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Solution Decompositions
for

Linear Convection-Diffusion Problems

T. Linß

Abstract. We consider a singularly perturbed convection-diffusion problem. The
existence of certain decompositions of the solution into a regular solution component
and a layer component is studied. Such decompositions are useful for the convergence
analysis of numerical methods. Our aim is to show that such decompositions exist
under less restrictive assumptions on the data of the problem than those required in
earlier publications.
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1. Introduction

We consider the singularly perturbed convection-diffusion problem

Lu(x) := −εu′′(x)− a(x)u′(x) + b(x)u(x) = f(x) for x ∈ (0, 1)

u(0) = γ0

u(1) = γ1





(1)

where 0 < ε ¿ 1 is a small constant, a(x) ≥ α > 0, b ≥ 0, a, b, f ∈ Ck(0, 1)
with k = 0 or k = 1. Its solution u typically has an exponential boundary
layer at x = 0.

A variety of special numerical methods for the approximate solution of
problem (1) have been proposed and analysed in the literature. For a sur-
vey the reader is referred to [8]. One possible means of constructing robust
methods, i.e. methods that perform equally well no matter how small the per-
turbation parameter ε, is the use of standard schemes on highly non-uniform
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meshes such as Bakhvalov-type meshes [1, 10] or Shishkin-type meshes [3, 7].
For the analysis of such methods decompositions of the solution of problem
(1) into a regular solution component and a layer component turned out to
be very useful.

In [3] it was proved that if a, f ∈ C3(0, 1) and b ≡ 0, then u admits the
representation u = v + w where the regular solution component v satisfies

Lv(x) = f(x)

|v(i)(x)| ≤ C(1 + ε2−i) (i = 0, 1, 2, 3)

}
(x ∈ (0, 1)) (2)a

while for the boundary layer component w we have

Lw(x) = 0

|w(i)(x)| ≤ Cε−i exp
(
− αx

ε

)
(i = 0, 1, 2, 3)



 (x ∈ (0, 1)) (2)b

where here and throughout the paper C > 0 – sometimes subscripted – denotes
a generic constant that is independent of ε. This decomposition is used in [3]
to prove that the simple upwind scheme

− 2ε

hi + hi+1

(
Ui+1 − Ui

hi+1
− Ui − Ui−1

hi

)
− ai

Ui+1 − Ui

hi+1
+ biUi = fi

is almost first-order convergent, uniformly in the perturbation parameter ε,
on a Shishkin mesh.

The purpose of the present paper is to derive (2) under less restrictive
regularity assumptions on the data of the problem. Our construction requires
a, b and f to lie only in C1(0, 1) rather than in C3(0, 1). The key to this
improvement is that the decomposition into regular and boundary parts is
not unique. Unlike [3] we define v not via solutions of first-order problems,
but as the solution of a second-order problem with an appropriate boundary
condition at the outflow boundary x = 0. This idea can also be used for
two-dimensional problems, where one defines the regular solution component
as the solution of an elliptic problem rather than by means of hyperbolic
problems as done in [2, 3]. A first attempt in this direction can be found in
[6]. However, in two dimensions regularity of the boundary and compatibility
of the boundary conditions become an important issue too.
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2. Construction of the decomposition

The decomposition will be constructed as follows. We define v and w to be
the solution of the boundary-value problems

Lv(x) = f(x) (x ∈ (0, 1))

(−av′ + bv)(0) = f(0)

v(1) = γ1





(3)a

and
Lw(x) = 0 (x ∈ (0, 1))

w(0) = γ0 − v(0)

w(1) = 0





. (3)b

First we study the regular solution component v. The operator L satisfies
certain maximum and comparison principles [5]. For example, if two functions
v̌ and v̂ satisfy

Lv̌(x) ≤ Lv̂(x) in (0, 1)

(−av̌′ + bv̌)(0) ≤ (−av̂′ + bv̂)(0)

v̌(1) ≤ v̂(1),

then v̌(x) ≤ v̂(x) on [0, 1]. Using this comparison principle with

v± = ± (
α−1‖f‖∞(1− x) + |γ1|

)

we get
‖v‖∞ ≤ α−1‖f‖∞ + |γ1| =: C1.

To derive bounds on the derivatives of v, we set h(x) = f(x) − b(x)u(x) and
write v as

v(x) =
∫ 1

x

ϑ(s)ds + h(0)
a(0)

∫ 1

x

exp(−A(s)) ds + γ1

where

A(x) = 1
ε

∫ x

0

a(s) ds

ϑ(x) = 1
ε

∫ x

0

h(s) exp
(
A(s)−A(x)

)
ds.

