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L,-L,.—Estimates
for Non-Stationary Stokes Equations
in an Aperture Domain

H. Abels

Abstract. This article deals with asymptotic estimates of strong solutions of Stokes
equations in aperture domains. An aperture domain is a domain, which outside a
bounded set is identical to two half spaces separated by a wall and connected inside
the bounded set by one or more holes in the wall. It is known that the corresponding
Stokes operator generates a bounded analytic semigroup in the closed subspace J,(2)
of divergence free vector fields of Lq(£2)". We deal with Lg-L,-estimates for the
semigroup, which are known for R™, the half space and exterior domains.
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1. Introduction and main results

Suppose that Q@ C R™ (n > 3) is an aperture domain (see Figure 1) with
smooth boundary, i.e.

QU B,.(0) =R} UR" U B,(0) (r>0)

with
R? = {x:(xl,...,:zsn) eR": z, >0}
R" = {:U:(xl,...,xn) eR": z, < —d} (d>0).
We consider the homogeneous non-stationary Stokes equations in (0, c0) x §2

concerning the velocity field u(t,z) and the scalar pressure p(t,x):

Ou—Au+Vp=f in (0,00) x §2 (1)
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divu =0 in (0,00) x §2 (2)
ulon =0 on (0,00) x 02 (3)
O(u) =« in (0, 00) (4)
u|t=0 = up in Q (5)

_ 9 _<n 9 _ (9 o \T
Whereﬁt—a,A—ijl—awﬁ,V—(—aml,...,—awn) ,

d(u(t)) = /M N -u(t,z)do(x) = a(t)

is the flux through a smooth, bounded (n — 1)-dimensional manifold M with
normal vector N directed downwards dividing €2 into two unbounded con-
nected components. This flux has to be prescribed in order to get a unique

n

solution with u(t) € Ly(2) with "5 < ¢ < oo. In the case 1 < ¢ < 5
the flux has to vanish, i.e. ®(u) = 0 (see [4] for the corresponding resolvent

problem).

Figure 1: An aperture domain

In this paper we only deal with the case f = 0 and ®(u) = 0. We
consider the asymptotic behaviour of the solutions u(t). The general case
can be derived from this case depending on the asymptotic behaviour of f(¢)
and «(t). Since the Stokes operator A, generates a bounded semigroup in

J,(Q) = Tu € Ce5 ()7 - diva = 0} ' the estimate [[u(t)]l, < Clluo]l, holds.

The goal of this paper is to prove the following decay rate measuring u(t)
and ug in the norm of L, for different 1 < g < oo.

Theorem 1.1. Let 1 < q¢q < r < oco. Then there is a constant C' =
C(Q,q,r) such that

lu@z, ) < C7 JuollL, (o) (6)

with o = %(% — 1) for all t > 0 and ug € J4(Q).
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Theorem 1.2. Let 1 < ¢ < r < n. Then there is a constant C' =
C(Q,q,r) such that

V()] @) < CE% uoll 1, @ (7)

with o = %(% — 1) for all t >0 and ug € J4(€2).

These inequalities are known for other unbounded domains. In [12] Ukai
showed these estimates for 1 < g < oo if the domain is the half-space R’}. This
is done by using an explicit solution formula in terms of Riesz operators and
the heat kernel in R}. In the case of an exterior domain, Iwashita [8] showed
the validity of (6) for 1 < ¢ < r < oo and that of (7) for 1 < ¢ <r <n.

The proof of Theorems 1.1 and 1.2 uses a similar technique as in [8]. It
consists of first showing a local estimate of the L,-norm of u(¢) and then com-
paring the full L,-norm with suitable solutions of the non-stationary Stokes
equations in R”f. The local estimate is derived from an asymptotic expansion
of the resolvent of the Stokes operator in the aperture domain around 0 in
special weighted L,-spaces. The resolvent expansion is constructed by using
a similar resolvent expansion of the Stokes operator in the half-space R’} . For
the latter expansion we combine Ukai’s solution formula [12] with an resolvent
expansion of the Laplace operator A in R"™, based on the results of Murata
[9].

Remark 1.3. With the methods of this article we can not prove Theorem
1.2 for the case r = n, which is done by Iwashita in the case of the exterior
domain. This is due to a slightly weaker estimate of the local part of the
Lgnorm (see Corollary 6.2 and [8: Theorem 1.2/(i)]). We get this condition
because we have to deal with weighted L,-spaces of the kind L,(€2;w*?) such
that w7 is a Muckenhoupt weight (see preliminaries); this condition on the
weights is not needed in [8].

