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Stably Solvable Maps are Unstable
under Small Perturbations

M. Furi

Abstract. We show that the set of stably solvable maps from an infinite dimensional
Banach space E into itself is not open in the topological space C(E) of the continuous
selfmaps of E. The question of whether or not this set is open is related to nonlinear
spectral theory and was posed in [7].
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1. Introduction

Let (E, ‖ · ‖) be an infinite dimensional Banach space over a field K (either R
or C). Given a (continuous) map g : E → E, the extended real number

|g| = lim sup
‖x‖→∞

‖g(x)‖
‖x‖

is called the quasinorm of g (see [10]). If |g| < ∞, then g is said to be
quasibounded. Clearly, for bounded linear operators the quasinorm and the
standard operator norm coincide.

A map f : E → E is said to be stably solvable (see [6]) if the equation

f(x) = h(x)

has a solution whenever h : E → E is a completely continuous map with
|h| = 0. In particular, any stably solvable map is onto. The converse is true
for bounded linear operators (see [7]).

Stably solvable maps play an important role in the notion of spectrum
for nonlinear operators introduced in [7]. In that paper, to show that the
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spectrum σ(f) of any map f : E → E is a closed subset of K, a suitable
topology in the space C(E) of continuous selfmaps of E was considered. Such
a topology coincides with the standard one in the subspace L(E) of C(E) of
bounded linear operators from E into itself. Since, as well known, the set of
surjective bounded linear operators from E into itself is open in L(E), it is
natural to ask wether or not the set of stably solvable maps of E is open in
C(E). This question, which was posed in [7], has a negative answer, as we
show here with an example of a stably solvable map which is the limit (in
C(E)) of non-surjective maps.

We need first some preliminaries.

The Kuratowski measure of non-compactness (see [11]) is a non-negative
real function α which assigns to any bounded metric space X the number

α(X) = inf

{
r > 0

∣∣∣∣∣
X admits a finite covering made

of sets with diameter less than r

}
.

Clearly, α(X) = 0 if and only if X is totally bounded, which implies that
X is compact whenever it is complete. These are the main properties of the
measure α for bounded subsets of E (recall that E is an infinite dimensional
Banach space):

• α(A) = α(Ā), where Ā stands for the closure of A.
• α(A) = 0 if and only if Ā is compact.
• α(λA) = |λ|α(A), for any λ ∈ K.
• α(A + B) ≤ α(A) + α(B).
• α(A ∪B) = max{α(A), α(B)}.
• α(co(A)) = α(A), where co(A) is the convex hull of A (see [3]).
• α(S) = 2, where S is the unit sphere of E (see [9, 12]).

Given a continuous map f : E → E, consider the extended real number

α(f) = sup
α(A)>0

α(f(A))
α(A)

.

Observe that f is completely continuous if and only if α(f) = 0. Moreover,
when f is of Lipschitz type with constant k, then α(f) ≤ k. Thus, in particu-
lar, for a bounded linear operator L ∈ L(E) one has α(L) ≤ ‖L‖, where ‖L‖
is the standard operator norm of L.

Let C(E) denote the space of continuous selfmaps of E with the following
topology introduced in [7]. Given ε > 0, let

Uε =
{
f ∈ C(E) : α(f) ≤ ε, ‖f(x)‖ < ε(1 + ‖x‖) for all x ∈ E

}
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and take the family
{
Uε : ε > 0

}
as a fundamental system of neighborhoods

of the origin of the vector space C(E). By translation we get a fundamental
system of neighborhoods of any point of C(E), and this makes C(E) into a
topological space. With this topology a sequence {fn} in C(E) converges to
f if and only if the following conditions are verified:

• fn → f , uniformly on bounded subsets of E.
• |fn − f | → 0.
• α(fn − f) → 0.

We observe that the topology of C(E) induces the standard one in the sub-
space L(E) of the bounded linear operators.

2. The example

Let, as before, E denote an infinite dimensional Banach space and define
f : E → E by

f(x) = ‖x‖x. (2.1)

We will show that the map f is stably solvable and there exists a sequence
{fn} of non-surjective maps which converges to f in C(E). Since stably
solvable maps are surjective, this implies that the set S(E) of stably solvable
maps from E onto itself is not open in C(E), whenever the Banach space E
is infinite dimensional.

Consider any completely continuous map h : E → E such that |h| = 0.
To prove that f is stably solvable we need to show that the equation

f(x) = h(x) (2.2)

admits at least one solution. Observe first that f is invertible, with inverse
given by

f−1(y) =
{ y√

‖y‖ if y 6= 0

0 if y = 0.

Thus f−1 is continuous and quasibounded (with |f−1| = 0). Now, equation
(2.2) is equivalent to x = f−1(h(x)) which is solvable, since the identity is
stably solvable and the composite map f−1 ◦ h is completely continuous with
|f−1 ◦ h| ≤ |f−1| |h| = 0. Thus f is stably solvable, as claimed.

Let r be a Lipschitz retraction of the closed unit ball D of E onto its
boundary S = ∂D. The existence of such a retraction is ensured by a general
result of Benyamini and Sternfeld (see [2]). An explicit construction in the
space C[0, 1] of continuous functions satisfying α(r) ≤ 9 has been given in [5]
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(see also [15] for a general discussion on the smallest possible value of α(r)).
Define g : E → E by

g(x) =
{

r(x) if ‖x‖ ≤ 1
x if ‖x‖ ≥ 1

and let {fn} be the sequence of continuous selfmaps of E given by

fn(x) = f
(

1
n g(nx)

)
.

Clearly, the maps fn are not surjective and, in particular, not stably solvable.
We will show that {fn} converges to f in C(E). We have

fn(x) =
{

1
n2 r(nx) if ‖x‖ ≤ 1

n

f(x) if ‖x‖ ≥ 1
n .

