L_q - L_r –Estimates for Non-Stationary Stokes Equations in an Aperture Domain

H. Abels

Abstract. This article deals with asymptotic estimates of strong solutions of Stokes equations in aperture domains. An aperture domain is a domain, which outside a bounded set is identical to two half spaces separated by a wall and connected inside the bounded set by one or more holes in the wall. It is known that the corresponding Stokes operator generates a bounded analytic semigroup in the closed subspace $J_q(\Omega)$ of divergence free vector fields of $L_q(\Omega)^n$. We deal with L_q - L_r -estimates for the semigroup, which are known for \mathbb{R}^n , the half space and exterior domains.

Keywords: Stokes equations, aperture domains, asymptotic behavior, asymptotic expansions

AMS subject classification: 35Q30, 76D07, 35B40, 35C20

1. Introduction and main results

Suppose that $\Omega \subset \mathbb{R}^n$ $(n \geq 3)$ is an aperture domain (see Figure 1) with smooth boundary, i.e.

$$
\Omega \cup B_r(0) = \mathbb{R}^n_+ \cup \mathbb{R}^n_- \cup B_r(0) \qquad (r > 0)
$$

with

$$
\mathbb{R}^{n}_{+} = \{x = (x_{1},...,x_{n}) \in \mathbb{R}^{n} : x_{n} > 0\}
$$

$$
\mathbb{R}^{n}_{-} = \{x = (x_{1},...,x_{n}) \in \mathbb{R}^{n} : x_{n} < -d\} \quad (d > 0).
$$

We consider the homogeneous non-stationary Stokes equations in $(0, \infty) \times \Omega$ concerning the velocity field $u(t, x)$ and the scalar pressure $p(t, x)$:

$$
\partial_t u - \Delta u + \nabla p = f \qquad \text{in } (0, \infty) \times \Omega \tag{1}
$$

abels@mathematik.tu-darmstadt.de

ISSN 0232-2064 / \$ 2.50 © Heldermann Verlag Berlin

H. Abels: FB Math. der Techn. Univ. Darmstadt, Schloßgartenstr. 7, D-64289 Darmstadt

$$
divu = 0 \qquad \text{in } (0, \infty) \times \Omega \tag{2}
$$

- $u|_{\partial\Omega}=0\qquad\text{on }(0,\infty)\times\partial\Omega\qquad \qquad (3)$
- $\Phi(u) = \alpha$ in $(0, \infty)$ (4)

$$
u|_{t=0} = u_0 \qquad \text{in } \Omega \tag{5}
$$

where
$$
\partial_t = \frac{\partial}{\partial t}
$$
, $\Delta = \sum_{j=1}^n \frac{\partial^2}{\partial x_j^2}$, $\nabla = \left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right)^T$,

$$
\Phi(u(t)) = \int_M N \cdot u(t, x) d\sigma(x) = \alpha(t)
$$

is the flux through a smooth, bounded $(n-1)$ -dimensional manifold M with normal vector N directed downwards dividing Ω into two unbounded connected components. This flux has to be prescribed in order to get a unique solution with $u(t) \in L_q(\Omega)$ with $\frac{n}{n-1} < q < \infty$. In the case $1 < q \leq \frac{n}{n-1}$ $n-1$ the flux has to vanish, i.e. $\Phi(u) = 0$ (see [4] for the corresponding resolvent problem).

Figure 1: An aperture domain

In this paper we only deal with the case $f = 0$ and $\Phi(u) = 0$. We consider the asymptotic behaviour of the solutions $u(t)$. The general case can be derived from this case depending on the asymptotic behaviour of $f(t)$ and $\alpha(t)$. Since the Stokes operator A_q generates a bounded semigroup in $J_q(\Omega) = \overline{\{u \in C_0^{\infty}(\Omega)^n : \text{div}u = 0\}}^{\|\cdot\|_q}$ the estimate $||u(t)||_q \leq C||u_0||_q$ holds.

The goal of this paper is to prove the following decay rate measuring $u(t)$ and u_0 in the norm of L_q for different $1 < q < \infty$.

Theorem 1.1. Let $1 < q \leq r < \infty$. Then there is a constant $C =$ $C(\Omega, q, r)$ such that

$$
||u(t)||_{L_r(\Omega)} \le Ct^{-\sigma} ||u_0||_{L_q(\Omega)}
$$
\n(6)

with $\sigma = \frac{n}{2}$ $\frac{n}{2}(\frac{1}{q}$ $\frac{1}{q} - \frac{1}{r}$ $(\frac{1}{r})$ for all $t > 0$ and $u_0 \in J_q(\Omega)$.

Theorem 1.2. Let $1 < q \leq r < n$. Then there is a constant $C =$ $C(\Omega, q, r)$ such that

$$
\|\nabla u(t)\|_{L_r(\Omega)} \le C t^{-\sigma - \frac{1}{2}} \|u_0\|_{L_q(\Omega)} \tag{7}
$$

with $\sigma = \frac{n}{2}$ $\frac{n}{2}(\frac{1}{q}$ $\frac{1}{q} - \frac{1}{r}$ $(\frac{1}{r})$ for all $t > 0$ and $u_0 \in J_q(\Omega)$.

These inequalities are known for other unbounded domains. In [12] Ukai showed these estimates for $1 < q < \infty$ if the domain is the half-space \mathbb{R}^n_+ . This is done by using an explicit solution formula in terms of Riesz operators and the heat kernel in \mathbb{R}^n_+ . In the case of an exterior domain, Iwashita [8] showed the validity of (6) for $1 < q \leq r < \infty$ and that of (7) for $1 < q \leq r \leq n$.

The proof of Theorems 1.1 and 1.2 uses a similar technique as in [8]. It consists of first showing a local estimate of the L_q -norm of $u(t)$ and then comparing the full L_q -norm with suitable solutions of the non-stationary Stokes equations in \mathbb{R}^n_+ . The local estimate is derived from an asymptotic expansion of the resolvent of the Stokes operator in the aperture domain around 0 in special weighted L_q -spaces. The resolvent expansion is constructed by using a similar resolvent expansion of the Stokes operator in the half-space \mathbb{R}^n_+ . For the latter expansion we combine Ukai's solution formula [12] with an resolvent expansion of the Laplace operator Δ in \mathbb{R}^n , based on the results of Murata [9].

Remark 1.3. With the methods of this article we can not prove Theorem 1.2 for the case $r = n$, which is done by Iwashita in the case of the exterior domain. This is due to a slightly weaker estimate of the local part of the L_q -norm (see Corollary 6.2 and [8: Theorem 1.2/(i)]). We get this condition because we have to deal with weighted L_q -spaces of the kind $L_q(\Omega; \omega^{sq})$ such that ω^{sq} is a Muckenhoupt weight (see preliminaries); this condition on the weights is not needed in [8].

The L_q - L_r -estimate can be used to construct solutions of the instationary Navier-Stokes equations with arbitrary flux $\Phi(u)$ as perturbation of steadystate solution. For the case $n = 2$ this problem is still unsolved. Unfortunately, the used approach can not be applied to a two-dimensional aperture domain. The reason is that we can not prove Theorem 4.1 since there is no number σ with $1 < \sigma < \frac{n}{2}$, $n = 2$. The restriction $\sigma < \frac{n}{2}$ is due to the restriction to Muckenhoupt weights. The condition $\sigma > 1$ is necessary for the perturbation argument used in the proof of Theorem $4.1.$ – We have to assure that the resolvent of the Stokes operator in \mathbb{R}^n_+ considered as map between different weighted L_q -spaces exists for $z = 0$.

2. Preliminaries and notation

We will consider the resolvent expansion in a scale of weighted L_q -spaces

$$
L_q(\Omega; \omega^{sq}) = \left\{ f : \Omega \to \mathbb{R} \text{ measurable} \middle| \|f\|_{L_q(\Omega; \omega^{sq})} < \infty \right\} \qquad (s \in \mathbb{R})
$$

where

$$
||f||_{L_q(\Omega;\omega^{sq})} = \left(\int_{\Omega} |f(x)|^q \omega^{sq}(x) \, dx\right)^{\frac{1}{q}}.
$$

Analogously we define the weighted Sobolev spaces as

$$
W_q^m(\Omega; \omega^{sq}) = \left\{ f \in L_{1,loc}(\overline{\Omega}) \middle| D^{\alpha} f \in L_q(\Omega; \omega^{sq}) \,\,\forall \,|\alpha| \le m \right\}
$$

and

$$
W_{0,q}^m(\Omega;\omega^{sq}) = \overline{C_0^{\infty}(\Omega)}^{W_q^m(\Omega;\omega^{sq})}.
$$

Recall that $f \in L_{1,loc}(\overline{\Omega})$ means that $f \in L_1(\Omega \cap B)$ for all balls B with $\Omega \cap B \neq \emptyset$. Moreover,

$$
D^{\alpha} f(x) = \partial_{x_1}^{\alpha_1} \cdots \partial_{x_n}^{\alpha_n} f(x) \qquad (\alpha \in \mathbb{N}_0^n).
$$

By $\dot{W}_q^m(\Omega; \omega^{sq})$ we denote the corresponding homogeneous Sobolev space of $L_{1,loc}$ -functions f with $D^{\alpha} f \in L_q(\Omega; \omega^{sq})$ for all $|\alpha| = m$. Finally,

$$
J_q(\Omega; \omega_n^{sq}) = \overline{\{u \in C_0^{\infty}(\Omega)^n : \text{div} u = 0\}}^{L_q(\Omega; \omega_n^{sq})}.
$$

For simplicity we often will skip the exponent n if we deal with spaces of vector fields, e.g. we write $f \in L_q(\Omega)$ instead of $f \in L_q(\Omega)^n$. If X and Y are two Banach spaces, we denote by $\mathcal{L}(X, Y)$ the space of all bounded linear maps $T: X \to Y$. Furthermore, $\mathcal{L}(X) = \mathcal{L}(X, X)$.

