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Orienting Method for Obstacle Problems

H. X. Phu and T. D. Long

Abstract. This paper deals with obstacle problems of type

minimize
R
Ω
F (x, v,∇v) dx

subject to v ∈ W 1,p(Ω), v ≥ r in Ω, v = g on ∂Ω

where Ω ⊂ Rn is a bounded open set and r, g ∈ W 1,p(Ω) (1 ≤ p ≤ ∞). To state
some sufficient criteria for determining parts of the coincidence set C(u) = {x ∈ Ω :
u(x) = r(x)} and of the non-coincidence set N (u) = {x ∈ Ω : u(x) > r(x)} of the
optimal solution u to this obstacle problem, optimal solutions to some particular
auxiliary problems without obstacle

minimize
R
eΩF (x, v,∇v) dx

subject to v ∈ KeΩ,g̃ = {v ∈ W 1,p(eΩ) : v = g̃ on ∂eΩ}

are used as orienting tool. For this purpose, we do not assume any coercive assump-
tion, but only the uniqueness of the optimal solution to auxiliary problems, which

is ensured if e.g. the performance index is strictly convex in KeΩ,g̃.

Keywords: Obstacle problems, variation problems, variational inequality, coinci-
dence and non-coincidence set, orienting method
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1. Introduction

Numerous mathematical and physical problems can be formulated as the min-
imum problem

minimize
∫
Ω
F (x, v,∇v) dx

subject to v ∈ K
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where Ω is some bounded open set in Rn. For instance, the well known
Dirichlet problem reads as

minimize
∫
Ω
|∇v|2 dx

subject to v = g on ∂Ω

where | · | denotes the Euclidean norm. The corresponding Euler equation for
its optimal solution u is the boundary value problem

4u = 0 in Ω

u = g on ∂Ω

}
(1.1)

(see, e.g., [16]). If the state function v has to satisfy an additional restriction
like v ≥ r, there arises a so-called obstacle problem

minimize
∫
Ω
|∇v|2dx

subject to v ∈ K =
{
v ∈ W 1,2(Ω) : v ≥ r in Ω, v = g on ∂Ω

}
.

(1.2)

Because of the restriction v ≥ r, this obstacle problem does not lead to bound-
ary value problem (1.1), but to the variational inequality

u ∈ K :
∫

Ω

∇u · ∇(v − u) dx ≥ 0 for all v ∈ K (1.3)

(see [7, 15]). Such a problem is more complicated than (1.1). In fact, the par-
tial differential equation 4u = 0 is still valid in the so-called non-coincidence
set

N (u) =
{
x ∈ Ω : u(x) > r(x)

}
.

Since u is determined in the coincidence set

C(u) =
{
x ∈ Ω : u(x) = r(x)

}
= Ω \ N (u),

under the continuity assumption of first derivatives, one still has to consider
the remaining problem

4u = 0

u = g

u = r, ∂u
∂n = ∂r

∂n

in N (u)

on ∂Ω ∩ ∂N (u)

on Ω ∩ ∂N (u)





. (1.4)

Since Ω ∩ ∂N (u) is not known a priori, it is called a free boundary (see [15:
p. 5]). This notation may cause misunderstanding for strangers. In concrete
examples, it is by nature not free at all, but already fixed by the given problem
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statement. The only problem is that one does not know something about it a
priori.

Here, “a priori” normally means “before solving (1.2) or (1.3) or (1.4)”.
But in this paper we state some sufficient criteria for determining parts of coin-
cidence and non-coincidence sets C(u) and N (u), without solving the original
obstacle problem (1.2) or variational inequality (1.3) or its corresponding free
boundary problem (1.4).

The idea originated from the so-called Method of Orienting Curves which
was developed in [3, 4, 9, 12, 14] for solving optimal control problems with
state constraints. Its application area consists of problems with ordinary
differential equations (i.e. with one independent variable) having one state
function. Although this area is rather narrow, we had successfully applied
this method for solving some relevant problems, such as constrained Zermelo’s
navigation problem [10], Steiner’s problem of finding an inpolygon of some
given convex polygon with minimal circumference [11], inventory problem [12],
optimal control of hydroelectric power plants [5], and robot motion along
a prescribed trajectory [13]. By this method, following so-called orienting
curves, optimal trajectories are constructed part by part.

In this paper, we investigate problems with several independent variables.
Thus surfaces appear instead of curves. Therefore, the shortened name “Ori-
enting Method” is more appropriate. It is understandable if we cannot obtain
such a complete result as in the case with one independent variable. But in
a similar way, barrier functions and bottle neck points can be used to locate
some coincidence and non-coincidence points of optimal solutions.