The L,-Ly-estimate can be used to construct solutions of the instationary
Navier-Stokes equations with arbitrary flux ®(u) as perturbation of steady-
state solution. For the case n = 2 this problem is still unsolved. Unfortunately,
the used approach can not be applied to a two-dimensional aperture domain.
The reason is that we can not prove Theorem 4.1 since there is no number o
with 1 < 0 < 5, n = 2. The restriction o < 3 is due to the restriction to
Muckenhoupt weights. The condition o > 1 is necessary for the perturbation
argument used in the proof of Theorem 4.1. — We have to assure that the
resolvent of the Stokes operator in R’} considered as map between different

weighted L,-spaces exists for z = 0.
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2. Preliminaries and notation

We will consider the resolvent expansion in a scale of weighted L,-spaces
Lo(Qw®) = {f QR mea,surable‘ 1F ]| (o) < oo} (s €R)

where

1fllz,(@wsa) = (/Q |f(2)]|%w® (z) dm) "

Analogously we define the weighted Sobolev spaces as
W (Q;w) = {f c Ll,loc(ﬁ)’ DOf € Ly(Qw'?) Va| < m}

and S
Wo (@) =Cee(Q) * 7 .

Recall that f € L ,.(Q) means that f € Li(Q N B) for all balls B with
QN B # (. Moreover,

D f(x) =05} --- 070 f(z)  (a eNg).

By Wgn(ﬂ; w5?) we denote the corresponding homogeneous Sobolev space of
L1 joc-functions f with D*f € Ly(Q;w*?) for all || = m. Finally,

J(Qwp?) ={u e CF()" : divu = O}Lqm;w” ).

For simplicity we often will skip the exponent n if we deal with spaces of
vector fields, e.g. we write f € L,(Q) instead of f € L, (). If X and YV
are two Banach spaces, we denote by £(X,Y") the space of all bounded linear
maps 7' : X — Y. Furthermore, £(X) = L(X, X).

In [8, 9] the simple weight w(z) = (z) := (1 + |2|2)% is used. For - <
s < & the weight (x)®? is an element of the Muckenhoupt class A,. This is
the class of all measurable functions w : R” — [0, 0c0) with

ﬁ/}gw(m)dw (ﬁ/Bw(x)_q?’dx) " <A<

where B is an arbitrary ball in R™ and A is independent of B. The weights
w € A, have the important property that singular integral operators like the
Riesz transforms
_ /if ~ . €T;: — y
Ry f(0)i= 7 [0 = e i L

I3 e=0 Jrn\ B, (2) 1T — y[*T!
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(j = 1,...,n) are continuous on L,(R™;w) into itself. Here Flu|(§) = u(§)
denotes the Fourier transform with respect to z. See, for example, [11: Chap-
ter V,§4.2/Theorem 2] for the continuity and [10: Chapter III, Section 1] for
Riesz transforms.

We will also use the partial Riesz transforms

—1 085 50 . x; _yg' /
Sif(x) = Fermar Ef(ﬁ ,Tn) | = Cn—lghi]% 21\ B () m (y's @) dy

(j =1,....n—1 2= (2, 2,),& = (5’,5’”)) for functions f defined on R”} or
R"™. These partial Riesz transforms are used in Ukai’s solution formula.

Unfortunately, the weight (2)°? considered for fixed x,, as weight in R"~!
is in the class A, only if —”T_l <s< ”q_,l. Therefore we will use the slightly
weaker weight

n

wale) = [ ()

i=1

3=

For this weight wy, () considered for fixed @y, is in Ag on R™ for — % <'s < 7.
This is easily derived from the special product structure and the fact that
(z;)» is a one-dimensional weight in A,.

Therefore we get

Lemma 2.1. Let @ = R" or @ = R7, 1 < ¢ < oo, —% < s < % and
wn(x) = H?ﬂ(:ciﬁ. Then the (partial) Riesz transforms are continuous from
Ly (;wi?) into itself.

Moreover, we introduce
Y5 ={z€C\{0}: |argz| < 6}
2575 =>s5N BE(O)
Recall the Helmholtz decomposition of a vector field f € L,(2;wi?)", i.e. the

unique decomposition f = fo+ Vp with fy € J,(Q;ws?) and p € W;(Q;wflq).
The existence and continuity of the corresponding Helmholtz projection

Py Lo(Qswp?)" — Jo(Qiwi?),  f—Ff=Jfo

is proved in [3: Theorem 5] for the case that 2 = R™ or = R}, or that €2 is
a bounded domain. For the case of an aperture domain and s = 0 the result
is proved in [4: Theorem 2.6].

Furthermore, we define the Stokes operator

A, = —P,A
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in J, () with D(Ay) = WZ(Q) N Wy ,(Q) N J4(€2). Note that the resolvent of
A, satisfies the estimate

1z + A) "l < Col2l M Iz, @) (8)

for z € ¥5 (0 € (0,m)) if Q is an aperture domain (see [9: Theorem 2.5)).
Therefore —A, generates an analytic semigroup.

3. The resolvent expansion in R

We consider the resolvent equations system

(z—Au+Vp=f in R7 (9)
dive =0 in R’} (10)
ulorr =0 on ORY . (11)

Let Ro(z) = (2 — A)~! denote the resolvent of the Laplace operator in R™.

Lemma 3.1. Let 1 <p<o0,0<d<m acNj with|a|§2,%<a<

”"’2|O‘|7 _% <s <s< 1% and s’ :5—20’—|—|OA‘ Then
o]-1
DaRo(Z) = Z ZJDaGoj + GOT(Z)
5=0
where

’

Gor(2) = O(z77") in L(W(R™Y;wiP), W27l R w5 )

for z — 0 with z € Xs.