In [8, 9] the simple weight $\omega(x) = \langle x \rangle := (1 + |x|^2)^{\frac{1}{2}}$ is used. For $-\frac{n}{a}$ $\frac{n}{q} <$ $s < \frac{n}{q'}$ the weight $\langle x \rangle^{sq}$ is an element of the Muckenhoupt class \mathcal{A}_q . This is the class of all measurable functions $\omega : \mathbb{R}^n \to [0, \infty)$ with

$$
\frac{1}{|B|}\int_B\omega(x)\,dx\left(\frac{1}{|B|}\int_B\omega(x)^{-\frac{q'}{q}}dx\right)^{\frac{q}{q'}}\leq A<\infty
$$

where B is an arbitrary ball in \mathbb{R}^n and A is independent of B. The weights $\omega \in A_q$ have the important property that singular integral operators like the Riesz transforms

$$
R_j f(x) := \mathcal{F}^{-1} \left[\frac{i\xi_j}{|\xi|} \hat{f}(\xi) \right] = c_n \lim_{\varepsilon \to 0} \int_{\mathbb{R}^n \setminus B_{\varepsilon}(x)} \frac{x_j - y_j}{|x - y|^{n+1}} f(y) \, dy
$$

 $(j = 1, \ldots, n)$ are continuous on $L_q(\mathbb{R}^n; \omega)$ into itself. Here $\mathcal{F}[u](\xi) = \hat{u}(\xi)$ denotes the Fourier transform with respect to x. See, for example, [11: Chapter V,§4.2/Theorem 2] for the continuity and [10: Chapter III, Section 1] for Riesz transforms.

We will also use the partial Riesz transforms

$$
S_j f(x) = \mathcal{F}_{\xi' \mapsto x'}^{-1} \left[\frac{i\xi_j}{|\xi'|} \tilde{f}(\xi', x_n) \right] = c_{n-1} \lim_{\varepsilon \to 0} \int_{\mathbb{R}^{n-1} \setminus B_{\varepsilon}(x')} \frac{x'_j - y'_j}{|x' - y'|^n} f(y', x_n) dy
$$

¡ $j = 1, \ldots, n - 1; x = (x', x_n), \xi = (\xi', \xi_n)$ ¢ for functions f defined on \mathbb{R}^n_+ or \mathbb{R}^n . These partial Riesz transforms are used in Ukai's solution formula.

Unfortunately, the weight $\langle x \rangle^{sq}$ considered for fixed x_n as weight in \mathbb{R}^{n-1} is in the class \mathcal{A}_q only if $-\frac{n-1}{q}$ $\frac{-1}{q} < s < \frac{n-1}{q'}$. Therefore we will use the slightly weaker weight

$$
\omega_n(x) = \prod_{i=1}^n \langle x_i \rangle^{\frac{1}{n}}.
$$

For this weight $\omega_n(x)^{sq}$ considered for fixed x_n is in \mathcal{A}_q on \mathbb{R}^n for $-\frac{n}{q}$ $\frac{n}{q} < s < \frac{n}{q'}$. This is easily derived from the special product structure and the fact that $\langle x_i \rangle^{\frac{s}{n}}$ is a one-dimensional weight in \mathcal{A}_q .

Therefore we get

Lemma 2.1. Let $\Omega = \mathbb{R}^n$ or $\Omega = \mathbb{R}^n_+$, $1 < q < \infty$, $-\frac{n}{q}$ $\frac{n}{q} < s < \frac{n}{q'}$ and $\omega_n(x) = \prod_{i=1}^n \langle x_i \rangle^{\frac{1}{n}}$. Then the (partial) Riesz transforms are continuous from $L_q(\Omega;\omega_n^{sq})$ into itself.

Moreover, we introduce

$$
\Sigma_{\delta} = \{ z \in \mathbb{C} \setminus \{0\} : |\arg z| < \delta \}
$$
\n
$$
\Sigma_{\delta, \varepsilon} = \Sigma_{\delta} \cap B_{\varepsilon}(0).
$$

Recall the Helmholtz decomposition of a vector field $f \in L_q(\Omega; \omega_n^{sq})^n$, i.e. the unique decomposition $f = f_0 + \nabla p$ with $f_0 \in J_q(\Omega; \omega_n^{sq})$ and $p \in \dot{W}_q^1(\Omega; \omega_n^{sq})$. The existence and continuity of the corresponding Helmholtz projection

$$
P_q: L_q(\Omega; \omega_n^{sq})^n \to J_q(\Omega; \omega_n^{sq}), \qquad f \mapsto P_q f = f_0
$$

is proved in [3: Theorem 5] for the case that $\Omega = \mathbb{R}^n$ or $\Omega = \mathbb{R}^n_+$, or that Ω is a bounded domain. For the case of an aperture domain and $s = 0$ the result is proved in $|4:$ Theorem 2.6.

Furthermore, we define the Stokes operator

$$
A_q = -P_q \Delta
$$

in $J_q(\Omega)$ with $\mathcal{D}(A_q) = W_q^2(\Omega) \cap W_{0,q}^1(\Omega) \cap J_q(\Omega)$. Note that the resolvent of A_q satisfies the estimate

$$
\|(z + A_q)^{-1}f\|_{L_q(\Omega)} \le C_\delta |z|^{-1} \|f\|_{L_q(\Omega)} \tag{8}
$$

for $z \in \Sigma_{\delta}$ $(\delta \in (0, \pi))$ if Ω is an aperture domain (see [9: Theorem 2.5]). Therefore $-A_q$ generates an analytic semigroup.

3. The resolvent expansion in \mathbb{R}^n_+ +

We consider the resolvent equations system

$$
(z - \Delta)u + \nabla p = f \qquad \text{in } \mathbb{R}_+^n \tag{9}
$$

$$
\text{div}u = 0 \qquad \text{in } \mathbb{R}_+^n \tag{10}
$$

$$
u|_{\partial \mathbb{R}^n_+} = 0 \qquad \text{on } \partial \mathbb{R}^n_+.
$$
 (11)

Let $R_0(z) = (z - \Delta)^{-1}$ denote the resolvent of the Laplace operator in \mathbb{R}^n .

Lemma 3.1. Let $1\leq p\leq\infty,~0<\delta<\pi,~\alpha\in\mathbb{N}_0^n$ with $|\alpha|\leq 2,~\frac{|\alpha|}{2}$ $\frac{\alpha_1}{2} < \sigma <$ $n+|\alpha|$ $\frac{-|\alpha|}{2}, -\frac{n}{p}$ $\frac{n}{p} < s' < s < \frac{n}{p'}$ and $s' = s - 2\sigma + |\alpha|$. Then

$$
D^{\alpha}R_0(z) = \sum_{j=0}^{[\sigma]-1} z^j D^{\alpha}G_{0j} + G_{0r}(z)
$$

where

$$
G_{0r}(z) = O(z^{\sigma-1}) \quad in \quad \mathcal{L}\big(W_p^m(\mathbb{R}^n; \omega_n^{sp}), W_p^{m+2-|\alpha|}(\mathbb{R}^n; \omega_n^{s'p})\big)
$$

for $z \to 0$ with $z \in \Sigma_{\delta}$.

Proof. The proof is the same as [9: Lemma $2.3/(i)$]. It is based on the estimate for the convolution operator with the heat kernel $E_0(t)$

$$
||D^{\alpha}E_0(t)||_{\mathcal{L}\left(L_p(\mathbb{R}^n;\omega^{sp}),L_p(\mathbb{R}^n;\omega^{s'p})\right)} \leq |t|^{-\frac{|\alpha|}{2}}\langle t\rangle^{-\sigma}
$$
\n(12)

for $\omega(x) = \omega_n(x)$, $t \in \Sigma_{\delta_0}$, $0 < \delta_0 < \frac{\pi}{2}$ $\frac{\pi}{2}$, $\alpha \in \mathbb{N}_0^n$, $0 \leq \sigma < \frac{n}{2}$ and $-\frac{n}{p}$ $\frac{n}{p} < s' <$ $s < \frac{n}{p'}$ with $s' = s - 2\sigma$. This estimate is proved in [9: Lemma 2.2] for the case $\omega(x) = \langle x \rangle$. But this case implies the estimate for $\omega(x) = \omega_n(x)$ since

$$
\|D^{\alpha}E_{0}(t)f\|_{L_{p}(\mathbb{R}^{n};\omega_{n}^{s'p})}\n\n\leq \left\|\int_{\mathbb{R}^{n-1}}\left|D^{\alpha'}\frac{e^{-\frac{|x'-y'|^{2}}{4t}}}{(4\pi t)^{\frac{n-1}{2}}}\right|\n\n\times \left\|\int_{\mathbb{R}}\partial_{x_{n}}^{\alpha_{n}}\frac{e^{-\frac{|x_{n}-y_{n}|^{2}}{4t}}}{\sqrt{4\pi t}}f(y',y_{n})\,dy_{n}\right\|_{L_{p}(\mathbb{R};\langle x_{n}\rangle^{\frac{s'p}{n}})}dy'\right\|_{L_{p}(\mathbb{R}^{n-1};\omega_{n-1}^{s'p^{\frac{n-1}{n}}}(x'))}\n\n\leq C|t|^{-\frac{\alpha_{n}}{2}}\langle t\rangle^{-\frac{\sigma}{n}}\n\n\times \left\|\int_{\mathbb{R}^{n-1}}\left|D^{\alpha'}\frac{e^{-\frac{|x'-y'|^{2}}{4t}}}{(4\pi t)^{\frac{n-1}{2}}}\right||f(y',\cdot)\right\|_{L_{p}(\mathbb{R};\langle x_{n}\rangle^{\frac{s p}{n}})}dy'\right\|_{L_{p}(\mathbb{R}^{n-1};\omega_{n-1}^{s'p^{\frac{n-1}{n}}}(x'))}\n\n\leq C\left(\prod_{i=1}^{n}|t|^{-\frac{\alpha_{i}}{2}}\langle t\rangle^{-\frac{\sigma}{n}}\right)\|f\|_{L_{p}(\mathbb{R}^{n};\omega_{n}^{s p})}\n\n= C|t|^{-\frac{|\alpha|}{2}}\langle t\rangle^{-\sigma}\|f\|_{L_{p}(\mathbb{R}^{n};\omega_{n}^{s p})}
$$

with $\alpha = (\alpha', \alpha_n)$

Remark 3.2. The operators G_{0j} and $G_{0r}(z)$ are given by

$$
G_{0j} = \int_0^\infty E_0(t) \frac{(-t)^j}{j!} dt
$$
\n(13)

$$
G_{0r}(z) = \int_0^\infty E_0(t) f_{[\sigma]}(zt) dt \quad \text{with} \quad f_{[\sigma]}(zt) = e^{-zt} - \sum_{j=0}^{[\sigma]-1} \frac{(-zt)^j}{j!}.
$$
 (14)