In Section 2, after formulating the class of obstacle problems and their
auxiliary problems without obstacle, we show some sufficient conditions for
fulfilling the most important assumption (AU ), which requires that auxiliary
problems have at most one optimal solution. The notions of “barriers” and
“bottle-neck points” are introduced in Section 3 and then used to state some
sufficient criteria for coincidence and non-coincidence points. Section 4 is
devoted to examples of use. A special class of problems satisfying some in-
variance assumption (AI) and a concrete numerical example are considered
there.

2. The uniqueness of solution to problems without ob-
stacle

Let Ω ⊂ Rn be a bounded open set. For given r, g ∈ W 1,p(Ω) (1 ≤ p ≤ ∞)
satisfying g ≥ r on ∂Ω denote

KΩ,g
r =

{
v ∈ W 1,p(Ω) : v ≥ r in Ω, v = g on ∂Ω

}
. (2.1)
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Consider the obstacle problem

minimize FΩ(v) =
∫
Ω
F (x, v,∇v) dx

subject to v ∈ KΩ,g
r

(PΩ,g
r )

where F : Ω × R × Rn → R. Our goal is to determine some parts of the
non-coincidence set

N (uΩ,g
r ) =

{
x ∈ Ω : uΩ,g

r (x) > r(x)
}

(2.2)

and of the coincidence set

C(uΩ,g
r ) = Ω \ N (uΩ,g

r ) =
{
x ∈ Ω : uΩ,g

r (x) = r(x)
}

(2.3)

of the optimal solution uΩ,g
r to problem (PΩ,g

r ), whose elements are called
non-coincidence or coincidence points, respectively. Note that the inequalities
and the equality in (2.1) - (2.3) are in the sense of W 1,p(Ω) (compare, for
instance, [7]).

To avoid difficulties caused by the obstacle v ≥ r we do not deal directly
with obstacle problem (PΩ,g

r ), but investigate corresponding auxiliary prob-
lems without obstacle

minimize F Ω̃(v) =
∫
Ω̃
F (x, v,∇v) dx

subject to v ∈ KΩ̃,g̃
(PΩ̃,g̃)

where Ω̃ is some open subset of Ω, g̃ ∈ W 1,p(Ω̃), and

KΩ̃,g̃ =
{
v ∈ W 1,p(Ω̃) : v = g̃ on ∂Ω̃

}
. (2.4)

These problems are complicated enough, but they are easier than the original
one.

The most essential assumption needed in this paper is concerned with the
uniqueness of optimal solutions to problems without obstacle, namely:

(AU ) For each g̃ ∈ W 1,p(Ω̃), the corresponding problem (PΩ̃,g̃) admits
at most one optimal solution. More precisely, if u1, u2 ∈ KΩ̃,g̃ and
F Ω̃(u1) = F Ω̃(u2) = inf

v∈KΩ̃,g̃
F Ω̃(v), then u1 = u2 in W 1,p(Ω̃).

The simplest sufficient condition for (AU ) is the following.
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Proposition 2.1. Suppose

(v, w) ∈ R× Rn 7→ F (x, v, w) ∈ R is strictly convex for a.a. x ∈ Ω̃. (2.5)

Then condition (AU ) holds true.

Proof. Let u1, u2 ∈ KΩ̃,g̃. Then (2.5) implies for λ1, λ2 > 0 satisfying
λ1 + λ2 = 1

λ1F Ω̃(u1) + λ2F Ω̃(u2) =
∫

Ω̃

(
λ1F (x, u1,∇u1) + λ2F (x, u2,∇u2)

)
dx

≥
∫

Ω̃

F
(
x, λ1u1 + λ2u2,∇(λ1u1 + λ2u2)

)
dx

= F Ω̃(λ1u1 + λ2u2)

where equality only holds true if

λ1F (x, u1,∇u1) + λ2F (x, u2,∇u2) = F
(
x, λ1u1 + λ2u2,∇(λ1u1 + λ2u2)

)

almost everywhere in Ω̃, which yields u1 = u2 and ∇u1 = ∇u2 a.e. in Ω̃ and
therefore u1 = u2 in W 1,p(Ω̃). Hence, F Ω̃ is strictly convex on KΩ̃,g̃, which
implies immediately condition (AU )

Condition (2.5) demands at least that F is strictly convex with respect to
both v and w. This strong condition is not necessary to the strict convexity
of F Ω̃, as the following proposition shows, whose proof is just the same as to
[2: p. 53/Proposition 2.5].

Proposition 2.2. Let n = 1, Ω̃ = (0, 1), and g̃ ≡ 0. Let F1, F2 ∈ C∞(R),

F (x, v, w) = F1(v) + F2(w) and
{

F̄1 = inf{F ′′1 (v) : v ∈ R}
F̄2 = inf{F ′′2 (w) : w ∈ R}.