Proof. The proof is the same as [9: Lemma 2.3/(i)]. It is based on the
estimate for the convolution operator with the heat kernel Ey(t)

1D Eo(t) ) S (12

”L(L,,(Rn;wsp),Lp(Rn;ws’P

for w(z) = wn(z), t € Xsy, 0 < dp < 7, €Ng, 0 <o < Fand -2 <s' <

s < g7 with s’ = s — 20. This estimate is proved in [9: Lemma 2.2] for the
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case w(z) = (x). But this case implies the estimate for w(z) = w,(x) since

”'DaEO(t)fHLP(Rn;wa/P)

- ‘xlzty/IZ
S / Da/ n—1
Rn 1 (4mt) =

‘an yn\

%

<O~ F @)=
X / n— 1
Rn—1 (4rt) =2
< O(H |t|TZ<t>%> ||f||Lp(R";wap)
=1

_lal o
= Clt|™ = )N fll L, ®nwsr

with a = (¢, v, ) 1

——— (W yn) dyn dy'

’

)

Ly (Ri(an)

7. mn—1

L, (R”*1 ;wzflT (m’))

|’ —u "2
a' e
D 11 (g 29

—1

Ly (Ro-107 7 7 (2))

Remark 3.2. The operators Gy, and Go,(z) are given by

‘ i (13)

Goy = [ B0

Gon(2 / Eo(t)fio)(2t) dt with fio)(2t) = e~ —

[o]-1 j
(_it) . (14)

=0 7

We recall Ukai’s solution formula for the homogeneous non-stationary Stokes
equations in R? (see [13]), i.e. (1) - (3) and (5) for @ = R%, f = 0 with
compatibility condition divug = 0 in R’} and ug = 0, ug = (ug, ug) on OR.
Let R; and S; be as above. Moreover, let rf = f|Ri’ ~vf = f|8Ri and e
be the extension operator from R’ to R™ with value 0. Finally, let E(t)
be the solution operator for the heat equation in R’}, which is derived from

Ey(t) by odd extension from R’} to R™. Then the solution (u(t),p(t)) of the
non-stationary Stokes equatlons in RY is

u(t) = WE(t)Vug
p(t) = =Dy, E(t)Viug

(1 -SU (W
w=(5 ) e v= ()

where
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with
S=(S1,...,8-1)"
U=rR -SR-S+ Ry,)e
Viug = =S - ugy + ug
Voug = ug + Sug
R =(Ry,....,R,1)"
and D is the Poisson operator for the Dirichlet problem of the Laplace equation
in R".
Using this result, we get:

o] n+t|a|

Theorem 3.3. Let1 < g <o00,0<d<mn=>3 5 <0< —5—,

a € Ny with [af £2,-2 <s' <0< s< 7 and s’ =s—20 +|al. Then there

exist operators Ry (z) and Py (z) with

DR (2) € L(Ly(RY;wi?), W2 Iel(RY ;w3 1))
Py (2) € L(Lq(RT;wi), W (R ws )

depending continuously on z € ¥5 U {0} such that:

1. v = Ry(2)f and p = Py (2)f with f € Ly(R%};wy?) is a solution of
problem (9) — (11) for z € ¥s.

2. Ri(z) € L(Ly(R7;w3e), W2(R%)) and Py (2) € L(Lq(RY;wit), WHRR))J
for every z € ¥j.

3. The asymptotic expansions

[o] -1
D°Ri(2)= Y DG +0(z"") in L(Ly(R};wi?), W2~ l*I(R ;w5 ?))
§j=0
=1 _ /
Pi(z)= Y ZP 400" in L(Ly(RY;wi), W) (R ;w5 ) if |af =2

=0

hold for z — 0,z € Xj.

Proof. Because of the Helmholtz decomposition in weighted L,-Spaces
(see [5: Theorem 5]) we can assume without loss of generality that f €
J4(©; w*?). Therefore the asymptotic expansion for R, (z) simply follows from
the expansion of Ry(z), equations (13) - (14), the continuity of the Riesz trans-

forms S; and R; in Le(R"™;wp?) and Lg(R;wp?) if —% < s < & and the fact

Ry(2)f = /OOO e FWE)Vf dt.
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In order to get the result for D*R (z) (|a| < 2) we use the relations

U = (I =U)|V'| = —(I - U) T}, 5id;
8152561 (i:1,...,n)
&U:Ué’l (i:1,...,n—1)

and prove the expansion in the same way as in the case & = 0. We note that
the first equation is a consequence of

Forse lUFI(E  2n) = |¢] /0 " el F¢! ) dy, (15)

(see the proof of [12: Theorem 1.1]); the other equations are obvious. Finally,
we get the expansion of VP, (z) in the same way using |V'|Dy = 0, U —-U0,,

Because of estimate (12) and Ukai’s formula we also easily get
Lemma 3.4. Let u(t) = WE(t)Vug with ug € Jq(R};w;?) denote the
solution of the homogeneous non-stationary Stokes equations (1) — (3),(5) for
Q=R" and f=0. Then
||u(t)||Lq(R:‘_;wa/q) < 0(1 + t)_UHuO”Lq(Ri;wflq)

with 1 < g < 00, —%<s’§0§s<§,s’:s—20 andt > 0.