We recall Ukai's solution formula for the homogeneous non-stationary Stokes equations in \mathbb{R}^n_+ (see [13]), i.e. (1) - (3) and (5) for $\Omega = \mathbb{R}^n_+$, $f = 0$ with compatibility condition div $u_0 = 0$ in \mathbb{R}^n_+ and $u_0^n = 0$, $u_0 = (u_0', u_0^n)$ on $\partial \mathbb{R}^n_+$. Let R_j and S_j be as above. Moreover, let $rf = f|_{\mathbb{R}^n_+}$, $\gamma f = f|_{\partial \mathbb{R}^n_+}$ and e be the extension operator from \mathbb{R}^n_+ to \mathbb{R}^n with value 0. Finally, let $E(t)$ be the solution operator for the heat equation in \mathbb{R}^n_+ , which is derived from $E_0(t)$ by odd extension from \mathbb{R}^n_+ to \mathbb{R}^n . Then the solution $(u(t), p(t))$ of the non-stationary Stokes equations in \mathbb{R}^n_+ is

$$
u(t) = WE(t)Vu_0
$$

$$
p(t) = -D\gamma \partial_n E(t)V_1 u_0
$$

where

$$
W = \begin{pmatrix} I & -SU \\ 0 & U \end{pmatrix} \quad \text{and} \quad V = \begin{pmatrix} V_2 \\ V_1 \end{pmatrix}
$$

with

$$
S = (S_1, \dots, S_{n-1})^T
$$

\n
$$
U = rR' \cdot S(R' \cdot S + R_n)e
$$

\n
$$
V_1 u_0 = -S \cdot u'_0 + u_0^n
$$

\n
$$
V_2 u_0 = u'_0 + S u_0^n
$$

\n
$$
R' = (R_1, \dots, R_{n-1})^T
$$

and D is the Poisson operator for the Dirichlet problem of the Laplace equation in \mathbb{R}^n_+ .

Using this result, we get:

Theorem 3.3. Let $1 < q < \infty, 0 < \delta < \pi, n \geq 3, \frac{|\alpha|}{2}$ $\frac{\alpha|}{2} < \sigma < \, \frac{n+|\alpha|}{2},$ $\alpha \in \mathbb{N}_0^n$ with $|\alpha| \leq 2, -\frac{n}{q}$ $\frac{n}{q} < s' \leq 0 \leq s < \frac{n}{q'}$ and $s' = s - 2\sigma + |\alpha|$. Then there exist operators $R_+(z)$ and $P_+(z)$ with

$$
D^{\alpha}R_{+}(z) \in \mathcal{L}\left(L_q(\mathbb{R}^n_+;\omega_n^{sq}),W_q^{2-|\alpha|}(\mathbb{R}^n_+;\omega_n^{s'q})\right)
$$

$$
P_{+}(z) \in \mathcal{L}\left(L_q(\mathbb{R}^n_+;\omega_n^{sq}),\dot{W}_q^{1}(\mathbb{R}^n_+;\omega_n^{s'q})\right)
$$

depending continuously on $z \in \Sigma_{\delta} \cup \{0\}$ such that:

1. $u = R_+(z)f$ and $p = P_+(z)f$ with $f \in L_q(\mathbb{R}^n_+;\omega_n^{sq})$ is a solution of problem (9) – (11) for $z \in \Sigma_{\delta}$.

2. $R_+(z) \in \mathcal{L}\left(L_q(\mathbb{R}^n_+;\omega_n^{sq}),W_q^2(\mathbb{R}^n_+)\right)$) and $P_+(z) \in \mathcal{L}\left(L_q(\mathbb{R}^n_+;\omega_n^{sq}), \dot{W}_q^1(\mathbb{R}^n_+)\right)$ ¢ for every $z \in \Sigma_{\delta}$.

3. The asymptotic expansions

$$
D^{\alpha}R_{+}(z) = \sum_{j=0}^{[\sigma]-1} z^{j} D^{\alpha}G_{j} + O(z^{\sigma-1}) \quad in \quad \mathcal{L}\big(L_{q}(\mathbb{R}_{+}^{n}; \omega_{n}^{sq}), W_{q}^{2-|\alpha|}(\mathbb{R}_{+}^{n}; \omega_{n}^{s'q})\big)
$$

$$
P_{+}(z) = \sum_{j=0}^{[\sigma]-1} z^{j} P_{+,j} + O(z^{\sigma-1}) \quad in \quad \mathcal{L}\big(L_{q}(\mathbb{R}_{+}^{n}; \omega_{n}^{sq}), \dot{W}_{q}^{1}(\mathbb{R}_{+}^{n}; \omega_{n}^{s'q})\big) \quad if \, |\alpha| = 2
$$

hold for $z \to 0, z \in \Sigma_{\delta}$.

Proof. Because of the Helmholtz decomposition in weighted L_q -Spaces (see [5: Theorem 5]) we can assume without loss of generality that $f \in$ $J_q(\Omega;\omega^{sq})$. Therefore the asymptotic expansion for $R_+(z)$ simply follows from the expansion of $R_0(z)$, equations (13) - (14), the continuity of the Riesz transforms S_j and R_j in $L_q(\mathbb{R}^n;\omega_n^{sq})$ and $L_q(\mathbb{R}^n_+;\omega_n^{sq})$ if $-\frac{n}{q}$ $\frac{n}{q}$ < s < $\frac{n}{q'}$ and the fact

$$
R_+(z)f = \int_0^\infty e^{-tz} WE(t)Vf dt.
$$

In order to get the result for $D^{\alpha}R_{+}(z)$ $(|\alpha| \leq 2)$ we use the relations

$$
\partial_n U = (I - U)|\nabla'| = -(I - U)\sum_{i=1}^{n-1} S_i \partial_i
$$

\n
$$
\partial_i S = S \partial_i \qquad (i = 1, ..., n)
$$

\n
$$
\partial_i U = U \partial_i \qquad (i = 1, ..., n - 1)
$$

and prove the expansion in the same way as in the case $\alpha = 0$. We note that the first equation is a consequence of

$$
\mathcal{F}_{x' \mapsto \xi'}[Uf](\xi', x_n) = |\xi'| \int_0^{x_n} e^{-|\xi|(x_n - y_n)} \tilde{f}(\xi', x_n) dy_n \tag{15}
$$

(see the proof of $[12:$ Theorem 1.1]); the other equations are obvious. Finally, we get the expansion of $\nabla P_{+}(z)$ in the same way using $|\nabla'|D\gamma = \partial_n U - U \partial_n$

Because of estimate (12) and Ukai's formula we also easily get

Lemma 3.4. Let $u(t) = WE(t)Vu_0$ with $u_0 \in J_q(\mathbb{R}^n_+;\omega_n^{sq})$ denote the solution of the homogeneous non-stationary Stokes equations $(1) - (3)$, (5) for $\Omega = \mathbb{R}^n_+$ and $f = 0$. Then

$$
\|u(t)\|_{L_q({\mathbb R}^n_+;\omega_n^{s'q})}\leq C(1+t)^{-\sigma}\|u_0\|_{L_q({\mathbb R}^n_+;\omega_n^{sq})}
$$

with $1 < q < \infty$, $-\frac{n}{q}$ $\frac{n}{q} < s' \leq 0 \leq s < \frac{n}{q'}$, $s' = s - 2\sigma$ and $t \geq 0$.

8. Resolvent expansions in aperture domains

We consider the resolvent equations system

$$
(z - \Delta)u + \nabla p = f \qquad \text{in } \Omega \tag{16}
$$

$$
\text{div}u = 0 \qquad \text{in } \Omega \tag{17}
$$

$$
u|_{\partial\Omega} = 0 \qquad \text{on } \partial\Omega \tag{18}
$$

$$
\Phi(u) = 0 \tag{19}
$$

for an aperture domain Ω .

Theorem 4.1. Let $1 < q < \infty, 0 < \delta < \pi$, $n \geq 3, 1 < \sigma < \frac{n}{2}, \sigma \notin \mathbb{Z}$, $-\frac{n}{a}$ $\frac{n}{q} < s' \leq 0 \leq s < \frac{n}{q'}$ and $s' := s - 2\sigma$. Then there are an $\varepsilon > 0$ and operators

$$
R(z) \in \mathcal{L}\left(L_q(\Omega; \omega_n^{sq}), W_q^2(\Omega; \omega_n^{s'q})\right)
$$

$$
P(z) \in \mathcal{L}\left(L_q(\Omega; \omega_n^{sq}), \dot{W}_q^1(\Omega; \omega_n^{s'q})\right)
$$

depending continuously on $z \in \Sigma_{\delta,\varepsilon} \cup \{0\}$ with the following properties:

- 1. The pair $u = R(z)f$ and $p = P(z)f$ is a solution of problem (16) (19).
- 2. $R(z) \in \mathcal{L}\big(L_q(\Omega; \omega_n^{sq}), W_q^2(\Omega)\big)$ for every $z \in \Sigma_{\delta, \varepsilon}$.
- **3.** The operator-valued function $R(z)$ $(z \in \Sigma_{\delta, \varepsilon_0})$ has an expansion

$$
R(z) = \sum_{j=0}^{[\sigma]-1} z^j G_j + G_r(z)
$$

in L ¡ $L_q(\Omega;\omega_n^{sq}), W_q^2(\Omega;\omega_n^{s'q})$ ¢ where $G_r(z) = O(z^{\sigma-1})$ for $z \to 0$.