Thus {fn} converges uniformly to f , because for ‖x‖ ≤ 1
n one has

∥∥fn(x)− f(x)
∥∥ =

∥∥ 1
n2 r(nx)− ‖x‖x∥∥ ≤ 1

n2 + ‖x‖2 ≤ 2
n2

and for ‖x‖ ≥ 1
n the maps fn and f coincide. Moreover, |fn − f | = 0 for

all n ∈ N, as fn and f coincide outside a bounded set. Thus, to show that
{fn} converges to f in C(E), we are reduced to proving that α(fn − f) → 0
as n → ∞. To this end, given a bounded subset A of E and n ∈ N, let us
estimate the α-measure of non-compactness of the set (fn − f)(A). Since the
map fn − f is zero outside the open ball Bn = {x ∈ E : ‖x‖ < 1

n}, we may
assume A ⊆ Bn. The inclusion

(fn − f)(A) ⊆ fn(A)− f(A)

implies
α
(
(fn − f)(A)

) ≤ α(fn(A)) + α(f(A)).

Thus, we will estimate α(fn(A)) and α(f(A)). Since A ⊆ Bn and the map r
is of Lipschitz type with some constant k, one has

α(fn(A)) = α
(

1
n2 r(nA)

)
= 1

n2 α(r(nA)) ≤ k
n2 α(nA) = k

n α(A).

Regarding α(f(A)), the inclusion A ⊆ Bn implies f(A) ⊆ [
0, 1

n

]·A ⊆ co
({0}∪

1
nA

)
which yields

α(f(A)) ≤ α
(
co({0} ∪ 1

nA)
)

= α
({0} ∪ 1

nA
)

= 1
n α(A).

We have proved the inequality α
(
(fn − f)(A)

) ≤ 1+k
n α(A) for all A ⊆ Bn,

which implies the same inequality for any bounded subset A of E since, we
recall, fn − f vanishes outside Bn. We may conclude that α(fn − f) ≤ 1+k

n
and, consequently, the sequence {fn} converges to f in C(E).
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3. Some observations

We make several observations on the above example. First of all, we mention
that stably solvable maps play a prominent role in spectral theory for non-
linear operators. For instance, an important part of the nonlinear spectrum
introduced in [7] is the subspectrum

σδ(f) =
{

λ ∈ K : λI − f is not stably solvable
}

where I denotes the identity in E. It was stated as an open problem in [7]
whether or not this is a closed subset of the scalar field K. Unfortunately, our
example does not allow us to solve this problem. As a matter of fact, any class
of maps which is closed in C(E) (such as, for example, the class of maps f
satisfying α(f) = 0 or |f | = 0) generates a corresponding closed subspectrum,
since the map λ 7→ λI − f is continuous, but not vice versa.

Next, there is a relation to the class of so-called strictly stably solvable
maps introduced in [1]. A map f : E → E is called k-stably solvable (k ≥ 0)
if, given any continuous map h : E → E such that α(h) ≤ k and |h| ≤ k, we
may solve equation (2.2) in E. Moreover, f is called strictly stably solvable if
f is k-stably solvable for some k > 0. Obviously, 0-stably solvable maps are
then nothing else but stably solvable maps in the sense of [6].

Now, function (2.1) may serve as an example of a stably solvable map
which is not strictly stably solvable. In fact, suppose that f is k-stably solvable
for some k > 0, and let h = f − fn, where n is so large that α(h) ≤ k. Since
|h| = 0, by what we have proved above, equation (2.2) admits a solution
x̂ ∈ E, i.e. fn(x̂) = 0. But this is impossible, since ‖fn(x)‖ ≥ 1

n2 for any
x ∈ E.

Finally, function (2.1) may be used to solve another open problem. Let
E be a Banach space and Ω ⊂ E open, connected and bounded. Following
[13], we call a continuous map f : Ω → E a k-epi map (k ≥ 0) if f(x) 6= 0
on ∂Ω and, for any continuous map h : Ω → E satisfying α(h) ≤ k and
h|∂Ω ≡ 0, equation (2.2) has a solution in Ω. In case k = 0 (i.e., for compact
right-hand sides h), one gets the class of 0-epi maps introduced in [8]. Loosely
speaking, the concept of k-epi (in particular, 0-epi) maps is a “local analogue”
to the “asymptotic” concept of k-stably solvable (in particular, stably solvable)
maps; this class is also quite useful in nonlinear spectral theory (see [4]).

In [13] the authors claim to present an example of a map which is 0-epi
but not k-epi for any k > 0; unfortunately, this is not true. Our function
(2.1), however, has this property on the closed unit ball D of any infinite
dimensional Banach space E. Indeed, if h : D → E is completely continuous
with h|∂D ≡ 0, the trivial extension of h to the whole space is also completely
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continuous and satisfies |h| = 0, and so equation (2.2) has a solution x̂ ∈
E. Obviously, this solution must belong to D, since otherwise 1 < ‖x̂‖2 =
‖f(x̂)‖ = ‖h(x̂)‖ = 0.

To see that f is not k-epi on D for any k > 0, we may choose again
h = f − fn as above and follow the same reasoning.

We point out that the so-called lower measure of non-compactness of map
(2.1) on D, i.e.

β(f) = inf
α(A)>0

α(f(A))
α(A)

is zero, as may be easily seen by considering spheres of small radius. This is not
accidental. In fact, a remarkable and highly non-trivial coincidence theorem
due to Väth (see [14]) states that, whenever a continuous map f is 0-epi on
some domain and satisfies β(f) > 0, then f is also k-epi for 0 < k < β(f).

Acknowledgement. The author is grateful to Jürgen Appell for some
very useful remarks.
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