8. Resolvent expansions in aperture domains

We consider the resolvent equations system

(z—Au+Vp=f in Q (16)
divu =0 in 2 (17)
U|8Q =0 on 0f) (18)
®(u) =0 (19)

for an aperture domain §2.

Theorem 4.1. Let 1 < g¢g<o00,0<d<m,n>3, 1<o<Z o¢&lZ,

9
—% <s<0<s< % and s’ := s—20. Then there are an € > 0 and operators

R(2) € L(Lg(Qwi®), W2(Qws 1)
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depending continuously on z € X5 U {0} with the following properties:
1. The pairu = R(z)f and p = P(2)f is a solution of problem (16)—(19).
2. R(z) € L(Lg(Q;w5?),W2(Q)) for every z € s,

3. The operator-valued function R(z) (z € ¥s.,) has an expansion

[o]—1
R(z) = Z ZGi+ Gr(2)
§=0
in L(Lg(ws), Wg(Q;w;":q)) where G,.(2) = O(2°7 1Y) for z — 0.

Proof. We use the technique used in the proof of [8: Theorem 3.1]. Let
QUB,.(0) = R} UR" UB,.(0). We choose b, R € R such that b > R > r+3 and
denote R} =R} UR”, Q4 = QNRY and Q, = QN By(0). Let ¢, € C°()
be cut-off functions with

|1 for|x|>R 1 for|z|>R—-2
"O(m)_{o for || < R—1 and Ws)‘{o for |z| < R — 3.

We identify ¢ f with its extension by 0 to R’}. Moreover, we define

Ri(2): Ly(RE;wit) — W2(RL; w3 9)

Ry (2)(gley)(x) if v €RY
R (2)g(x) = {Rlzxgﬁn)u) 2R,

The operator
Pe(2): Lo(RE;wit) — Wi (RLw) )

n

is defined analogously. Let f; := f|q, and
(L, P): Lo(w)™ — W2(Q)" x W, (%)

be the solution operator of the Stokes equation in the bounded domain €.
Define
Ri(2) € L(Lg(w31), WZ(Q;05,9))

by
Ri(2)f = pRe(2)(¥f) + (1 — o)L fo.

Similarly, define
[(2) € £(Lq(Qw3), Wy (w3 9))
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by
II(2)f = ¢Pr(2)(¥f) + (1 — @) P f.
Obviously, the operator R;(z) has the same type of expansion as Ry (z). Let

[o]—1
Pi(z)= Y  2/Pij+ Pi,(2)

J=0

with

n

Pi,(2)=0(:""Y) in L(Ly(RY;wi?), WHRY;ws 7))
be the expansion for Py (z). We choose Py ;f, Py . f € qu (R%) such that

/ Pi,ofd:z::/ Pfydx
DgrNO DrNQ

/ Pay(2)f do =0, / Pofde=0 (j=1,....[c] = 1)
DrNO DrNQ

where Dp = {z € : R—1 < |z| < R}. Applying Poincaré’s inequality

)

for a bounded domain D with C°-boundary (see [2: Chapter 5/Theorem 4.19])
it follows that

I1Prof = PfollL,orne) < C (IVProfllL,orne) + IVPfollL,@w)) < ClFllL, @)
[P jfllz,(prne) < CIVPLifllL,(orne) < CllfllL,@uws
| Per(2)fllL,(Drno) < ClIVPL - (2)fllL,(Drna) < C|Z\U_1Hf”Lq(Q;wfﬂ)-

Because of these inequalities and the identity

VI(2)f = VPL(2)(f) + (1 = )VPfy + (Vo) (P(2) (v f) — Pf)

the operator II(z) has the same type of expansion as P (z).

1l < O(nwnq +\ [ sy

It remains to correct the divergence of Ry(z)f. For this we apply Bogov-
skii’s Theorem (see, e.g., [6: Theorem 3.2]) to div(Ry(2)f) = Ve-{R+(2)(Wf)—}}
Lfy}, which has compact support in Dg. We note that

/D div(Ry(2)f) = — /B (1= o)) () dr / div(eLfy) do

Qp

-/ N (1= @)Re(2)(¢f)do — | N-gLfydo
d(BrNRY) 973

=0.
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Since divRy(z)f € WZ(Dg) N Wy ,(Dr), we get a compact operator Q(z) :
Lg(Q;ws?) — Wg,(Dr) with divQ(z)f = divRi(z)f. The operator Q(z)
depends continuously on z € ¥5 U {0}.

We identify Q(z)f with its extension by zero to a function Q(z)f €
WOQVq(Q;wf;q). Now let

Ry(2) := Ri(2) = Q(2) € L(Lg( w3, We (B wy ).
Then Ra(z)f solves

(z—=A)Ra(2)f + VII(2)f = f+ S(2)f in
divRs(2)f =0 in Q
Ry(2)f =0 on 0N

for all f € Ly(Q;wy?), where

S(z)f = —{2(Ve) -V + (Ap) }{R+(2)(f) — Lfy }
+2(1 = @)Lfy + (A = 2)Q(2) f + Vo (Ps(2) (v f) — Pfp).

