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Global Existence
for some Integro-Differential Equations

with Delay Subject to Non-Local Conditions

S. Mazouzi and N.-e. Tatar

Abstract. By making use of the Leray-Schauder fixed point theorem we prove the
global existence of solutions to some integro-differential equations with delay subject
to non-local conditions, and this problem is considered in an arbitrary Banach space.
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1. Introduction

We are concerned in this paper with the study of global existence of solutions
to some semilinear evolution integro-differential equation subject to non-local
conditions. In fact, following the steps of Ntouyas and Tsamatos [6], we shall
prove the global existence of solutions to the initial value problem

x′(t) + Ax(t)

= F

(
t, x(σ1(t)),

∫ t

0

g

(
t, s, x(σ2(s)),

∫ s

0

k
(
s, τ, x(σ3(τ))

)
dτ

)
ds

)

x(0) + h
(
t1, ..., tp, x(·)) = x0





(1)

for 0 ≤ t ≤ T , where

0 < t1 < ... < tp ≤ T
(X, ‖ · ‖) is a Banach space
{S(t)}t≥0 is a linear semigroup in this space
−A is the infinitesimal generator of this semigroup
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I is the closed interval [0, T ] and
F : I ×X ×X → X
g : I × I ×X ×X → X
k : I × I ×X → X
h ∈ C(I, X) → X

are given functions. We assume, furthermore, that σi ∈ C(I, I) and σi(t) ≤ t
for all t ∈ I (i = 1, 2, 3). We point out that the expression h

(
t1, ..., tp, x(·))

means that the function x is valued only on the set {t1, ..., tp}.
In fact, several physical problems have motivated specialists to consider

non-local conditions (1)2, which allow measurements at various points of the
initial interval I including 0 rather than at a sole point as in the classical
Cauchy initial value problem. We remember that problems dealing with non-
local conditions were considered by L. Byszewski [1, 2] who proved the ex-
istence and uniqueness of mild, strong and classical solutions to some initial
value problem of the form

x′(t) = Ax(t) + f(t, x(t)) (t ∈ I)

x(0) + g
(
t1, ..., tp, x(·)) = x0

}
.

2. Global existence

Let {S(t)}t≥0 be a compact semigroup with infinitesimal generator −A satis-
fying the estimate

‖S(t)‖ ≤ Meωt (t ≥ 0) (2)

for some constants M > 0 and ω ∈ R+. We recall that any solution t → x(t)
to the functional equation

x(t) = S(t)
(
x0 − h(t1, ..., tp, x(·)))

+
∫ t

0

S(t− s)F
(

s, x(σ1(s)),
∫ s

0

g

(
s, θ, x(σ2(θ)),

∫ θ

0

k
(
θ, τ, x(σ3(τ))

)
dτ

)
dθ

)
ds

is called a mild solution of problem (1).
We are now in position to state our result about the global existence of

solutions to problem (1).

Theorem 1. Let the function F : I × X× → X satisfy the following
conditions:

(H1) For each t ∈ I the function F (t, ·, ·) belongs to C(X ×X, X), and for
each (x, y) ∈ X ×X the function F (·, x, y) is strongly measurable.
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(H2) There exists continuous functions p, q : I → [0,∞) and a number
α ≥ 1 such that

‖F (t, x, y)‖ ≤ p(t)‖x‖α + q(t)‖y‖

for all x, y ∈ X and for all t ∈ I.

(H3) g : I × I × X × X → X and k : I × I × X → X are continuous
functions such that

‖g(t, s, x, y)‖ ≤ m1(t, s) ‖x‖α−1Ψ(‖x‖) + m2(s) ‖y‖
‖k(t, s, z)‖ ≤ m3(t, s) ‖z‖α−1Ψ(‖z‖)

for all x, y, z ∈ X and all t, s ∈ I, where Ψ : [0,∞) → (0,∞) is a
continuous non-decreasing function, m1 : I×I → [0,∞) is continuous
and differentiable with respect to the first variable almost everywhere,
m2 : I → [0,∞) and m3 : I × I → [0,∞) are given continuous
functions.

