ)−
1
2 (1 + t− τ)−

s
2 ‖P±h(τ)‖Lq(Rn

±;ωsq)dτ

≤ C

∫ t

0

(t− τ)−
1
2 (1 + t− τ)−

s
2 ‖h(τ)‖Lq(Ωb)dτ

≤ C

∫ t

0

(t− τ)−
1
2 (1 + t− τ)−

s
2 (1 + τ)−

s̃
2 dτ ‖ũ0‖W 2

q (Ω)

≤ Ct−
1
2 ‖ũ0‖W 2

q (Ω).

Moreover, let s̃ = 1 < n
q . Therefore we get for t ≥ 1

‖∇e−(t+1)Aqf‖Lq(Ω) ≤ C
(‖∇ũ(t)‖Lq(Ωb) + ‖∇v1(t)‖Lq(Rn

±)

)

≤ C
(
(1 + t)−

s̃
2 + t−

1
2
)‖ũ0‖W 2

q (Ω)

≤ Ct−
1
2 ‖f‖Lq(Ω).

Thus the theorem is also true for t ≥ 2
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A. Appendix

It remains to prove the necessary technical lemma used in the last section.

Lemma A.1. Let 1 < p, q, r < ∞, θ ∈ (0, 1) with 1
q = 1−θ

r + θ
p and let Ω

be an aperture domain. Then

(D(Ar),D(Ap))[θ] = D(Aq)

(Jr(Ω), Jp(Ω))[θ] = Jq(Ω).

Proof. To prove the first equality we define a continuous projection Pq :
W 2

q (Ω)n → D(Aq) for arbitrary 1 < q < ∞. For a function u ∈ W 2
q (Ω)n let

(v, p) ∈ W 2
q (Ω)n×Ẇ 1

q (Ω) denote the unique solution of the resolvent equations
(16) - (19) with right-hand side f = (z −∆)u for some fixed z ∈ Σδ (see [9:
Theorem 2.1]). We set Pqu = v. Then

‖v‖W 2
q (Ω) ≤ C‖(z −∆)u‖Lq(Ω) ≤ C‖u‖W 2

q (Ω).

If u ∈ D(Aq), (u, 0) is the unique solution of these equations. Therefore Pq is
a continuous projection on D(Aq).

If u ∈ W 2
r (Ω)n ∩ W 2

q (Ω)n, the corresponding solutions in W 2
r (Ω)n and

W 2
q (Ω)n coincide (see [3: Lemma 3.2]). Therefore we can extend Pq and Pr

to a well-defined projection P (ur + uq) = Prur + Pquq on W 2
r (Ω)n + W 2

p (Ω)n

with P |W 2
r (Ω)n = Pr and P |W 2

p (Ω)n = Pp. Therefore we conclude

D(Aq) = P
(
W 2

r (Ω)n,W 2
p (Ω)n

)
[θ]

=
(
PW 2

r (Ω)n, PW 2
p (Ω)n

)
[θ]

=
(D(Ar),D(Ap)

)
[θ]

.

The second equality immediately follows from the fact that Pq = Pr on Jq(Ω)∩
Jr(Ω) (see [4: Lemma 3.2])

Lemma A.2. Let 0 ≤ α < 1, β ≥ 0, α ≤ γ, β + γ > 1, α + β 6= 1 and
γ 6= 1. Then

∫ t

0

(t− s)−α(1 + t− s)−β(1 + s)−γds ≤ Ct−α.

Proof. The case t ∈ (0, 1) is trivial. For t > 1 we simply estimate
∫ t

2

0

(t− s)−α(1 + t− s)−β(1 + s)−γds ≤ Ct−α−β

∫ t
2

0

(1 + s)−γds

≤ Ct−α−β

{
t1−γ if γ < 1
1 if γ > 1

≤ Ct−α.
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Similarly we get
∫ t

t
2

(t− s)−α(1 + t− s)−β(1 + s)−γds ≤ Ct−γ

{
t1−α−β if α + β < 1
1 if α + β > 1

≤ Ct−α

and the proof is finished

Acknowledgment: We thank the referee for pointing out to us the re-
sults on symmetric aperture flows (see [7]).
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