Since suppS(z)f C Dg, we conclude S(z) € L(L,(;ws?)). The term (A —
2)Q(z) € L(Ly(wi?)) is a compact operator since Q(z) : Lg(Q;wi?) —
W§,(Dgr) is compact. Furthermore, S(z) — (A — 2)Q(2) : Lg(;wy?) —
W, (Dr) is continuous, so S(z) € L(Lg(€;w;)) is a compact operator. More-
over, S(z) is continuous in z € 35 U {0} and has the same type of expansion
in L(Lqy(Qw;?)) as Ry(z) in ,C(Lq(Q;waq), qu(Q;wa/q)).

In the following Lemma 4.2 we show that I + S(0) is injective. Since S(0)
is compact, the Fredholm alternative yields that (I +S(0))™! € £(Ly(;w9))
exists. Therefore (I + S(z))~! exists for all z € X5, for some € > 0. More
precisely,

oo

(I+S(2)"'=(I+5(0 Z (I +5(0) 1"

for all z € ¥s5.,, where g9 > 0 is chosen so small that

1
I5(2) = SO < 517577

(Z € 25750).

Since S(z) and therefore all powers (S(0) — S(z))* have an expansion in
L(Ly(Q;ws)) of the same type as Ry (z), the inverse (I + S(z))~! has the
same.

If we now set R(z) = Ra(2)(I+S5(2))~! and P(z) = TI(2)(I + S(2)) !, we
get the solution operators of the resolvent problem with the desired expan-
sion N
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Lemma 4.2. Let S(z) denote the same operator as in the proof of The-
orem 4.1. Then I + S(0) € L(Ly(wi9)) is injective.
3,

Proof. It is known [3, 4] that the Stokes equations in an aperture domain
n

have a unique solution (u,p) € [W2(Q) N WL (Q)]" x WH(Q) (]% = % -1
with 1 < p < n) for given force f € L,(€2) and prescribed flux ®(u) = a € R.

We calculate the flux of Ry(0). Since M C B,, the identity R2(0)f(z) =
Lfy(z) holds for all x € M. Denote by B; the connected component of

B, (0)\ M “above” M. Then we conclude that

o:/ divabda::/ Lfb«Nda:/ Lfb-Nda:/ Ry(0)f - N do.
B, OB M

M

Therefore we get R»(0)f = 0 and II(0) = const if we show that Ry(0)f €
[(W2(Q) N W, ()] and II(0) f € W, (Q).

Let (I+5(0))f = 0. That means f = —S(0) f, and therefore the support of
f is contained in €. This implies f € L,(Q;wsP) for all s € R and 1 < p < q.

Claim. VZR(0)f,VII(0)f € L,(Q) for all 1 < p < q and VRy(0)f €
L,- () with I% = zla — L1 and 1 < p < min{q,n}.

Proof of claim. For i,j € {1,...,n} there holds

0i9R2(0) f = p0;0; R+ (0)(¥ f) + 0:0;[(1 — @)L fo] + (0i)0; R+ (0) (¢ f)
+ (059)0i R (0) (¥ f) + (9:0;9) R+ (0) (¢ f) — 0;0;Q(0) f-

The support of every term except the first one is contained in Q. Therefore
each of these function is an element of L, () for every 1 <p <gq.

Considering the first term, Theorem 3.3 tells us that
0:0;Rx(0) € L(Ly(RE;wiP), Ly(, w3 7))

for all —2 < §<0<s< o s'=s5-20+2and 1 <o < 3. Since f € L;(Q2)
for arbltrary s€ Rand 1 g p < q, we can apply Theorem 3.3 for s’ =0 and
s = 20 — 2. Therefore we choose 1 < o < 3 such that ~—-— < p which
is equivalent to 20 —2 < %, Thus we get 0;,0;R+(0)(¥f) € Lp(§2) for every
1 < p < ¢. With the same choice of s and s’ we see that VII(0)f € L,(Q2) for
all 1 <p <gq.

The same argumentation can be applied to

9iR2(0)f = pdi R+ (0)(¢f) + 0il(1 — ) L fo] + (0ip) R+ (0) (¢ f) — 3:Q(0) f-

In this case ,
QiR (0) € L(L(wy), L (Qswi™))
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holds for all -2 < s’ <0<s< 5, s :=5—-20+1,1 <0 < %. The choice
of s =0 and s = 20 — 1 yields the condition 20 —1 < .. Since % + % =1
this condition is equivalent to 20 — 2 < z% which is equivalent to p >

This proves the claim.

Thus R2(0)f =0 and VII(0)f = 0. Since suppQ(0) C{z: R—1< |z| <
R}, it is obvious that for x € Q

_[RO@H@) =0 o] > R
ra(0f) = { T30 fledz k|

n
n—20+42"

VII(0) f(2) — {VPi(O (f)(x) =0 if|e] >R

This implies f = 0 for |z| > R since

AR (0)(0f) + VPL(0)(¢f) =4f  inRY.