Then F Ω̃ is strictly convex on KΩ̃,g̃, which implies condition (AU ) if

F̄2 ≥ 0 and F̄1 + π2F̄2 > 0. (2.6)

Obviously, (2.6) is fulfilled if F̄2 > 0 > F̄1 > −π2F̄2, i.e. even if F is not
convex with respect to v. For n > 1 the following problem class is still big
enough which does not require F to be strictly convex with respect to v.
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Proposition 2.3. Let Ω̃ ⊂ Rn be a bounded open set with Lipschitz
boundary and 1 ≤ p < ∞. Suppose

F (x, v, w) = F1(x, v) + F2(x,w)

F1(x, ·) convex and F2(x, ·) strictly convex for a.a. x ∈ Ω̃

}
. (2.7)

Then F Ω̃ is strictly convex on KΩ̃,g̃ and therefore condition (AU ) is fulfilled.

Proof. Let F Ω̃
1 (v) =

∫
Ω̃

F1(x, v) dx and F Ω̃
2 (v) =

∫
Ω̃

F2(x,∇v) dx. Then

F Ω̃ = F Ω̃
1 +F Ω̃

2 and F Ω̃
1 is convex on KΩ̃,g̃. Therefore, it suffices to show that

F Ω̃
2 is strictly convex on KΩ̃,g̃. For this, let u1, u2 ∈ KΩ̃,g̃ and λ1, λ2 > 0 with

λ1 + λ2 = 1. Since F2(x, ·) is strictly convex for almost all x ∈ Ω̃, we have

λ1F Ω̃
2 (u1) + λ2F Ω̃

2 (u2) =
∫

Ω̃

(
λ1F2(x,∇u1) + λ2F2(x,∇u2)

)
dx

≥
∫

Ω̃

F2

(
x, λ1∇u1 + λ2∇u2

)
dx

= F Ω̃
2 (λ1u1 + λ2u2)

where equality only holds true if

λ1F2(x,∇u1) + λ2F2(x,∇u2) = F2(x, λ1∇u1 + λ2∇u2)

almost everywhere in Ω̃, which yields ∇u1 = ∇u2 a.e. in Ω̃ and therefore

∇u1 = ∇u2 in Lp(Ω̃). (2.8)

Since u = v = g̃ on ∂Ω̃, Poincaré inequality (see [2: p. 26]) implies ‖u −
v‖

Lp(Ω̃)
≤ K ‖∇(u − v)‖

Lp(Ω̃)
for some K > 0. Therefore, (2.8) implies ‖u −

v‖Lp(Ω) = 0 and

‖u− v‖
W 1,p(Ω̃)

=
(‖u− v‖

Lp(Ω̃)p + ‖∇(u− v)‖p

Lp(Ω̃)

)1/p = 0.

This means that F Ω̃
2 is strictly convex on KΩ̃,g̃

Numerous relevant obstacle problems fulfill (2.7) and therefore condition
(AU ). For instance, (2.7) is satisfied by the Dirichlet problem where

F Ω̃(v) =
∫

Ω̃

(
F1(x, v) + F2(x,∇v)

)
dx with

{
F1(x, v) = f(x) v
F2(x,w) = |w|2 (2.9)
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Another example is the problem of minimal surfaces (see, e.g., [1, 8, 15])
where

F Ω̃(v) =
∫

Ω̃

F2(x,∇v) dx with F2(x, w) =
√

1 + |w|2. (2.10)

Let I be the unit (n× n)-matrix. Then the Hessian matrix

H(x,w) =
( ∂2

∂wi ∂wj
F2(x,w)

)
1≤i,j≤n

= (1+|w|2)− 3
2
(
(1+|w|2)I−(wi wj)1≤i,j≤n

)

is positively definite because it follows from Schwarz inequality (see [16: p. 8])
for η ∈ Rn \ {0} that

ηT H(x,w) η = (1+ |w|2)− 3
2
(|η|2 + |w|2|η|2− (w ·η)2

) ≥ (
1 + |w|2)−

3
2 |η|2 > 0.

Hence, F2(x, ·) is strictly convex and (2.7) is satisfied.
For the problem of finding the equilibrium position of a deformation mem-

brane we have with σ > 0

F Ω̃(v) =
∫

Ω̃

(
F1(x, v) + F2(x,∇v)

)
dx with

{
F1(x, v) = f(x) v

F2(x,w) = σ
√

1 + |w|2
(2.11)

(see [15: pp. 1 - 2]). Obviously, according to the previous example, (2.7) is
also fulfilled here.

To complete this section, let us state a local optimal property of optimal
solutions which will be used in Sections 3 - 4.