(H4) {S(t)}t≥0 is a compact semigroup satisfying (2).

(H5) There is a constant H > 0 such that ‖h(t1, ..., tp, x(·))‖ ≤ H for all
x ∈ X.

Then, if ∫ T

0

Q̃(t) dt <

∫ ∞

a

dz

Ψ(z) + zα + z

where

Q̃(t) = max
{

ω,Mp(t),Mq(t), 1
α

(
m1(t, t)+

∫ t

0

∣∣∣m2(t)m3(t, τ)+
∂m1(t, τ)

∂t

∣∣∣dτ

)}

and where a = M(‖x0‖+H), problem (1) has at least one mild solution on I.

In order to prove the above theorem we need the following fixed point
result due to Schaefer [3, 7].

Lemma 2. Let Ω be a convex subset of a normed linear space V contain-
ing its zero element 0. If A : Ω → Ω is a completely continuous operator,
then either A has a fixed point or the subset

{
x ∈ Ω : x = λAx for some λ ∈ (0, 1)

}

is unbounded.
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Proof of Theorem 1. Consider the initial value problem

x′(t) + λAx(t) = λF

(
t, x(σ1(t)),

∫ t

0

g

(
t, s, x(σ2(s)),

∫ s

0

k
(
s, τ, x(σ3(τ))

)
dτ

)
ds

)

x(0) + h(t1, ..., tp, x(·)) = x0





for 0 ≤ t ≤ T and some λ ∈ (0, 1), whose corresponding mild solution x
satisfies the integral equation

x(t) = Sλ(t)
(
x0 − h(t1, ..., tp, x(·)))

+
∫ t

0

Sλ(t− s)F
(

s, x(σ1(s)),
∫ s

0

g

(
s, θ, x(σ2(θ)),

∫ θ

0

k
(
θ, τ, x(σ3(τ))

)
dτ

)
dθ

)
ds

where {Sλ(t)}t≥0 is the semigroup with infinitesimal generator −λA. Again,
we have the estimate

‖Sλ(t)‖ ≤ Meωt (t ≥ 0).

According to the given assumptions, it is clear that

‖x(t)‖ ≤ Meωt(‖x0‖+ H) + Meωt

∫ t

0

e−ωs

{
p(s)‖x(σ1(s))‖α

+ q(s)
∫ s

0

(
m1(s, θ)‖x(σ2(θ))‖α−1Ψ(‖x(σ2(θ))‖)

+ m2(θ)
∫ θ

0

m3(θ, τ)‖x(σ3(τ))‖α−1Ψ(‖x(σ3(τ))‖dτ

)
dθ

}
ds.

Denoting by eωtu(t) the right-hand side of the above inequality, we obtain at
once

u(0) = M(‖x0‖+ H) and ‖x(t)‖ ≤ eωtu(t) (0 ≤ t ≤ T )

and

u′(t) = Me−ωt

{
p(t)‖x(σ1(t))‖α

+ q(t)
∫ t

0

(
m1(t, θ)‖x(σ2(θ))‖α−1Ψ(‖x(σ2(θ))‖)

+ m2(θ)
∫ θ

0

m3(θ, τ)‖x(σ3(τ))‖α−1Ψ(‖x(σ3(τ))‖)dτ

)
dθ

}
.
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From the fact that u is increasing and σi(t) ≤ t for i = 1, 2, 3 it follows that

u′(t) = Me−ωt

{
p(t)eαωtuα(t)

+ q(t)
∫ t

0

(
m1(t, θ)e(α−1)ωθuα−1(θ)Ψ(eωθu(θ))

+ m2(θ)
∫ θ

0

m3(θ, τ)e(α−1)ωτuα−1(τ)Ψ(eωτu(τ))dτ

)
dθ

}

≤ Me−ωtQ(t)
{

eαωtuα(t) +
∫ t

0

(
m1(t, θ)e(α−1)ωθuα−1(θ)Ψ(eωθu(θ))

+ m2(θ)
∫ θ

0

m3(θ, τ)e(α−1)ωτuα−1(τ)Ψ(eωτu(τ))dτ

)
dθ

}

where Q(t) = max{p(t), q(t)}. Setting

vα(t) = eαωtuα(t)

+
∫ t

0

(
m1(t, θ)e(α−1)ωθuα−1(θ)Ψ(eωθu(θ))

+ m2(θ)
∫ θ

0

m3(θ, τ)e(α−1)ωτuα−1(τ)Ψ(eωτu(τ)) dτ

)
dθ

we obtain

v(0) = u(0) = M(‖x0‖+ H) and v(t) ≥ eωtu(t) (t ∈ I).