Proof. We use the technique used in the proof of [8: Theorem 3.1]. Let $\Omega \cup B_r(0) = \mathbb{R}^n_+ \cup \mathbb{R}^n_- \cup B_r(0)$. We choose $b, R \in \mathbb{R}$ such that $b > R > r+3$ and denote $\mathbb{R}^n_{\pm} = \mathbb{R}^n_{+} \cup \mathbb{R}^n_{-}$, $\Omega_{\pm} = \Omega \cap \mathbb{R}^n_{\pm}$ and $\Omega_b = \Omega \cap B_b(0)$. Let $\varphi, \psi \in C^{\infty}(\Omega)$ be cut-off functions with

$$
\varphi(x) = \begin{cases} 1 & \text{for } |x| > R \\ 0 & \text{for } |x| < R - 1 \end{cases} \qquad \text{and} \qquad \psi(x) = \begin{cases} 1 & \text{for } |x| > R - 2 \\ 0 & \text{for } |x| < R - 3. \end{cases}
$$

We identify ψf with its extension by 0 to \mathbb{R}^n_{\pm} . Moreover, we define

$$
R_{\pm}(z): L_q(\mathbb{R}^n_{\pm}; \omega_n^{sq}) \to W_q^2(\mathbb{R}^n_{\pm}; \omega_n^{s'q})
$$

by

$$
R_{\pm}(z)g(x) = \begin{cases} R_{+}(z)(g|_{\mathbb{R}_{+}^{n}})(x) & \text{if } x \in \mathbb{R}_{+}^{n} \\ R_{-}(z)(g|_{\mathbb{R}_{-}^{n}})(x) & \text{if } x \in \mathbb{R}_{-}^{n} .\end{cases}
$$

The operator

$$
P_{\pm}(z): L_q(\mathbb{R}^n_{\pm}; \omega_n^{sq}) \to \dot{W}_q^1(\mathbb{R}^n_{\pm}; \omega_n^{s'q})
$$

is defined analogously. Let $f_b := f|_{\Omega_b}$ and

$$
(L, P): L_q(\Omega_b)^n \to W_q^2(\Omega_b)^n \times \dot{W}_q^1(\Omega_b)
$$

be the solution operator of the Stokes equation in the bounded domain Ω_b . Define ¢

$$
R_1(z) \in \mathcal{L}\big(L_q(\Omega; \omega_n^{sq}), W_q^2(\Omega; \omega_n^{s'q})\big)
$$

by

$$
R_1(z)f = \varphi R_{\pm}(z)(\psi f) + (1 - \varphi)Lf_b.
$$

Similarly, define

$$
\Pi(z)\in\mathcal{L}\big(L_q(\Omega;\omega_n^{sq}),\dot{W}_q^1(\Omega;\omega_n^{s'q})\big)
$$

by

$$
\Pi(z)f = \varphi P_{\pm}(z)(\psi f) + (1 - \varphi)Pf_b.
$$

Obviously, the operator $R_1(z)$ has the same type of expansion as $R_{\pm}(z)$. Let

$$
P_{\pm}(z) = \sum_{j=0}^{[\sigma]-1} z^j P_{\pm,j} + P_{\pm,r}(z)
$$

with

$$
P_{\pm,r}(z) = O(z^{\sigma-1}) \quad \text{in} \quad \mathcal{L}\big(L_q(\mathbb{R}^n_{\pm};\omega_n^{sq}), \dot{W}_q^1(\mathbb{R}^n_{\pm};\omega_n^{s'q})\big)
$$

be the expansion for $P_{\pm}(z)$. We choose $P_{\pm,j}f, P_{\pm,r}f \in \dot{W}_q^1(\mathbb{R}^n_{\pm})$ such that

$$
\int_{D_R \cap \Omega} P_{\pm,0} f \, dx = \int_{D_R \cap \Omega} P f_b \, dx
$$
\n
$$
\int_{D_R \cap \Omega} P_{\pm,r}(z) f \, dx = 0, \quad \int_{D_R \cap \Omega} P_{\pm,j} f \, dx = 0 \quad (j = 1, \dots, [\sigma] - 1)
$$

where $D_R = \{x \in \Omega : R - 1 < |x| < R\}$. Applying Poincaré's inequality

$$
||f||_q \le C \bigg(||\nabla f||_q + \bigg| \int_D f(x) \, dx \bigg| \bigg)
$$

for a bounded domain D with C^0 -boundary (see [2: Chapter 5/Theorem 4.19]) it follows that

$$
||P_{\pm,0}f - Pf_b||_{L_q(D_R \cap \Omega)} \leq C \left(||\nabla P_{\pm,0}f||_{L_q(D_R \cap \Omega)} + ||\nabla P f_b||_{L_q(\Omega_b)} \right) \leq C ||f||_{L_q(\Omega;\omega_n^{sq})}
$$

$$
||P_{\pm, j}f||_{L_q(D_R \cap \Omega)} \leq C ||\nabla P_{\pm, j}f||_{L_q(D_R \cap \Omega)} \leq C ||f||_{L_q(\Omega;\omega_n^{sq})}
$$

$$
||P_{\pm,r}(z)f||_{L_q(D_R \cap \Omega)} \leq C ||\nabla P_{\pm,r}(z)f||_{L_q(D_R \cap \Omega)} \leq C |z|^{\sigma-1} ||f||_{L_q(\Omega;\omega_n^{sq})}.
$$

Because of these inequalities and the identity

$$
\nabla \Pi(z)f = \varphi \nabla P_{\pm}(z)(\psi f) + (1 - \varphi) \nabla P f_b + (\nabla \varphi)(P_{\pm}(z)(\psi f) - Pf)
$$

the operator $\Pi(z)$ has the same type of expansion as $P_{\pm}(z)$.

It remains to correct the divergence of $R_1(z)f$. For this we apply Bogovskii's Theorem (see, e.g., [6: Theorem 3.2]) to $\text{div}(R_1(z)f) = \nabla \varphi \cdot \{R_{\pm}(z)(\psi f) Lf_b$, which has compact support in D_R . We note that

$$
\int_{D_R} \operatorname{div}(R_1(z)f) = -\int_{B_R \cap \mathbb{R}^n_{\pm}} \operatorname{div}((1-\varphi)R_{\pm}(z)(\psi f)) dx - \int_{\Omega_b} \operatorname{div}(\varphi L f_b) dx
$$

$$
= -\int_{\partial (B_R \cap \mathbb{R}^n_{\pm})} N \cdot (1-\varphi)R_{\pm}(z)(\psi f) d\sigma - \int_{\partial \Omega_b} N \cdot \varphi L f_b d\sigma
$$

$$
= 0.
$$

Since div $R_1(z)f \in W_q^2(D_R) \cap W_{0,q}^1(D_R)$, we get a compact operator $Q(z)$: $L_q(\Omega;\omega_n^{sq}) \to W_{0,q}^2(D_R)$ with $\text{div}Q(z)f = \text{div}R_1(z)f$. The operator $Q(z)$ depends continuously on $z \in \Sigma_{\delta} \cup \{0\}.$

We identify $Q(z)f$ with its extension by zero to a function $Q(z)f \in$ $W_{0,q}^2(\Omega;\omega_n^{s'q})$. Now let

$$
R_2(z) := R_1(z) - Q(z) \in \mathcal{L}\big(L_q(\Omega; \omega_n^{sq}), W_q^2(\Omega; \omega_n^{s'q})\big).
$$

Then $R_2(z)f$ solves

$$
(z - \Delta)R_2(z)f + \nabla\Pi(z)f = f + S(z)f \quad \text{in } \Omega
$$

$$
\text{div}R_2(z)f = 0 \quad \text{in } \Omega
$$

$$
R_2(z)f = 0 \quad \text{on } \partial\Omega
$$

for all $f \in L_q(\Omega; \omega_n^{sq}),$ where

$$
S(z)f = -\{2(\nabla\varphi)\cdot\nabla + (\Delta\varphi)\}\{R_{\pm}(z)(\psi f) - Lf_b\} + z(1-\varphi)Lf_b + (\Delta-z)Q(z)f + \nabla\varphi(P_{\pm}(z)(\psi f) - Pf_b).
$$

Since supp $S(z)f \subseteq \overline{D_R}$, we conclude $S(z) \in \mathcal{L}(L_q(\Omega; \omega_n^{sq}))$. The term $(\Delta$ $z)Q(z) \in \mathcal{L}(L_q(\Omega; \omega_n^{sq}))$ is a compact operator since $Q(z) : L_q(\Omega; \omega_n^{sq}) \to$ $W_{0,q}^2(D_R)$ is compact. Furthermore, $S(z) - (\Delta - z)Q(z)$: $L_q(\Omega; \omega_n^{sq}) \rightarrow$ $W_q^1(D_R)$ is continuous, so $S(z) \in \mathcal{L}(L_q(\Omega; \omega_n^{sq}))$ is a compact operator. Moreover, $S(z)$ is continuous in $z \in \Sigma_{\delta} \cup \{0\}$ and has the same type of expansion in $\mathcal{L}(L_q(\Omega; \omega_n^{sq}))$ as $R_{\pm}(z)$ in $\mathcal{L}(L_q(\Omega; \omega_n^{sq}), W_q^2(\Omega; \omega_n^{s'q}))$.