Proposition 2.4. Suppose uΩ̃,g̃ ∈ KΩ̃,g̃ is optimal to problem (PΩ̃,g̃) and
Ω̂ ⊂ Ω̃ is open. Let û and ĝ be the restrictions of uΩ̃,g̃ on Ω̂ or ∂Ω̂, respectively.
Then û is optimal to problem (PΩ̂,ĝ). If condition (AU ) holds true (for the
just mentioned Ω̃), then û is the unique optimal solution to problem (PΩ̂,ĝ).

Proof. Let u be arbitrary in KΩ̂,ĝ \ {û}. Then for the extension u(x) =
uΩ̃,g̃(x) for x ∈ Ω̃ \ Ω̂) there holds

u ∈ KΩ̃,g̃ \ {uΩ̃,g̃}. (2.12)

Since uΩ̃,g̃ is optimal to problem (PΩ̃,g̃), we have

0 ≤
∫

Ω̃

F (x, u,∇u) dx−
∫

Ω̃

F (x, uΩ̃,g̃,∇uΩ̃,g̃) dx

=
∫

Ω̂

F (x, u,∇u) dx−
∫

Ω̂

F (x, û,∇û) dx,

(2.13)

which implies that û ∈ KΩ̂,ĝ is optimal to problem (PΩ̂,ĝ). If condition (AU )
holds true, then (2.12) - (2.13) imply

∫
Ω̂

F (x, u,∇u) dx >
∫
Ω̂

F (x, û,∇û) dx

(for arbitrary u ∈ KΩ̂,ĝ \{û}), i.e. û is the unique optimal solution to problem
(PΩ̂,ĝ)
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3. Barriers and bottle-neck points

As mentioned in Section 2, we now consider some particular minimum prob-
lems without obstacle and use their solutions as orientation tool.

Definition 3.1. Let Ω̃ be an open subset of Ω and

g̃(x)
{
∈ [r(x), g(x)] if x ∈ ∂Ω̃ ∩ ∂Ω
= r(x) if x ∈ ∂Ω̃ ∩ Ω.

(3.1)

Then uΩ̃,g̃ ∈ KΩ̃,g̃ is said to be a lower barrier if it is the unique optimal
solution to problem (PΩ̃,g̃).

The reason for calling such a function as a lower barrier is given in the
following.

Proposition 3.1. Let uΩ,g
r be optimal to problem (PΩ,g

r ) and uΩ̃,g̃ be a
lower barrier. Then

uΩ,g
r ≥ uΩ̃,g̃ in Ω̃. (3.2)

Proof. Define

u0(x) =

{
uΩ̃,g̃(x) if x ∈ cl Ω̃
r(x) if x ∈ cl Ω \ cl Ω̃.

(3.3)

Then u0 ∈ W 1,p(Ω) and u0 ≤ g on ∂Ω. For

u1 := min(uΩ,g
r , u0) = u0 − (u0 − uΩ,g

r )+

u2 := max(uΩ,g
r , u0) = uΩ,g

r + (u0 − uΩ,g
r )+

(3.4)

we have u1, u2 ∈ W 1,p(Ω) and

∇u1 =
{
∇uΩ,g

r a.e. in {x ∈ Ω : u0(x) > uΩ,g
r (x)}

∇u0 a.e. in {x ∈ Ω : u0(x) ≤ uΩ,g
r (x)}

∇u2 =
{
∇u0 a.e. in {x ∈ Ω : u0(x) > uΩ,g

r (x)}
∇uΩ,g

r a.e. in {x ∈ Ω : u0(x) ≤ uΩ,g
r (x)}

(3.5)

(compare [7: p. 50] and [15: p. 65]). It follows from u0(x) = r(x) ≤ uΩ,g
r (x)

for x ∈ cl Ω \ cl Ω̃ that

{
x ∈ Ω : u0(x) > uΩ,g

r (x)
}

=
{
x ∈ Ω̃ : u0(x) > uΩ,g

r (x)
}

=
{
x ∈ Ω̃ : uΩ̃,g̃(x) > uΩ,g

r (x)
}

=
{
x ∈ Ω̃ : uΩ̃,g̃(x) > u1(x)

}
(3.6)
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and, by (3.1),

u1 = u0 = uΩ̃,g̃ = g̃ on ∂Ω̃. (3.7)

Assume now the contrary that (3.2) does not hold true. Then the measure
of the set

{
x ∈ Ω̃ : uΩ̃,g̃(x) > uΩ,g

r (x)
}

is positive. Since uΩ̃,g̃ is the unique

optimal solution to problem (PΩ̃,g̃), (3.3) and (3.7) imply

0 <

∫

Ω̃

F (x, u1,∇u1) dx−
∫

Ω̃

F (x, uΩ̃,g̃,∇uΩ̃,g̃) dx

=
∫

Ω̃

(
F (x, u1,∇u1)− F (x, u0,∇u0)

)
dx.