Differentiating once, we get

v′(x) = − 1
ε

∫ x

0

h(s) exp
(
A(s)−A(x)

)
ds− h(0)

a(0) exp(−A(x))
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which gives
‖v′‖∞ ≤ 2α−1

{‖f‖∞ + ‖b‖∞C1

}
=: C2

because

1
ε

∫ x

0

exp
(
A(s)−A(x)

)
ds ≤ 1

ε

∫ x

0

exp
(α(s− x)

ε

)
ds

=
1
α

(
1− exp

(
−αx

ε

))

≤ 1
α

.

(4)

Invoking the differential equation we get

‖v′′‖∞ ≤ 1
ε

{‖a‖∞C2 + ‖b‖∞C1 + ‖f‖∞
}
.

However, if a, f ∈ C1(0, 1), then we have

v′′(x) = −a(x)
ε

∫ x

0

(h

a

)′
(s) exp

(
A(s)−A(x)

)
ds

from which the sharper estimate ‖v′′‖∞ ≤ ‖a‖∞
α

∥∥(
h
a

)′∥∥
∞ can be derived using

(4). A bound for the third-order derivative ‖v′′′‖∞ ≤ Cε−1 is readily obtained
from the differential equation and the bounds on v, v′ and v′′. This completes
our analysis of the regular part of u.

Now let us consider the boundary-layer term w. The operator L satisfies
another comparison principle: if two functions w̌ and ŵ satisfy

|Lw̌(x)| ≤ Lŵ(x)

|w̌(x)| ≤ ŵ(x)

in (0, 1)

for x ∈ {0, 1}

then
|w̌(x)| ≤ ŵ(x) on [0, 1]

(see [5]). Using this comparison principle with w± = ±|γ0 − v(0)|e−αx
ε , we

see that

|w(x)| ≤ (|γ0|+ C1) exp
(
− αx

ε

)
=: C3 exp

(
− αx

ε

)
(x ∈ (0, 1)). (5)

To bound the derivatives of w we use the fact that

w(x) =
∫ 1

x

ϑw(s) ds + κ

∫ 1

x

exp(−A(s)) ds
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with

ϑw(x) = − 1
ε

∫ x

0

(bw)(s) exp
(
A(s)−A(x)

)
.

Estimates for ϑw are obtained using (5)

|ϑw(x)| ≤ ‖b‖∞C3
ε

∫ x

0

exp
(
− αs

ε

)
exp

(
A(s)−A(x)

) ≤ C4

ε
exp

(
− αx

ε

)
.

The coefficient κ is determined by the boundary condition for w(0) as

κ =
(

γ0 − v(0)−
∫ 1

0

ϑw(s) ds

) /
β

where

β =
∫ 1

0

exp(−A(s)) ds ≥
∫ 1

0

exp
(
− ‖a‖∞s

ε

)
ds ≥ ε

‖a‖∞ .

Thus

|κ| ≤ ‖a‖∞(C3 + α−1C4)
ε

.

For w′ we have
w′(x) = −ϑw(x)− κ exp(−A(x))

and therefore

|w′(x)| ≤ C5

ε
exp

(
− αx

ε

)
(x ∈ (0, 1))

by the above bounds for κ and ϑw. Using the differential equation and our
estimates for w and w′, we get

|w′′(x)| ≤ Cε−2 exp
(
− αx

ε

)
(x ∈ (0, 1)).

If a, b ∈ C1(0, 1), then we differentiate (3)b and apply our bounds for w,w′

and w′′ to get

|w′′′(x)| ≤ Cε−3 exp
(
− αx

ε

)
(x ∈ (0, 1)).

We summarize our results as follows.



214 T. Linß

Theorem 1. Let a, b, f ∈ Ck with k ∈ {0, 1}. Then u ∈ Ck+2 can be
decomposed as u = v + w where the regular solution component v satisfies

Lv(x) = f(x)

|v(i)(x)| ≤ C(1 + εk+1−i) (i = 0, 1, . . . , k + 2)

}
(x ∈ (0, 1))

while the boundary layer component w satisfies

Lw(x) = 0

|w(i)(x)| ≤ Cε−i exp
(
− αx

ε

)
(i = 0, 1, . . . , k + 2)



 (x ∈ (0, 1)).

Some applications, e.g. the analysis of higher-order schemes [9] or of
extrapolation schemes [4] require decompositions with bounds for derivatives
of order greater than three. To derive them note that our boundary condition
(−av′ + bv)(0) = f(0) imposed on v corresponds to v′′(0) = 0. To prove
Theorem 1 for k = 2 we would impose the boundary condition

(
− (

a− ε(a′ − b)
)
v′ + (b− εb′)v

)
(0) = (f − εf ′)(0)

instead. This corresponds to setting v′′′(0) = 0. The operator L with this
boundary condition satisfies a comparison principle too, provided that ε is
smaller than some threshold value ε0. We use this principle to prove the
boundedness of v first. Then we proceed as above to get bounds for the
derivatives.
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