In the following Lemma 4.2 we show that $I + S(0)$ is injective. Since $S(0)$ is compact, the Fredholm alternative yields that $(I + S(0))^{-1} \in \mathcal{L}(L_q(\Omega; \omega_n^{sq}))$ exists. Therefore $(I + S(z))^{-1}$ exists for all $z \in \Sigma_{\delta,\varepsilon}$ for some $\varepsilon > 0$. More precisely,

$$
(I + S(z))^{-1} = (I + S(0))^{-1} \sum_{k=0}^{\infty} [(S(0) - S(z))(I + S(0))^{-1}]^{k}
$$

for all $z \in \Sigma_{\delta, \varepsilon_0}$, where $\varepsilon_0 > 0$ is chosen so small that

$$
||S(z) - S(0)|| \le \frac{1}{2|| (I + S(0))^{-1} ||} \qquad (z \in \Sigma_{\delta, \varepsilon_0}).
$$

Since $S(z)$ and therefore all powers $(S(0) - S(z))^k$ have an expansion in $\mathcal{L}(L_q(\Omega;\omega_n^{sq}))$ of the same type as $R_{\pm}(z)$, the inverse $(I + S(z))^{-1}$ has the same.

If we now set $R(z) = R_2(z)(I + S(z))^{-1}$ and $P(z) = \Pi(z)(I + S(z))^{-1}$, we get the solution operators of the resolvent problem with the desired expansion \blacksquare

Lemma 4.2. Let $S(z)$ denote the same operator as in the proof of Theorem 4.1. Then $I + S(0) \in \mathcal{L}(L_q(\Omega; \omega_n^{sq}))$ is injective.

Proof. It is known [3, 4] that the Stokes equations in an aperture domain **Proof.** It is known [5, 4] that the Stokes equations in an aperture do
have a unique solution $(u, \tilde{p}) \in [W_p^2(\Omega) \cap W_{p^*}^1(\Omega)]^n \times W_p^1(\Omega)$ $(\frac{1}{p^*} = \frac{1}{p})$ $\frac{1}{p} - \frac{1}{n}$ n with $1 < p < n$) for given force $f \in L_p(\Omega)$ and prescribed flux $\Phi(u) = \alpha \in \mathbb{R}$.

We calculate the flux of $R_2(0)$. Since $M \subset B_r$, the identity $R_2(0)f(x) =$ $Lf_b(x)$ holds for all $x \in M$. Denote by B_+ the connected component of $B_r(0) \setminus M$ "above" M. Then we conclude that

$$
0 = \int_{B_+} \operatorname{div} L f_b \, dx = \int_{\partial B_+} L f_b \cdot N \, d\sigma = \int_M L f_b \cdot N \, d\sigma = \int_M R_2(0) f \cdot N \, d\sigma.
$$

Therefore we get $R_2(0)f = 0$ and $\Pi(0) = \text{const}$ if we show that $R_2(0)f \in \mathbb{R}^{1,2}$ Fuerefore we get $R_2(0)J = 0$ and $\Pi(0)$:
 $\dot{W}_p^2(\Omega) \cap \dot{W}_{p^*}^1(\Omega)$ ⁿ and $\Pi(0)f \in \dot{W}_p^1(\Omega)$.

Let $(I+S(0))f = 0$. That means $f = -S(0)f$, and therefore the support of f is contained in $\overline{\Omega}_b$. This implies $f \in L_p(\Omega; \omega_n^{sp})$ for all $s \in \mathbb{R}$ and $1 \le p \le q$.

Claim. $\nabla^2 R_2(0)f$, $\nabla\Pi(0)f \in L_p(\Omega)$ for all $1 < p \le q$ and $\nabla R_2(0)f \in$ $L_{p^*}(\Omega)$ with $\frac{1}{p^*} = \frac{1}{p}$ $rac{1}{p} - \frac{1}{n}$ $\frac{1}{n}$ and $1 < p < \min\{q, n\}.$

Proof of claim. For $i, j \in \{1, ..., n\}$ there holds

$$
\partial_i \partial_j R_2(0) f = \varphi \partial_i \partial_j R_{\pm}(0) (\psi f) + \partial_i \partial_j [(1 - \varphi)Lf_b] + (\partial_i \varphi) \partial_j R_{\pm}(0) (\psi f) + (\partial_j \varphi) \partial_i R_{\pm}(0) (\psi f) + (\partial_i \partial_j \varphi) R_{\pm}(0) (\psi f) - \partial_i \partial_j Q(0) f.
$$

The support of every term except the first one is contained in Ω_b . Therefore each of these function is an element of $L_p(\Omega)$ for every $1 \leq p \leq q$.

Considering the first term, Theorem 3.3 tells us that

$$
\partial_i \partial_j R_{\pm}(0) \in \mathcal{L}\big(L_p(\mathbb{R}^n_{\pm}; \omega_n^{sp}), L_p(\Omega, \omega_n^{s'p})\big)
$$

for all $-\frac{n}{n}$ $\frac{n}{p} < s' \leq 0 \leq s < \frac{n}{p'}, s' = s - 2\sigma + 2$ and $1 < \sigma < \frac{n}{2}$. Since $f \in L_p^s(\Omega)$ for arbitrary $s \in \mathbb{R}$ and $1 \leq p \leq q$, we can apply Theorem 3.3 for $s' = 0$ and $s = 2\sigma - 2$. Therefore we choose $1 < \sigma < \frac{n}{2}$ such that $\frac{n}{n-2\sigma+2} < p$ which is equivalent to $2\sigma - 2 < \frac{n}{n'}$ $\frac{n}{p'}$. Thus we get $\partial_i \partial_j R_{\pm}(0)(\psi f) \in L_p(\Omega)$ for every $1 < p \leq q$. With the same choice of s and s' we see that $\nabla \Pi(0) f \in L_p(\Omega)$ for all $1 < p \leq q$.

The same argumentation can be applied to

$$
\partial_i R_2(0)f = \varphi \partial_i R_{\pm}(0)(\psi f) + \partial_i [(1-\varphi)Lf_b] + (\partial_i \varphi) R_{\pm}(0)(\psi f) - \partial_i Q(0)f.
$$

In this case

$$
\partial_i R_{\pm}(0) \in \mathcal{L}\big(L_r(\Omega; \omega_n^{sr}), L_r(\Omega; \omega_n^{s'r})\big)
$$

holds for all $-\frac{n}{n}$ $\frac{n}{r} < s' \le 0 \le s < \frac{n}{r'}, s' := s - 2\sigma + 1, 1 < \sigma < \frac{n}{2}$. The choice of $s' = 0$ and $s = 2\sigma - 1$ yields the condition $2\sigma - 1 < \frac{n}{s'}$ $\frac{n}{r'}$. Since $\frac{1}{r} + \frac{1}{n}$ $\frac{1}{n}=\frac{1}{p}$ $\frac{1}{p},$ this condition is equivalent to $2\sigma - 2 < \frac{n}{p'}$ which is equivalent to $p > \frac{n}{n-2\sigma+2}$. This proves the claim.

Thus $R_2(0)f = 0$ and $\nabla\Pi(0)f = 0$. Since $\text{supp}Q(0) \subseteq \{x : R - 1 \leq |x| \leq 1\}$ R , it is obvious that for $x \in \Omega$

$$
R_2(0)f(x) = \begin{cases} R_{\pm}(0)(\psi f)(x) = 0 & \text{if } |x| \ge R \\ Lf_b(x) = 0 & \text{if } |x| \le R - 1 \end{cases}
$$

$$
\nabla\Pi(0)f(x) = \begin{cases} \nabla P_{\pm}(0)(\psi f)(x) = 0 & \text{if } |x| \ge R \\ \nabla P f_b(x) = 0 & \text{if } |x| \le R - 1. \end{cases}
$$

This implies $f = 0$ for $|x| \geq R$ since

$$
\Delta R_{\pm}(0)(\psi f) + \nabla P_{\pm}(0)(\psi f) = \psi f \quad \text{in } \mathbb{R}_{+}^{n}.
$$

Similarly we get $f = 0$ for $x \in \Omega$ with $|x| \leq R - 1$ since $-\Delta L f_b + \nabla P f_b = f_b$ Similarly we get $j = 0$ for $x \in \Omega$ with $|x| \le R - 1$ since $-\Delta L J_b + \nabla F J_b = J_b$
in Ω_b . The support of $(R_{\pm}(0)(\psi f), P_{\pm}(0)(\psi f))$ and of (Lf_b, Pf_b) is contained in $\tilde{D} = \{x \in \Omega : R - 1 < |x| < b\}$. Therefore both terms solve the Stokes problem

$$
-\Delta u + \nabla p = f \quad \text{in } \widetilde{D}
$$

divu = 0 in \widetilde{D}
 $u = 0 \quad \text{on } \partial \widetilde{D}.$

This implies that $R_{\pm}(0)(\psi f) = Lf_b$ and $\nabla P_{\pm}(0)(\psi f) = \nabla P f_b$ in \tilde{D} because of the unique solvability of the Stokes equations in a bounded domain. Hence $Q(z)f = 0, Lf_b = R_2(0)f = 0$ and $\nabla P f_b = \nabla \Pi(0)f = 0$ in D and finally $f = 0$ in the whole domain

5. Decay of the semigroup in weighted spaces

Let $A_q = -P_q\Delta$ denote the Stokes operator for an aperture domain Ω .

Theorem 5.1. Let $n \ge 3$, $1 < \sigma < \frac{n}{2}$, $1 < q < \infty$, $-\frac{n}{q}$ $\frac{n}{q} < s' \leq 0 \leq s < \frac{n}{q'}$ and $s' = s - 2\sigma$. Then there exists a constant $C = C(q, s, s')$ such that

$$
||e^{-tA_q}f||_{L_q(\Omega;\omega_n^{s'q})} \leq C(1+t)^{-\sigma}||f||_{L_q(\Omega;\omega_n^{sq})} \qquad (t \geq 0)
$$

for all $f \in J_q(\Omega) \cap L_q(\Omega; \omega_n^{sq})$. Furthermore,

$$
||e^{-tA_q}f||_{W_q^2(\Omega;\omega_n^{s'q})} \le C(1+t)^{-\sigma} \max\left\{||f||_{W_q^2(\Omega)}, ||f||_{L_q(\Omega;\omega_n^{sq})}\right\} \qquad (t \ge 0)
$$

for all $f \in \mathcal{D}(A_q) \cap L_q(\Omega; \omega_n^{sq}).$

Proof. The proof of the inequalities is nearly the same as the proof of [8: Theorem 1.1]. So we give only a sketch.