Moreover, differentiating vα(t) we get

αvα−1(t)v′(t) = αωeαωtuα(t) + αeαωtuα−1(t)u′(t)

+ m1(t, t)e(α−1)ωtuα−1(t)Ψ(eωtu(t))

+ m2(t)
∫ t

0

m3(t, τ)e(α−1)ωτuα−1(τ)Ψ(eωτu(τ))dτ

+
∫ t

0

∂m1(t, τ)
∂t

e(α−1)ωτuα−1(τ)Ψ(eωτu(τ)) dτ
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≤ αωeαωtuα(t) + αeαωtuα−1(t)u′(t)

+ m1(t, t)e(α−1)ωtuα−1(t)Ψ(eωtu(t))

+
∫ t

0

∣∣∣m2(t)m3(t, τ) +
∂m1(t, τ)

∂t

∣∣∣e(α−1)ωτuα−1(τ)Ψ(eωτu(τ)) dτ

≤ αωeαωtuα(t) + αeαωtuα−1(t)u′(t)

+ m1(t, t)e(α−1)ωtuα−1(t)Ψ(eωtu(t))

+
(
e(α−1)ωtuα−1(t)Ψ(eωtu(t))

) ∫ t

0

∣∣∣m2(t)m3(t, τ) +
∂m1(t, τ)

∂t

∣∣∣dτ

≤ αωvα(t) + αeωtvα−1(t)MQ(t)e−ωtvα(t) + m1(t, t)vα−1(t)Ψ(v(t))

+ (vα−1(t)Ψ(v(t)))
∫ t

0

∣∣∣m2(t)m3(t, τ) +
∂m1(t, τ)

∂t

∣∣∣dτ.

Therefore,

v′ ≤ ωv + MQ(t)vα + 1
α

(
m1(t, t) +

∫ t

0

∣∣∣m2(t)m3(t, τ) +
∂m1(t, τ)

∂t

∣∣∣dτ

)
Ψ(v)

≤ Q̃(t)
(
Ψ(v) + vα + v

)
.

Accordingly,
∫ v(t)

a

dz

Ψ(z) + zα + z
≤

∫ T

0

Q̃(t)dt <

∫ ∞

a

dz

Ψ(z) + zα + z

from which we get v(t) ≤ c, for some constant c = c(α, ω, T, Q̃) > 0. Then
‖x(t)‖ ≤ c for all t ∈ I.

Define the operator T : V → V , where V = C(I,X), by

(T x)(t) = S(t)
(
x0 − h(t1, ..., tp, x(·)))

+
∫ t

0

S(t− s)F
(

s, x(σ1(s)),
∫ s

0

g

(
s, θ, x(σ2(θ)),

∫ θ

0

k
(
θ, τ, x(σ3(τ))

)
dτ

)
dθ

)
ds.

It is worth to note that if y ∈ V is such that ‖y(t)‖ ≤ r for some r > 0, then
∥∥∥∥F

(
t, y(t),

∫ t

0

g

(
t, θ, y(θ),

∫ θ

0

k(θ, τ, y(τ)) dτ

)
dθ

)∥∥∥∥

≤ p(t) ‖y(t)‖α + q(t)
∫ t

0

(
m1(t, θ)‖y(θ)‖α−1Ψ(‖y(θ)‖)

+ m2(θ)
∫ θ

0

m3(θ, τ)‖y(τ)‖α−1Ψ(‖y(τ)‖)dτ

)
dθ

≤ rαp(t) + Ψ(r)rα−1q(t)
∫ t

0

(
m1(t, θ) + m2(θ)

∫ θ

0

m3(θ, τ) dτ

)
dθ.
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In what follows we shall denote the last term of the above inequality by Fr(t).
It is clear that, for each r > 0, the function Fr is summable over I.