Therefore, (3.4) - (3.6) yield

0 <

∫

{x∈Ω̃:u0(x)>uΩ,g
r (x)}

(
F (x, u1,∇u1)− F (x, u0,∇u0)

)
dx

=
∫

{x∈Ω̃:u0(x)>uΩ,g
r (x)}

(
F (x, uΩ,g

r ,∇uΩ,g
r )− F (x, u2,∇u2)

)
dx

=
∫

{x∈Ω:u0(x)>uΩ,g
r (x)}

(
F (x, uΩ,g

r ,∇uΩ,g
r )− F (x, u2,∇u2)

)
dx

=
∫

Ω

(
F (x, uΩ,g

r ,∇uΩ,g
r )− F (x, u2,∇u2)

)
dx,

that means
∫

Ω

F (x, uΩ,g
r ,∇uΩ,g

r ) dx >

∫

Ω

F (x, u2,∇u2) dx

when u2 ∈ KΩ,g
r , because u2 ∈ W 1,p(Ω), u2 ≥ r in Ω and u2 = g on ∂Ω. This

conflicts with the assumption that uΩ,g
r is optimal to problem (PΩ,g

r ). Hence,
(3.2) must be true

The preceding result is useful for finding subsets of non-coincidence points.
By denoting

L+(v, Ω̃) =
{
x ∈ Ω̃ : v(x) > 0

}
(3.8)

we have

Corollary 3.2. Let Ω̃ ⊂ Ω be open and satisfy condition (AU ). Suppose

g̃ = r on ∂Ω̃ (3.9)
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and uΩ̃,g̃ is optimal to problem (PΩ̃,g̃). Then for the non-coincidence set of
the optimal solution uΩ,g

r to problem (PΩ,g
r )

L+(uΩ̃,g̃ − r, Ω̃) ⊂ N (uΩ,g
r ). (3.10)

Proof. Since g ≥ r on ∂Ω, (3.1) follows from (3.9). By definition and
condition (AU ), uΩ̃,g̃ is the unique optimal solution to problem (PΩ̃,g̃) and
therefore it defines a lower barrier. Hence, Proposition 3.1 yields uΩ,g

r (x) ≥
uΩ̃,g̃(x) > r(x) for x ∈ L+(uΩ̃,g̃ − r, Ω̃), that means (3.10) is fulfilled

Corollary 3.3. Suppose condition (AU ) is fulfilled for Ω̃ = Ω and r ≤
g̃ ≤ g on ∂Ω. Let uΩ,g

r be optimal to problem (PΩ,g
r ) and uΩ,g̃ be optimal to

problem (PΩ,g̃). Then
uΩ,g

r ≥ uΩ,g̃ in Ω (3.11)

and
L+(uΩ,g̃ − r,Ω) ⊂ N (uΩ,g

r ). (3.12)

Proof. By condition (AU ), uΩ,g̃ is the unique optimal solution to problem
(PΩ,g̃). Therefore, by definition, uΩ,g̃ is a lower barrier. Hence (2.2), (3.2)
and (3.8) yield immediately (3.11) - (3.12)

Next, let us introduce another notion which is useful for locating some
parts of the coincidence set.

Definition 3.2. Suppose

g̃ ≥ g on ∂Ω. (3.13)

Then uΩ,g̃ is said to be an upper barrier provided it is the unique optimal
solution to problem (PΩ,g̃) and satisfies

uΩ,g̃ ≥ r in Ω. (3.14)

Proposition 3.4. Let uΩ,g
r be optimal to problem (PΩ,g

r ) and uΩ,g̃ be an
upper barrier. Then

uΩ,g
r ≤ uΩ,g̃ in Ω. (3.15)

Proof. Define

u1 := min(uΩ,g
r , uΩ,g̃) = uΩ,g

r − (uΩ,g
r − uΩ,g̃)+

u2 := max(uΩ,g
r , uΩ,g̃) = uΩ,g̃ + (uΩ,g

r − uΩ,g̃)+.
(3.16)

Relations (3.13) - (3.14) and (3.16) imply

u1 ∈ W 1,p(Ω), u1 ≥ r in Ω, u1 = g on ∂Ω, i.e. u1 ∈ KΩ,g
r

u2 ∈ W 1,p(Ω), u2 = g̃ on ∂Ω, i.e. u2 ∈ KΩ,g̃
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and

∇u1 =
{∇uΩ,g̃ a.e. in

{
x ∈ Ω : uΩ,g

r (x) > uΩ,g̃(x)
}

∇uΩ,g
r a.e. in

{
x ∈ Ω : uΩ,g

r (x) ≤ uΩ,g̃(x)
}

∇u2 =
{∇uΩ,g

r a.e. in
{
x ∈ Ω : uΩ,g

r (x) > uΩ,g̃(x)
}

∇uΩ,g̃ a.e. in
{
x ∈ Ω : uΩ,g

r (x) ≤ uΩ,g̃(x)
}

(3.17)

(compare [7: p. 50] and [15: p. 65]).