Since the semigroup e^{-tA_q} is bounded in $J_q(\Omega)$, the first estimate is satisfied for $0 < t < 1$. The second estimate holds for $0 < t < 1$ because of the estimates

$$
||f||_{W_q^2(\Omega)} \le c|| (I + A_q) f ||_{L_q(\Omega)} \le C||f||_{W_q^2(\Omega)}
$$
\n(20)

for all $f \in \mathcal{D}(A_q)$ (the first inequality is a consequence of [4: Theorem 2.1], the second inequality is obvious). For $t \geq 1$ consider the representation of the semigroup

$$
e^{-tA_q} = \frac{1}{2\pi i} \int_{\Gamma} e^{tz} (z + A_q)^{-1} dz
$$

where the curve Γ coincides outside a ball $B_{\varepsilon}(0)$ $(0 < \varepsilon < \varepsilon_0)$ with the rays $e^{\pm\phi i}\tilde{t}$ ($\tilde{t} > 0$) with $\frac{\pi}{2} < \phi < \delta$ (δ and ε_0 are the same numbers as in Theorem 4.1). We split the curve Γ into two parts

$$
\Gamma_1 = \{ z \in \Gamma : 0 < |z| < \varepsilon \}
$$

$$
\Gamma_2 = \{ z \in \Gamma : \varepsilon \le |z| \}.
$$

So we get

$$
e^{-tA_q}f = \frac{1}{2\pi i} \int_{\Gamma_1} e^{tz} R(z)f dz + \frac{1}{2\pi i} \int_{\Gamma_2} e^{tz} (z + A_q)^{-1} f dz
$$

for all $f \in J_q(\Omega) \cap L_q(\Omega; \omega_n^{sq})$ since $R(z)f = (z + A_q)^{-1}f$ for $z \in \Sigma_{\delta, \varepsilon}$. Using the resolvent estimate $||(z + A_q)^{-1}f||_q \leq C|z|^{-1}||f||_q$ we easily get

$$
\left\|\frac{1}{2\pi i}\int_{\Gamma_2} e^{tz}(z+A_q)^{-1}dzf\right\|_{L_q(\Omega;\omega_n^{s'q})} \leq C\int_{\varepsilon}^{\infty}\frac{e^{ts\cos\phi}}{s}ds\,\|f\|_{L_q(\Omega)}\leq C(\varepsilon,\phi)\frac{e^{-ct}}{t}\|f\|_{L_q(\Omega;\omega_n^{sq})}
$$

with some constant $C = C(\varepsilon, \phi) > 0$. Analogously we get

$$
\left\| \frac{1}{2\pi i} \int_{\Gamma_2} e^{tz} (z + A_q)^{-1} dz f \right\|_{W_q^2(\Omega; \omega_n^{s'q})} \le C \int_{\varepsilon}^{\infty} \frac{e^{ts \cos \phi}}{s} ds \, \|f\|_{W_q^2(\Omega)}
$$

$$
\le C(\varepsilon, \phi) \frac{e^{-ct}}{t} \|f\|_{W_q^2(\Omega)}
$$

if we use (20) for $f \in \mathcal{D}(A_q)$.

We use the resolvent expansion of Theorem 4.1 to estimate the first intewe use the resolvent expansion of Theorem 4.1 to es
gral. Since $\sum_{j=0}^{[\sigma]-1} z^j G_j$ is holomorphic in \mathbb{C} , there holds

$$
\Bigg\|\sum_{j=0}^{[\sigma]-1}\int_{\Gamma_1}e^{tz}z^jG_jdz\Bigg\|_{\mathcal{L}(L_q(\omega_n^{sq}),W_q^2(\omega_n^{s'q}))}\leq Ce^{\varepsilon t\cos(\phi)}=Ce^{-ct}
$$

with $C > 0$. In order to estimate the remainder term we deform the curve Γ_1 to a curve Γ^* which coincides with $z = e^{\pm \phi i} \tilde{t}$ ($\tilde{t} \in [0, \varepsilon]$). Therefore

$$
\left\|\tfrac{1}{2\pi i}\int_{\Gamma_1}e^{tz}G_r(z)\,dz\right\|_{\mathcal{L}(L_q(\omega_n^{sq}),W_q^2(\omega_n^{s'q}))}\leq C\int_0^\infty e^{\lambda t\cos(\phi)}\lambda^{\sigma-1}d\lambda=C't^{-\sigma}.
$$

Collecting all estimates we proved the theorem

6. The L_q - L_r -estimate

In order to get an estimate of $||e^{-tA_q}f||_{L_q(\Omega_b)}$ where $\Omega_b = \Omega \cap B_b(0)$, we need the following

Lemma 6.1. Let $1 < q < \infty$ and $-\frac{n}{q}$ $\frac{n}{q} < s' < 0$. Then

$$
||e^{-tA_q}f||_{L_q(\Omega;\omega_n^{s'q})} \leq C(1+t)^{\frac{s'}{2}}||f||_{L_q(\Omega)}
$$

for all $f \in J_q(\Omega)$ and

$$
\|e^{-tA_q}f\|_{W^2_q(\Omega;\omega_n^{s'q})}\leq C(1+t)^{\frac{s'}{2}}\|f\|_{W^2_q(\Omega)}
$$

for all $f \in \mathcal{D}(A_q)$.

Corollary 6.2. Let $1 < q < \infty$. Then for every $0 \leq s < \frac{n}{2q}$ there is a constant $C = C(s, q, \Omega)$ with

$$
||e^{-tA_q}f||_{L_q(\Omega_b)} \leq C(1+t)^{-s}||f||_{L_q(\Omega)}
$$

for all $f \in J_q(\Omega)$ and

$$
||e^{-tA_q}f||_{W_q^2(\Omega_b)} \leq C(1+t)^{-s}||f||_{W_q^2(\Omega)}
$$

for all $f \in \mathcal{D}(A_q)$.

Proof of Lemma 6.1. If $1 < p < \frac{n}{2}$, then $\frac{n}{p} > 2$. So we can we apply Theorem 5.1 with $s = 0$. Therefore we get

$$
||e^{-tA_p}f||_{W_p^m(\Omega;\omega_n^{\tilde{s}'p})} \le C(1+t)^{\frac{\tilde{s}'}{2}}||f||_{W_p^m(\Omega)}
$$
\n(21)

for $m = 0, 2, f \in J_p(\Omega)$ resp. $f \in \mathcal{D}(A_p)$ and $-\frac{n}{p}$ $\frac{n}{p} < \tilde{s}' < -2$. In order to get the statement of the lemma we interpolate estimates (21) and

$$
||e^{-tA_r}f||_{W_r^m(\Omega)} \le C||f||_{W_r^m(\Omega)} \qquad (m=0,2; f \in J_r(\Omega) \text{ resp. } \mathcal{D}(A_r)) \tag{22}
$$

for suitable p close to 1 and large r . For this we need the statement about complex interpolation

$$
\left(L_p(\Omega; \omega_n^{\tilde{s}'p}), L_r(\Omega)\right)_{[\theta]} = L_q(\Omega; \omega_n^{\tilde{s}'p(1-\theta)})
$$

with $0 < \theta < 1$ and $\frac{1}{q} = \frac{1-\theta}{p}$ $\frac{-\theta}{p}+\frac{\theta}{r}$ $\frac{\theta}{r}$ (see, for example, [1: Theorem 5.5.3]).

Now let $1 < q < \infty$ and $-\frac{n}{q}$ $\frac{n}{q} < s' < 0$ be given as in the assumptions. We set $\tilde{s}' = \frac{s'}{1-s}$ $\frac{s'}{1-\theta}$ and $\frac{1}{q} = \frac{1-\theta}{p}$ $\frac{-\theta}{p}+\frac{\theta}{r}$ $\frac{\theta}{r}$ for $0 < \theta < 1$. Then we choose $0 < \theta < 1$ such that n n

$$
-\frac{n}{p}(1-\theta) < s' < -2(1-\theta) \quad \Longleftrightarrow \quad -\frac{n}{p} < \tilde{s}' < -2
$$

which exists if $1 < p < \min\{\frac{n}{2}\}$ $\frac{n}{2}$, q}. If we furthermore use $(J_p(\Omega), J_r(\Omega))_{\lbrack \theta \rbrack}$ = $J_q(\Omega)$ (see Appendix), we get with these chosen θ and p and the corresponding r that

$$
\|e^{-tA_q}f\|_{L_q(\Omega;\omega_n^{s'q})}\leq C\big[(1+t)^{\frac{\tilde s'}{2}}\big]^{1-\theta}\|f\|_{L_q(\Omega)}=C(1+t)^{\frac{s'}{2}}\|f\|_{L_q(\Omega)}
$$

for $f \in J_q(\Omega)$. Complex interpolation with the same parameters yields the estimate for $f \in \mathcal{D}(A_q)$. For this we use the second estimate of Theorem estimate for $f \in D(A_q)$. For this we use the second estimate of Theorem 5,1 and $(D(A_p), D(A_r))_{|\theta|} = D(A_q)$. The latter equation will be proved in Appendix

Proof of Theorem 1.1. The proof is similar to that of [8: Theorem 1.2] but a little bit shorter. It is sufficient to show the statement for $0 < \sigma < \frac{1}{2}$ since we can reduce the general case to this statement (choose $q = q_0 < q_1 <$ $\ldots < q_k = r$ such that $\sigma_i := \frac{n}{2}(\frac{1}{q_i})$ $\frac{1}{q_i} - \frac{1}{q_{i+1}}$ $\frac{1}{q_{i+1}}$) < $\frac{1}{2}$ $\frac{1}{2}$ and apply the statement to q_i and q_{i+1}).