Similarly we get f =0 for x € Q with |z| < R — 1 since —ALf, + VPf, = f
in Q. The support of (R+(0)(¢f), P+(0)(xf)) and of (Lfy, Pf,) is contained

inD={zxeQ: R—1< |z| <b}. Therefore both terms solve the Stokes
problem N
—Au+Vp=f in D

divu =0 in D
u=20 on 6D.

This implies that R+ (0)(¢f) = Lf, and VP4 (0)(1f) = VPf, in D because
of the unique solvability of the Stokes equations in a bounded domain. Hence
Q(z)f = 0,Lfy = R(0)f = 0 and VPf, = VII(0)f = 0 in D and finally
f =0 in the whole domain B

5. Decay of the semigroup in weighted spaces

Let A; = —F,A denote the Stokes operator for an aperture domain (2.

Theorem 5.1. Letn>3,1<0< %,1<¢q<o0, —%<s’§0§s<§
and s' = s — 20. Then there exists a constant C = C(q, s, s’) such that

||67tAqf||Lq(Q;wa’Q) < C(l + t)i(y“fHLq(Q;wflq) (t 2 0)
for all f € J,(2) N Ly(Q;wi?). Furthermore,

He_tAququ(Q;wi’Q) < C(l + t)_g maX{HfHWq?(Q)a HfHLq(Q;wiq)} (t > O)
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for all f € D(Ay) N Ly(Q;wie).
Proof. The proof of the inequalities is nearly the same as the proof of [8:
Theorem 1.1]. So we give only a sketch.

Since the semigroup e~*4s is bounded in J,(f2), the first estimate is sat-
isfied for 0 < ¢ < 1. The second estimate holds for 0 < ¢ < 1 because of the
estimates

[fllwz@) < cll(I+ Ag) fllr,@) < Cllflwzo) (20)

for all f € D(A,) (the first inequality is a consequence of [4: Theorem 2.1],
the second inequality is obvious). For ¢t > 1 consider the representation of the
semigroup

271

eftAq _ 1 etz<Z+Aq)71dZ
I

where the curve I' coincides outside a ball B.(0) (0 < € < ¢p) with the rays
e*?f (1> 0) with 5 < ¢ < & (0 and & are the same numbers as in Theorem
4.1). We split the curve I' into two parts

I'={zel:0<|z] <¢}
Iy={zel:e<|z}.

So we get

271
I

et f = sz/ PR(2)fdz+ 5= [ €F(z+ Ay fdz
Iy

for all f € J,(Q) N Ly (s wsd) since R(z)f = (24 Ay) "1 f for z € X5.. Using
the resolvent estimate ||(z + Ay) " fll; < Clz| 7Y fl; we easily get

ets cos ¢

<c| 5110
Lq(Q0i?) g §

e—ct

< Ce: ) —— 1 lly @i

ki [ e A g
T2

with some constant C' = C(e, ¢) > 0. Analogously we get

L
W2 (2w ) e

< C(e, ¢)

oo _tscos ¢

ds || fllwz(0)

ﬁ/ e (z+ Ay tdzf
T2

e—ct

t

1 lwze)

if we use (20) for f € D(A,).
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We use the resolvent expansion of Theorem 4.1 to estimate the first inte-
gral. Since Zg‘igl 2 G is holomorphic in C, there holds

[o] -1

Z / etzszjdz
Iy

J=0

< Cestcos((b) — Ce—ct
L(Lq(@i®), W (w5 1))

with C > 0. In order to estimate the remainder term we deform the curve I'y
to a curve I'* which coincides with z = e¥?*t (£ € [0,¢]). Therefore

< C/ e)\t Cos(d)))\afld)\ — 't °.
0

ﬁ/ e*G,(2) dz
'

L(Lg(wi®),W2(ws 7))

Collecting all estimates we proved the theorem il

6. The L,-L,-estimate

In order to get an estimate of |l f||, (q,) where Q, = QN By(0), we need
the following

Lemma 6.1. Let 1 < g <oo and —% < s’ < 0. Then

le™ 4 fll,, ey < CA+OTNfllL @)

for all f € J,(Q) and
||€_tAqf||WqZ(Q;wi’LI) < C(l + t)%Hf“WqQ(Q)

for all f € D(A).