Assume now the contrary that (3.15) does not hold true. Then the mea-
sure of the set

{
x ∈ Ω : uΩ,g

r (x) > uΩ,g̃(x)
}

must be positive. Since uΩ,g̃ is
the unique optimal solution to problem (PΩ,g̃), (3.16) - (3.17) yield

0 <

∫

Ω

F (x, u2,∇u2) dx−
∫

Ω

F (x, uΩ,g̃,∇uΩ,g̃) dx

=
∫

{x∈Ω:uΩ,g
r (x)>uΩ,g̃(x)}

(
F (x, u2,∇u2)− F (x, uΩ,g̃,∇uΩ,g̃)

)
dx

=
∫

{x∈Ω:uΩ,g
r (x)>uΩ,g̃(x)}

(
F (x, uΩ,g

r ,∇uΩ,g
r )− F (x, u1,∇u1)

)
dx

=
∫

Ω

(
F (x, uΩ,g

r ,∇uΩ,g
r )− F (x, u1,∇u1)

)
dx.

That means
∫

Ω

F (x, uΩ,g
r ,∇uΩ,g

r ) dx >

∫

Ω

F (x, u1,∇u1) dx

when u1 ∈ KΩ,g
r , which conflicts with the assumption that uΩ,g

r is optimal to
problem (PΩ,g

r ). Hence, (3.15) must be true

Definition 3.3. x∗ ∈ Ω is called a bottle-neck point provided there exists
an upper barrier uΩ,g̃ satisfying uΩ,g̃(x∗) = r(x∗).

Proposition 3.5. Let uΩ,g
r be optimal to problem (PΩ,g

r ) and x∗ be a
bottle-neck point. Then x∗ ∈ C(uΩ,g

r ), i.e. uΩ,g
r (x∗) = r(x∗).

Proof. By definition, there exists an upper barrier uΩ,g̃ satisfying r(x∗) =
uΩ,g̃(x∗). Proposition 3.4 implies uΩ,g̃(x∗) ≥ uΩ,g

r (x∗). Since uΩ,g
r (x∗) ≥

r(x∗), it follows immediately uΩ,g
r (x∗) = r(x∗)

Proposition 3.6. Let uΩ,g
r be optimal to problem (PΩ,g

r ) and uΩ,g̃ be
optimal to problem (PΩ,g̃) where

g̃ ≥ g on ∂Ω and uΩ,g̃ ≥ r in Ω. (3.18)
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Assume that condition (AU ) holds true for Ω̃ = Ω and there is an open subset
Ω̂ ⊂ Ω such that

uΩ,g̃ =
{

g on ∂Ω̂ ∩ ∂Ω
r on ∂Ω̂ ∩ Ω.

(3.19)

Then
uΩ,g

r = uΩ,g̃ in Ω̂. (3.20)

Proof. Let ĝ and uΩ̂,ĝ be the restrictions of uΩ,g̃ on ∂Ω̂ and Ω̂, respec-
tively. Then, by Proposition 2.4, uΩ̂,ĝ is the unique optimal solution to prob-
lem (PΩ̂,ĝ). Consequently, by definition and (3.19), uΩ̂,ĝ is a lower barrier.
Therefore, Proposition 3.1 implies

uΩ,g
r ≥ uΩ̂,ĝ = uΩ,g̃ in Ω̂. (3.21)

On the other hand, it follows from definition and (3.18) that uΩ,g̃ is an upper
barrier. Thus Proposition 3.4 yields uΩ,g

r ≤ uΩ,g̃ in Ω. Combining this with
(3.21), we obtain (3.20) at once

4. Examples of use

To illustrate the applicability of the result from the previous section, we now
consider a special case, where the following invariance assumption is made:

(AI) For Ω̃ ⊂ Ω and every m ∈ R,

F Ω̃(v + m)−F Ω̃(v) = const =: cΩ̃(m) for all v ∈ W 1,p(Ω̃). (4.1)

Of course, this is a strong restriction. But numerous relevant problems satisfy
it. For instance, condition (AI) holds for (2.10) because F Ω̃(v+m)−F Ω̃(v) =
0 and for (2.9) and (2.11) because F Ω̃(v + m) − F Ω̃(v) = m

∫
Ω̃

f dx = const
for all v ∈ W 1,p(Ω̃) and m ∈ R. In general, if v does not appear explicitly or
appears only affinely in F (x, v,∇v), then condition (AI) is fulfilled.