Step 1: The inequality holds for $t \geq 2$. Let $\tilde{u}_0 := e^{-A_q} u_0$. Then $\tilde{u}_0 \in$ $\mathcal{D}(A_q)$ and $\|\tilde{u}_0\|_{W_q^2(\Omega)} \leq C \|u_0\|_{L_q(\Omega)}$. Moreover, let $\tilde{u}(t) := e^{-tA_q}\tilde{u}_0$ and $\tilde{p}(t) \in \dot{W}_q^1(\Omega)$ be the pressure corresponding to $\tilde{u}(t)$. Let $\Omega \cup B_r(0) = \mathbb{R}^n_+ \cup$ $\mathbb{R}^n_-\cup B_r(0)$ and $b>r+1$. We choose a cut-off function $\psi \in C^{\infty}(\Omega)$ with

 $\psi(x) = 1$ for $|x| \ge b$ and $\psi(x) = 0$ for $|x| \le b-1$. Then $\text{div}(\psi \tilde{u}(t)) = \nabla \psi \cdot \tilde{u}(t) \in \mathbb{R}$ $\psi(x) = 1$ for $|x| \geq 0$ and $\psi(x) = 0$ for $|x| \leq b-1$. Then $\text{div}(\psi u(t)) = \nabla \psi \cdot u(t) \in W^1_{0,q}(D_b)$ with $D_b = \{x \in \Omega : b-1 < |x| < b\}$ and $\int_{D_b} \nabla \psi \cdot \tilde{u}(t) dx = 0$. Applying Bogovskii's theorem [6: Theorem 3.2] we know that there exists a $v_0(t) \in W_{0,q}^2(D_b)$ with $\text{div}v_0(t) = \text{div}(\psi \tilde{u}(t))$ and

$$
||v_0(t)||_{W_q^2(D_b)} \le C||\tilde{u}(t)||_{W_q^1(D_b)}.
$$
\n(23)

Therefore we have

$$
\|\partial_t v_0(t)\|_{W_q^1(D_b)} \le C \|e^{-tA_q} A_q \tilde{u}_0\|_{L_q(D_b)} \le C(1+t)^{-\tilde{s}} \|\tilde{u}_0\|_{W_q^2(\Omega)} \tag{24}
$$

with an arbitrary $0 \leq \tilde{s} < \frac{n}{2}$ $\frac{n}{2q}$. If we define $v_1(t) = \psi \tilde{u}(t) - v_0(t)$, it solves the equations

$$
\partial_t v_1(t) - \Delta v_1(t) + \nabla(\psi \tilde{p}(t)) = h(t) \quad \text{in } (0, \infty) \times \mathbb{R}^n_+ \tag{25}
$$

$$
div v_1(t) = 0 \qquad \text{in } (0, \infty) \times \mathbb{R}^n_{\pm} \tag{26}
$$

$$
v_1(t)|_{\partial \mathbb{R}^n_+} = 0 \qquad \text{in } (0, \infty) \tag{27}
$$

$$
v_1(0) = v_1 \tag{28}
$$

with $v_1 = \psi \tilde{u}_0 - v_0(0)$ and

$$
h(t) = -\left\{2(\nabla\psi)\cdot\nabla + (\Delta\psi)\right\}\tilde{u}(t) - (\partial_t - \Delta)v_0(t) + (\nabla\psi)\tilde{p}(t).
$$

Moreover, supp $h(t) \subseteq \overline{D}_b$. We choose the pressure $\tilde{p}(t)$ such that $\int_{D_b} \tilde{p}(t) dx =$ 0. If we now apply (23) - (24) , Poincaré's inequality [2: Theorem 4.19] and Corollary 6.2, we get

$$
||h(t)||_{L_q(D_b)} \leq C \left(||\tilde{u}(t)||_{W_q^1(D_b)} + ||v_0(t)||_{W_q^2(D_b)} + ||\partial_t v_0(t)||_{L_q(D_b)} + ||\tilde{p}(t)||_{L_q(D_b)} \right)
$$

\n
$$
\leq C \left((1+t)^{-\frac{5}{2}} ||\tilde{u}_0||_{W_q^2(\Omega)} + ||\nabla \tilde{p}(t)||_{L_q(\Omega_b)} \right)
$$

\n
$$
\leq C \left((1+t)^{-\frac{5}{2}} ||\tilde{u}_0||_{W_q^2(\Omega)} + ||\partial_t \tilde{u}(t)||_{L_q(D_b)} + ||\tilde{u}(t)||_{W_q^2(D_b)} \right)
$$

\n
$$
\leq C (1+t)^{-\frac{5}{2}} ||\tilde{u}_0||_{W_q^2(\Omega)}
$$

with an arbitrary \tilde{s} such that $0 \leq \tilde{s} < \frac{n}{a}$ $\frac{n}{q}$.

Let $E_{\pm}(t)$ denote the semigroup of the Stokes operator in \mathbb{R}_{\pm}^{n} and P_{\pm} denote the Helmholtz projection in $L_q(\mathbb{R}^n_\pm;\omega^{sq}_n)$. Since $v_1(t)$ solves (25) -(28), the identity

$$
v_1(t) = E_{\pm}(t)v_1 + \int_0^t E_{\pm}(t-\tau)P_{\pm}h(\tau) d\tau
$$

holds. Because of Corollary 3.4 and the $L_q - L_r$ -estimate in the half space [12: Theorem 3.1] the semigroup $E_{\pm}(t)$ satisfies

$$
||E_{\pm}(t)f||_{L_r(\mathbb{R}^n_{\pm})} \leq Ct^{-\sigma}||f||_{L_q(\mathbb{R}^n_{\pm})}
$$

$$
||E_{\pm}(t)f||_{L_q(\mathbb{R}^n_{\pm})} \leq C(1+t)^{-\frac{s}{2}}||f||_{L_q(\mathbb{R}^n_{\pm};\omega_n^{sq})}
$$

with $1 \lt q \leq r \lt \infty$, $0 \leq s \lt \frac{n}{q'}$ and $\sigma = \frac{n}{2}$ $\frac{n}{2}(\frac{1}{q}$ $\frac{1}{q} - \frac{1}{r}$ $(\frac{1}{r})$ for all $t > 0$ and $f \in J_q(\mathbb{R}^n_\pm)$ resp. $f \in J_q(\mathbb{R}^n_\pm; \omega_n^{sq})$. Using both inequalities we get

$$
||E_{\pm}(t)f||_{L_r(\mathbb{R}^n_{\pm})} \leq Ct^{-\sigma} \Big\|E_{\pm}\Big(\frac{t}{2}\Big)f\Big\|_{L_q(\mathbb{R}^n_{\pm})} \leq Ct^{-\sigma}(1+t)^{-\frac{s}{2}}||f||_{L_q(\mathbb{R}^n_{\pm};\omega_n^{sq})}
$$

for $f \in J_q(\mathbb{R}^n_\pm; \omega_n^{sq})$ and $t > 0$. Therefore we conclude

$$
||E_{\pm}(t)v_1||_{L_r(\mathbb{R}^n_{\pm})} \leq Ct^{-\sigma}||v_1||_{L_q(\mathbb{R}^n_{\pm})} \leq Ct^{-\sigma}||\tilde{u}_0||_{L_q(\Omega)}
$$

and

$$
\left\| \int_0^t E_{\pm}(t-\tau) P_{\pm}h(\tau) d\tau \right\|_{L_r(\mathbb{R}^n_{\pm})}
$$

\n
$$
\leq C \int_0^t (t-\tau)^{-\sigma} (1+t-\tau)^{-\frac{s}{2}} \underbrace{\|P_{\pm}h(\tau)\|_{L_q(\mathbb{R}^n_{\pm};\omega_n^{sq})}}_{\leq C \|h(\tau)\|_{L_q(\mathbb{R}^n_{\pm};\omega_n^{sq})}} d\tau
$$

\n
$$
\leq C \int_0^t (t-\tau)^{-\sigma} (1+t-\tau)^{-\frac{s}{2}} \|h(\tau)\|_{L_q(D_b)} d\tau
$$

\n
$$
\leq C \int_0^t (t-\tau)^{-\sigma} (1+t-\tau)^{-\frac{s}{2}} (1+\tau)^{-\frac{s}{2}} d\tau \|\tilde{u}_0\|_{W_q^2(\Omega)}.
$$

We now choose $0 \leq s < \frac{n}{q'}$ and $\sigma \leq \frac{\tilde{s}}{2}$ $\frac{\tilde{s}}{2} < \frac{n}{2\varsigma}$ $\frac{n}{2q}$ such that $\frac{s}{2} + \frac{\tilde{s}}{2}$ $\frac{\tilde{s}}{2} > 1, \frac{s}{2} + \sigma \neq 1$ and $\frac{\tilde{s}}{2} \neq 1$ (this is possible since $\frac{n}{2q} + \frac{n}{2q}$ $\frac{n}{2q'}=\frac{n}{2}$ $\frac{n}{2}$ > 1). If we apply Lemma A.2 (see Appendix) with this choice of s and \tilde{s} , we get °

$$
\left\| \int_0^t E_{\pm}(t-\tau) P_{\pm} h(\tau) d\tau \right\|_{L_r(\mathbb{R}^n_{\pm})} \leq C t^{-\sigma} \|\tilde{u}_0\|_{W_q^2(\Omega)}
$$

and therefore

$$
||v_1(t)||_{L_r(\mathbb{R}^n_\pm)} \leq C t^{-\sigma} ||\tilde{u}_0||_{W^2_q(\Omega)}.
$$

Since $u(t, x) = v_1(t, x)$ for all $x \in \Omega \setminus \Omega_b$, the previous estimates, Corollary 6.2 and Sobolev's embedding theorem imply that

$$
\|\tilde{u}(t)\|_{L_r(\Omega)} \le \|\tilde{u}(t)\|_{L_r(\Omega_b)} + \|v_1(t)\|_{L_r(\Omega \setminus \Omega_b)}\n\le C(\|\tilde{u}(t)\|_{W_q^2(\Omega_b)} + \|v_1(t)\|_{L_r(\Omega \setminus \Omega_b)})\n\le Ct^{-\sigma}\|\tilde{u}_0\|_{W_q^2(\Omega)}\n\le Ct^{-\sigma}\|f\|_{L_q(\Omega)}.
$$

Since $\tilde{u}(t) = e^{-(t+1)A_q}u_0$, we have proved the theorem for $t \geq 2$

Step 2: The inequality holds for $t < 2$. The case $t < 2$ is proved in the same way as in the proof of [8: Theorem 1.2] using Sobolev's embedding theorem and an interpolation method

Proof of Theorem 1.2. Because of the semigroup property of e^{-tA_q} and Theorem 1.1 it suffices to prove the statement for $\sigma = 0$, i.e. $1 < q = r < n$. The proof for the case $t < 2$ uses the same interpolation method as in the proof of Theorem 1.2.