Corollary 6.2. Let 1 < q < co. Then for every 0 < s < 2% there is a
constant C = C(s, q,2) with

le™ % fllzy i < CA+ O Ifllz,@
for all f € J,(Q) and
le™" fllwz(e,) < COL+0)7°| flwz

for all f € D(A,).
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Proof of Lemma 6.1. If 1 < p < 3, then % > 2. So we can we apply
Theorem 5.1 with s = 0. Therefore we get

||€7tApf||W§"(Q;wi/P) <COL+1)T | fllwp e (21)

for m = 0,2, f € Jp(Q) resp. f € D(A4p) and —2 < §' < —2. In order to get
the statement of the lemma we interpolate estimates (21) and

e fllwma) < Cllfllwm@ — (m=0,2; f € J.(Q) resp. D(A,)) (22)

for suitable p close to 1 and large r. For this we need the statement about
complex interpolation

(Lp(Q;wy p)’L’"(Q))[O} = L (0w (=0

with 0 < 6 <1 and % = 11.%0 + £ (see, for example, [1: Theorem 5.5.3]).
Now let 1 < ¢ < oo and —% < ¢’ < 0 be given as in the assumptions. We

1;4+§for0<0<1. Then we choose 0 < § < 1 such

set § = 5=
-0

that

and L =
q

n

p

which exists if 1 < p < min{%5,q}. If we furthermore use (J,(Q2), J-(Q))9 =
Jq(€2) (see Appendix), we get with these chosen 6 and p and the corresponding
r that

1-0)<s <-2(1-0) <+—= o<
p

/

- 11-6 Eil
le™ 4 7l ey < CLA+DF] I flly@ = CO+F | fllz,@

for f € J,(Q2). Complex interpolation with the same parameters yields the
estimate for f € D(A,). For this we use the second estimate of Theorem
5,1 and (D(4,),D(A,)),,; = D(A,). The latter equation will be proved in

Appendix §

(0]

Proof of Theorem 1.1. The proof is similar to that of [8: Theorem 1.2]
but a little bit shorter. It is sufficient to show the statement for 0 < o < %
since we can reduce the general case to this statement (choose ¢ = ¢ < ¢1 <
... < qp =7 such that o; := 2(+ - 1) < % and apply the statement to g;

2\q; Qit1
and g;11).

Step 1: The inequality holds for t > 2. Let ug := e~ “Aayy. Then 4y €
D(4q) and |[uollwze) < Clluollz,)- Moreover, let u(t) := e t4agy and
p(t) € qu(Q) be the pressure corresponding to u(t). Let QU B,.(0) = R} U
R™ U B,(0) and b > r + 1. We choose a cut-off function ¢ € C*°(Q2) with
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Y(x) = 1for |z| > band ¢(x) = 0 for |z| < b—1. Then div(yu(t)) = Vip-u(t) €
W3 (D) with Dy = {z € Q: b—1 < |z| < b} and be Vi - a(t)de = 0.
Applying Bogovskii’s theorem [6: Theorem 3.2] we know that there exists a
vo(t) € W5 ,(Dy) with diveg(t) = div(ya(t)) and

oo @llwacpy) < Cla) lws oy)- (23)
Therefore we have

100 (D) lwi(py) < Clle™ 4 Agiiollz,(py) < C(L+ ) |laollwz)  (24)

with an arbitrary 0 < § < 7. If we define v1(t) = vu(t) — vo(?), it solves the
equations

[\
ot

Oyvr (t) — Awy (t) + V(¥p(t)) = h(t) in (0, 00) x RZ
divey (t) =0 in (0,00) x R}
Ul(t)|3]1yit =0 in (0, OO)
U1 (0) = U1

A~~~ /N /N
N DN
~N O

~— ~— ~— ~—

with v1 = ¥t — v9(0) and
h(t) = —{2(VY) - V + (A¥) ba(t) — (0 — A)vo(t) + (VY)B(?).

Moreover, supph(t) C Dj,. We choose the pressure p(t) such that [ Dy p(t)dz =
0. If we now apply (23) - (24), Poincaré’s inequality [2: Theorem 4.19] and
Corollary 6.2, we get

1ROz, < C (130w o) + 100 lw2epy) + 1000 (E) 2,04y + IFDIL, ) )
<C((+7 5 ollwao + 19501z, )
<C <(1 + t)_éHaong(Q) + [|0:a(t) ||, (py) + Hﬂ(t)HW;*(Db))
< C(1+1)72|Jito]lwa(oy

with an arbitrary s such that 0 < 5§ < %.

Let E4(t) denote the semigroup of the Stokes operator in R’} and Py
denote the Helmholtz projection in L,(R%;w:?). Since v(t) solves (25) -
(28), the identity

v1(t) = Ex(t)vy + /Ot Ei(t—1)Pyh(r)dr
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holds. Because of Corollary 3.4 and the L, — L,-estimate in the half space
[12: Theorem 3.1] the semigroup E4 (t) satisfies

1B+ () flle,.®y) < CNfllo,®y)
[1Ex(t) fllL,ry) <CQ+1)” N flle J(R7 5059

With1<q§r<oo,0§s<%anda:%(%——)forallt>0and

f e Jy(RY) resp. f e Jy(RY;w;?). Using both inequalities we get
1B+ () fllp,.my) <C° Ej:( )

for f € J,(R;wi?) and t > 0. Therefore we conclude

[Ex()villr,.®y) < C7villp, @) < Ct 7ol @)

< Ct_g(l + t)_%”fHLq(R" swon?)