Actually, (AI) belongs to such assumptions which can ensure the con-
tinuous dependence of the optimal solution uΩ̃,g̃ to problem (PΩ̃,g̃) on the
parameter g̃. Moreover, it allows vertical movement without changing the
optimal shape, as the following says.

Proposition 4.1. Let uΩ̃,g̃ be optimal to problem (PΩ̃,g̃). Then, for ar-
bitrary m ∈ R, uΩ̃,g̃ + m is optimal to problem (PΩ̃,g̃+m).
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Proof. Relation (4.1) implies

F Ω̃(uΩ̃,g̃ + m) = F Ω̃(uΩ̃,g̃) + cΩ̃(m) ≤ F Ω̃(v) + cΩ̃(m) = F Ω̃(v + m)

for all v ∈ KΩ̃,g̃. But by (2.4), v ∈ KΩ̃,g̃ if and only if v + m ∈ KΩ̃,g̃+m.
Therefore, uΩ̃,g̃ +m ∈ KΩ̃,g̃+m and F Ω̃(uΩ̃,g̃ +m) ≤ F Ω̃(v) for all v ∈ KΩ̃,g̃+m,
that means uΩ̃,g̃ + m is optimal to problem (PΩ̃,g̃+m)

The above property can be applied to determine some parts of the non-
coincidence set.

Proposition 4.2. Suppose conditions (AU ) and (AI) hold for Ω̃ ⊂ Ω, Ω̂
is an open subset of Ω̃, and uΩ̃,g̃ is optimal to problem (PΩ̃,g̃) and satisfies

uΩ̃,g̃(x)−r(x) > m = uΩ̃,g̃(y)−r(y) ∀x ∈ Ω̂, y ∈ ∂Ω̂ and some m ∈ R. (4.2)

Then Ω̂ is a subset of the non-coincidence set N (uΩ,g
r ).

Proof. It follows from conditions (AU ), (AI) and Proposition 4.1 that
uΩ̃,g̃ −m is the unique optimal solution to problem (PΩ̃,g̃−m). Therefore, by
Proposition 2.4 and (4.2), the restriction û of uΩ̃,g̃ − m on Ω̂ is the unique
optimal solution to problem (PΩ̂,r). Consequently, Corollary 3.2 yields L+(û−
r, Ω̂) ⊂ N (uΩ,g

r ). Since (3.8) and (4.2) imply Ω̂ = L+(uΩ̃,g̃ − m − r, Ω̂) =
L+(û− r, Ω̂) we have Ω̂ ⊂ N (uΩ,g

r )

We mention that Ω̂ given in Proposition 4.2 is an open subset. It is a bit
more difficult to ensure a closed subset to be contained in the non-coincidence
set. For this purpose, we need the following notion.

Definition 4.1. A closed subset A ⊂ Ω is said to be a locally strictly
maximal region of v provided there exists an open subset B ⊂ Ω which contains
A and satisfies

v(x) > v(y) for all x ∈ A, y ∈ B \A. (4.3)

It follows from (4.3) that infx∈∂A v(x) ≥ infx∈A v(x) ≥ supx∈B\A v(x). If
v is continuous on B, we have in addition supx∈B\A v(x) = supx∈(B\A)∪∂A v(x) ≥
supx∈∂A v(x) which yields v = const on ∂A. Therefore, in this case, (4.3) is
equivalent to v ≡ a on ∂A and v(x) ≥ a > v(y) for all x ∈ A and y ∈ B \ A
(for some constant a).
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Proposition 4.3. Let uΩ,g
r be optimal to problem (PΩ,g

r ) and uΩ̃,g̃ be
optimal to problem (PΩ̃,g̃) for some open Ω̃ ⊂ Ω and some g̃ ∈ W 1,p(Ω̃).
Suppose conditions (AU ) and (AI), and uΩ̃,g̃ and r are continuous on cl Ω̃. If
some closed subset A ⊂ Ω̃ is a locally strictly maximal region of uΩ̃,g̃− r, then
A is a subset of the non-coincidence set N (uΩ,g

r ).

Proof. By definition, there exists an open subset B satisfying A ⊂ B ⊂
Ω̃ ⊂ Ω and uΩ̃,g̃(x)− r(x) > uΩ̃,g̃(y)− r(y) for all x ∈ A and y ∈ B \A. Take
an arbitrary open subset B′ with

A ⊂ B′ ⊂ clB′ ⊂ B. (4.4)

Since ∂B′ is compact and uΩ̃,g̃− r is continuous on cl Ω̃, there exists x∗ ∈ ∂B′

such that
uΩ̃,g̃(x∗)− r(x∗) = m := max

x∈∂B′

(
uΩ̃,g̃(x)− r(x)

)
.