So let $t \geq 2$ and $v_1(t)$, $v_0(t)$, $h(t)$ be the functions used in the proof of Theorem 1.1. Then

$$
\nabla v_1(t) = \nabla E_{\pm}(t)v_1 + \int_0^t \nabla E_{\pm}(t - \tau) P_{\pm}h(\tau) d\tau.
$$

The estimate for the Stokes semigroup in \mathbb{R}^n_{\pm} yields

$$
\|\nabla E_{\pm}(t)v_1\|_{L_q(\mathbb{R}^n_{\pm})} \leq Ct^{-\frac{1}{2}}\|v_1\|_{L_q(\mathbb{R}^n_{+})}.
$$

Now we choose $0 \leq s < \frac{n}{q'}$ and $1 \leq \tilde{s} < \frac{n}{q}$ $\frac{n}{q}$ with $\frac{s}{2} + \frac{\tilde{s}}{2}$ $\frac{\tilde{s}}{2} > 1, \frac{\tilde{s}}{2} \neq 1 \text{ and } \frac{1}{2} + \frac{s}{2}$ $\frac{s}{2} \neq 1$. So we get because of Corollary 6.2 and Lemma A.2 (see Appendix)

$$
\left\| \int_0^t \nabla E_{\pm}(t-\tau) P_{\pm} h(\tau) d\tau \right\|_{L_q(\mathbb{R}^n_{\pm})}
$$

\n
$$
\leq C \int_0^t (t-\tau)^{-\frac{1}{2}} (1+t-\tau)^{-\frac{s}{2}} \| P_{\pm} h(\tau) \|_{L_q(\mathbb{R}^n_{\pm};\omega^{sq})} d\tau
$$

\n
$$
\leq C \int_0^t (t-\tau)^{-\frac{1}{2}} (1+t-\tau)^{-\frac{s}{2}} \| h(\tau) \|_{L_q(\Omega_b)} d\tau
$$

\n
$$
\leq C \int_0^t (t-\tau)^{-\frac{1}{2}} (1+t-\tau)^{-\frac{s}{2}} (1+\tau)^{-\frac{s}{2}} d\tau \| \tilde{u}_0 \|_{W_q^2(\Omega)}
$$

\n
$$
\leq Ct^{-\frac{1}{2}} \| \tilde{u}_0 \|_{W_q^2(\Omega)}.
$$

Moreover, let $\tilde{s} = 1 < \frac{n}{a}$ $\frac{n}{q}$. Therefore we get for $t \geq 1$

$$
\begin{aligned} \|\nabla e^{-(t+1)A_q} f\|_{L_q(\Omega)} &\leq C \big(\|\nabla \tilde{u}(t)\|_{L_q(\Omega_b)} + \|\nabla v_1(t)\|_{L_q(\mathbb{R}^n_\pm)} \big) \\ &\leq C \big((1+t)^{-\frac{\tilde{s}}{2}} + t^{-\frac{1}{2}} \big) \|\tilde{u}_0\|_{W_q^2(\Omega)} \\ &\leq Ct^{-\frac{1}{2}} \|f\|_{L_q(\Omega)}. \end{aligned}
$$

Thus the theorem is also true for $t \geq 2$

A. Appendix

It remains to prove the necessary technical lemma used in the last section.

Lemma A.1. Let $1 < p, q, r < \infty$, $\theta \in (0, 1)$ with $\frac{1}{q} = \frac{1-\theta}{r}$ $\frac{-\theta}{r}+\frac{\theta}{p}$ $\frac{\theta}{p}$ and let Ω be an aperture domain. Then

$$
(\mathcal{D}(A_r), \mathcal{D}(A_p))_{[\theta]} = \mathcal{D}(A_q)
$$

$$
(J_r(\Omega), J_p(\Omega))_{[\theta]} = J_q(\Omega).
$$

Proof. To prove the first equality we define a continuous projection P_q : $W_q^2(\Omega)^n \to \mathcal{D}(A_q)$ for arbitrary $1 < q < \infty$. For a function $u \in W_q^2(\Omega)^n$ let $(v, p) \in W_q^2(\Omega)^n \times W_q^1(\Omega)$ denote the unique solution of the resolvent equations (16) - (19) with right-hand side $f = (z - \Delta)u$ for some fixed $z \in \Sigma_{\delta}$ (see [9: Theorem 2.1]). We set $P_q u = v$. Then

$$
||v||_{W_q^2(\Omega)} \leq C||(z-\Delta)u||_{L_q(\Omega)} \leq C||u||_{W_q^2(\Omega)}.
$$

If $u \in \mathcal{D}(A_q)$, $(u, 0)$ is the unique solution of these equations. Therefore P_q is a continuous projection on $\mathcal{D}(A_q)$.

If $u \in W_r^2(\Omega)^n \cap W_q^2(\Omega)^n$, the corresponding solutions in $W_r^2(\Omega)^n$ and $W_q^2(\Omega)^n$ coincide (see [3: Lemma 3.2]). Therefore we can extend P_q and P_r to a well-defined projection $P(u_r + u_q) = P_r u_r + P_q u_q$ on $W_r^2(\Omega)^n + W_p^2(\Omega)^n$ with $P|_{W_p^2(\Omega)^n} = P_r$ and $P|_{W_p^2(\Omega)^n} = P_p$. Therefore we conclude

$$
\mathcal{D}(A_q) = P(W_r^2(\Omega)^n, W_p^2(\Omega)^n)_{[\theta]}
$$

= $(PW_r^2(\Omega)^n, PW_p^2(\Omega)^n)_{[\theta]}$
= $(\mathcal{D}(A_r), \mathcal{D}(A_p))_{[\theta]}$.

The second equality immediately follows from the fact that $P_q = P_r$ on $J_q(\Omega) \cap$ $J_r(\Omega)$ (see [4: Lemma 3.2]) ■

Lemma A.2. Let $0 \leq \alpha < 1$, $\beta \geq 0$, $\alpha \leq \gamma$, $\beta + \gamma > 1$, $\alpha + \beta \neq 1$ and $\gamma \neq 1$. Then

$$
\int_0^t (t-s)^{-\alpha} (1+t-s)^{-\beta} (1+s)^{-\gamma} ds \leq Ct^{-\alpha}.
$$

Proof. The case $t \in (0,1)$ is trivial. For $t > 1$ we simply estimate

$$
\int_0^{\frac{t}{2}} (t-s)^{-\alpha} (1+t-s)^{-\beta} (1+s)^{-\gamma} ds \le Ct^{-\alpha-\beta} \int_0^{\frac{t}{2}} (1+s)^{-\gamma} ds
$$

$$
\le Ct^{-\alpha-\beta} \begin{cases} t^{1-\gamma} & \text{if } \gamma < 1 \\ 1 & \text{if } \gamma > 1 \end{cases}
$$

$$
\le Ct^{-\alpha}.
$$

Similarly we get

$$
\int_{\frac{t}{2}}^{t} (t-s)^{-\alpha} (1+t-s)^{-\beta} (1+s)^{-\gamma} ds \leq Ct^{-\gamma} \begin{cases} t^{1-\alpha-\beta} & \text{if } \alpha + \beta < 1 \\ 1 & \text{if } \alpha + \beta > 1 \end{cases}
$$

$$
\leq Ct^{-\alpha}
$$

and the proof is finished \blacksquare

Acknowledgment: We thank the referee for pointing out to us the results on symmetric aperture flows (see [7]).

References

- [1] Bergh, J. and J. Löfström: *Interpolation Spaces*. Berlin et al.: Springer-Verlag 1976.
- [2] Edmunds, D. E. and W. D. Evans: Spectral Theory and Differential Operators. Oxford: Oxford Univ. Press 1987.
- [3] Farwig, R.: Note on the flux condition and the pressure drop in the resolvent problem of the Stokes system. Man. Math. 89 (1996), $139 - 158$.
- [4] Farwig, R. and H. Sohr: Helmholtz decomposition and Stokes resolvent system for aperture domains in L^q -spaces. Anal. 16 (1996), 1 – 26.
- [5] Fröhlich, A.: The Helmholtz decomposition of weighted L^q -spaces for Muckenhoupt weights. Ann. Univ. Ferrara – Sez. VII- Sc. Mat. 46 (2000), 11 – 29.
- [6] Galdi, G. P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. 1. Berlin et al.: Springer-Verlag 1994.
- [7] Galdi, G. P., Padula, M. and V. A. Solonnikov: Existence, uniqueness and asymptotic behaviour of solutions of steady-state Navier-Stokes equations in a plane aperture domain. Indiana Univ. Math. J. 45 (1996), $961 - 995$.
- [8] Iwashita, H.: $L_q L_r$ estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier-Stokes initial value problems in L_q -spaces. Math. Ann. 285 (1989), 265 – 288.
- [9] Murata, M.: Large time asymptotics for fundamental solutions of diffusion equations. Tôhoku Math. J. 37 (1985), $151 - 195$.
- [10] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions. Princeton (New Jersey, USA): Princeton Hall Press 1970.
- [11] Stein, E. M.: Harmonic Analysis. Princeton (New Jersey, USA): Princeton Hall Press 1993.
- [12] Ukai, S.: A solution formula for the Stokes equation in \mathbb{R}^n_+ . Comm. Pure Appl. Math. 40 (1987), 611 – 621.

Received 31.05.2001