Lo(R™)

and

/0 Ei(t — T)Pj:h(T) dr

Ly (RY)

t
< C’/ (t—7)"7(1+t— T)_% HPj:h(T)HL (R w37) dr
0 9

<C||h(7-)||L (Rn -w'nq)

t
<c / (t—7) (L4t — 1) 2 ()|, oy dr
0

t <
< C/ (t—7) (1 +t—7)"2(147)"2dr ol lwz(e)-
0

WenowchooseO§s<§anda§§<%suchthat §+§>1, st+o#1
and % # 1 (this is possible since % + qu, = & > 1). If we apply Lemma A.2
(see Appendix) with this choice of s and 3, we get

/Ot B(t — 7)Poh(r) dr

< Ot ||tollwz o)

L.(R%)
and therefore
[or ()2, my) < CE7aollwz(e)-

Since u(t,z) = vy (t,x) for all x € O\ p, the previous estimates, Corollary
6.2 and Sobolev’s embedding theorem imply that

12z, < @)L, @) + lvi®llL, @\e)
< C(lla()lwz ) + lo1(®)lz, @\2))
< Ct7|ollwz o)
< CU 7| fllzy0)-
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Since @(t) = e~ (1 4ay,, we have proved the theorem for t > 2

Step 2: The inequality holds for t < 2. The case t < 2 is proved in
the same way as in the proof of [8: Theorem 1.2] using Sobolev’s embedding
theorem and an interpolation method B

Proof of Theorem 1.2. Because of the semigroup property of e~ *4« and

Theorem 1.1 it suffices to prove the statement for c =0, ie. 1 <qg=1r <n.
The proof for the case ¢ < 2 uses the same interpolation method as in the
proof of Theorem 1.2.

So let ¢ > 2 and vy (t), vo(t), h(t) be the functions used in the proof of
Theorem 1.1. Then

t
Vui(t) = VEL(t)v, + / VEL(t —7)Pyh(T)dT.
0
The estimate for the Stokes semigroup in R"} yields

_1
IVEL (o1, my) < Ct2 ||U1||Lq(Ri)'

Nowwechoose()§3<%and1§§<%with%+§>1,§#1and%+§7§l.

So we get because of Corollary 6.2 and Lemma A.2 (see Appendix)

/Ot VEL(t —7)Pih(r)dr

Lq(RY)

t
<c / (=) 3 (1t 1) | PLh(r) g, gy ooy
0

gcé%—ﬂ—

t .
SC/ (t—7) 21+t —7)" 51 +1)"3dr a0 llw2(0)
0

[N

(14t =7)"2[A(7) ||, (20 dT

1y~
< Ct™2||tolwz(o)-
Moreover, let § =1 < %. Therefore we get for ¢t > 1
Ve D4 £, o) < C(IVat) ||y + Vo1 ()| £ e )
< C((L+6)72 +172) oz
< Ct72 ([ fllz, @)

Thus the theorem is also true for ¢t > 2 i
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A. Appendix

It remains to prove the necessary technical lemma used in the last section.

Lemma A.1. Let1l <p,q,r < oo, 0 € (0,1) with % = 1;0 + % and let Q
be an aperture domain. Then
(D(Ar), D(Ap))1e) = D(Aq)
(JT(Q)va(Q))[O} = Jq(Q)'
Proof. To prove the first equality we define a continuous projection P :
W2()™ — D(A,) for arbitrary 1 < ¢ < oo. For a function u € W2 ()" let

(v,p) € W2(Q)" x qu (€2) denote the unique solution of the resolvent equations
(16) - (19) with right-hand side f = (z — A)u for some fixed z € X5 (see [9:
Theorem 2.1]). We set Pyu = v. Then

[vllwz@) < Cli(z = A)ullL,@) < Cllullwz@)-

If w e D(A,), (u,0) is the unique solution of these equations. Therefore P, is
a continuous projection on D(A,).

If u e W2(Q)" N WZ2(Q)", the corresponding solutions in W7?(Q2)" and
WZ(€2)™ coincide (see [3: Lemma 3.2]). Therefore we can extend P, and P,
to a well-defined projection P(u, +ug) = Pru, + Pyug on W2(Q)" + W2 (Q)"
with Ply2qy» = P. and P ’WE(Q)n = P,. Therefore we conclude

D(4,) = P(W(Q)", Wy (Q)")
— (PW2(Q)", PW2(2)")
= (D(4,),D(4,))

(0]
[0]°

The second equality immediately follows from the fact that P, = P, on J, ()N
Jr(§2) (see [4: Lemma 3.2])

Lemma A.2. Let 0<a<1,08>0,a<vy,B+y>1, a+0#1 and
v # 1. Then

/t(t —8) (1 +t—s)P(1+5)ds < Ct™.
0

Proof. The case t € (0,1) is trivial. For ¢ > 1 we simply estimate

[SIEY
o+

2

/ (t—s)—a(1+t—s)—ﬂ(1+s)—msgcra—ﬁ/ (14 s)ds
0 0

< Oop-a-B = ify <1
- 1 ify>1

<Ct™™.
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Similarly we get

! tl=o=8 ifa+ B8 <1

1 if o +3>1

—_—

(t—5)"“(1+t—s)P(1+s)Vds<Ct™" {

<Ct™@
and the proof is finished il

Acknowledgment: We thank the referee for pointing out to us the re-
sults on symmetric aperture flows (see [7]).
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