In order to prove the continuity of the operator T we consider a sequence
{xn}n≥1 ⊂ V converging in V to some function x̂ ∈ V . Thus the sequence
{xn(t)}n≥1 and x̂(t) must be contained in some closed ball B(0, r) ⊂ X for
all t ∈ I. Define the mapping Φ : I × V → X by

Φ(t, x) = F

(
t, x(σ1(t)),

∫ t

0

g

(
t, s, x(σ2(s)),

∫ s

0

k
(
s, τ, x(σ3(τ))

)
dτ

)
ds

)
.

From hypotheses (H1) and (H3) it follows that

lim
n→∞

Φ(t, xn) = Φ(t, x̂).

On the other hand, we have

‖Φ(t, xn)− Φ(t, x̂)‖ ≤ 2Fr(t)

and so we may conclude, by the dominated convergence theorem, that

‖T xn − T x̂‖ = sup
t∈I

∥∥∥∥
∫ t

0

S(t− s)
{
Φ(s, xn)− Φ(s, x̂)

}
ds

− S(t)
[
h
(
t1, . . . , tp, xn(·))− h

(
t1, . . . , tp, x̂(·))

]∥∥∥∥
→ 0

when n →∞. This shows that T is continuous.
For every number r > 0 we set

Br,V =
{
x ∈ V : ‖x(t)‖ ≤ r

}
.

To show that the image T (Br,V ) is precompact in V , according to the Arzela-
Ascoli theorem, we have to check only the precompactness in X of the set
T (Br,V )(t) for each t ∈ I. Let t be fixed in (0, T ] and let n ∈ N be such that
1
n < t. For every x ∈ Br,V we have

(T x)(t) = S(t)
(
x0 − h(t1, ..., tp, x(·)))

+ S( 1
n )

∫ t− 1
n

0

S(t− s− 1
n )Φ(s, x) ds +

∫ t

t− 1
n

S(t− s)Φ(s, x) ds.

We set

(Snx)(t) = S(t)
(
x0 − h(t1, .., tp, x(·))) + S( 1

n )
∫ t− 1

n

0

S(t− s− 1
n )Φ(s, x) ds
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and

(Tnx)(t) =
∫ t

t− 1
n

S(t− s)Φ(s, x) ds.

For each ε > 0 there exists n0 ∈ N such that for every n ≥ n0 and x ∈ Br,V

we have

‖(Tnx)(t)‖ ≤
∫ t

t− 1
n

‖S(t− s)‖Fr(s) ds < ε

and thus

G0,t := Tn0(Br,V )(t) ⊂ Bε,X :=
{
z ∈ X : ‖z‖ < ε

}
.

On the other hand, since the operatorSn0 is compact, then the set H0,t =
Sn0(Br,V )(t) is precompact in X and thus it can be covered by m balls
Bε(y1), ..., Bε(ym) ⊂ X. If we endow the product X × X with the norm
‖(x, y)‖2 = max(‖x‖, ‖y‖), then

G0,t ×H0,t ⊂
m⋃

i=1

(
Bε,X ×Bε(yi)

) ⊂
m⋃

i=1

Bε(0, yi)

where
Bε(0, yi) =

{
(u, v) ∈ X ×X : max(‖u‖, ‖v − yi‖) < ε

}
.

Therefore, the set G0,t ×H0,t is precompact in X ×X and thus

G0,t ×H0,t = G0,t ×H0,t

is compact in X ×X from which we deduce that G0,t + H0,t is compact in X.
Now, since

T (Br,V )(t) = (Sn0 + Tn0)(Br,V )(t) ⊂ G0,t + H0,t,

the set T (Br,V )(t) is precompact and accordingly the operator T is completely
continuous. Gathering all the preceding results, we conclude that T has a fixed
point in V which is exactly the expected mild solution we are seeking
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