Consider
Ω̂ =

{
x ∈ B′ : uΩ̃,g̃(x)− r(x) > m

}
.

Inclusions (4.4) yield ∂B′ ⊂ B \A. This implies by x∗ ∈ ∂B′ that

uΩ̃,g̃(x)− r(x) > uΩ̃,g̃(x∗)− r(x∗) = m for all x ∈ A ⊂ B′,

that means A ⊂ Ω̂. Moreover, by definition we have

uΩ̃,g̃(x)− r(x) > m ≥ uΩ̃,g̃(y)− r(y) for all x ∈ Ω̂, y ∈ clB′ \ Ω̂. (4.5)

Since cl B′ ⊂ B ⊂ cl Ω̃ and uΩ̃,g̃ − r is continuous on cl Ω̃, it follows that Ω̂ is
open and

uΩ̃,g̃(x)− r(x) = m for x ∈ ∂Ω̂. (4.6)

Proposition 2.4 implies that the restriction uΩ̃,g̃|Ω̂ is optimal to problem (PΩ̂,ĝ)

with ĝ = uΩ̃,g̃|∂Ω̂. Hence, by Proposition 4.1, the restriction of uΩ̃,g̃ −m on

Ω̂ is optimal to problem (PΩ̂,ĝ−m). By (4.6), we have uΩ̃,g̃ −m = r on ∂Ω̂.
Therefore, the restriction of uΩ̃,g̃ −m on Ω̂ is a lower barrier, and Corollary
3.2 yields L+(uΩ̃,g̃ − m − r, Ω̂) ⊂ N (uΩ,g

r ). Since Ω̂ = L+(uΩ̃,g̃ − m − r, Ω̂)
follows from (4.5), we obtain finally A ⊂ Ω̂ ⊂ N (uΩ,g

r )

In particular, if for the optimal solution uΩ̃,g̃ to some problem (PΩ̃,g̃) and
for some neighborhood U(x∗) of x∗

uΩ̃,g̃(x∗)− r(x∗) > uΩ̃,g̃(x)− r(x) for x ∈ U(x∗) \ {x∗} ⊂ Ω̃,
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then (4.3) is valid for A = {x∗} and v = uΩ̃,g̃ − r, i.e. x∗ is a locally strictly
maximal point of v = uΩ̃,g̃ − r. In this case, Proposition 4.3 ensures x∗ ∈
N (uΩ,g

r ), that means uΩ,g
r (x∗) > r(x∗).

By the propositions stated above we can locate the non-coincidence set
N (uΩ,g

r ). This can be considered as an outer approach to the coincidence set
C(uΩ,g

r ).
Let us state a direct approach to the coincidence set now.

Proposition 4.4. Let uΩ,g
r be optimal to problem (PΩ,g

r ) and uΩ,g̃ be
optimal to problem (PΩ,g̃) for some g̃ ∈ W 1,p(Ω) satisfying g̃ ≥ g. Suppose
conditions (AU ) and (AI) for Ω̃ = Ω. If some x∗ ∈ Ω fulfils

uΩ,g̃(x∗)− r(x∗) = min
x∈Ω

(
uΩ,g̃(x)− r(x)

) ≤ 0, (4.7)

then x∗ ∈ C(uΩ,g
r ), that means uΩ,g

r (x∗) = r(x∗).

Proof. Denote m = uΩ,g̃(x∗)− r(x∗) ≤ 0. By Proposition 4.1, uΩ,g̃ −m
is optimal to problem (PΩ,g̃−m). Relation (4.7) implies g̃ −m ≥ g̃ ≥ g on ∂Ω
and uΩ,g̃(x)−m ≥ r(x) in Ω, that means uΩ,g̃ −m is an upper barrier. Since
uΩ,g̃(x∗) −m = r(x∗), x∗ is a bottle-neck point. Therefore, Proposition 3.5
yields x∗ ∈ C(uΩ,g

r )

Example 4.1. To illustrate easily the conclusions of this paper, let us
consider the simple problem

minimize F (−2,3)(v) =
∫ 3

−2
(4v + |v′|2) dx

subject to v ∈ W 1,2(−2, 3), v ≥ |x| on (−2, 3), v(−2) = 4, v(3) = 5

}
. (4.8)

Here we have Ω = (−2, 3), r(x) = |x|, g(−2) = 4 and g(3) = 5. Due to Propo-
sition 2.3 and the remark after (4.1), conditions (AU ) and (AI) are fulfilled
for every open subset Ω̃ ⊂ Ω. For Ω̃ ⊂ R, the embedding W 1,2(Ω̃) ⊂ C(clΩ̃)
is compact (see [16: p. 1027]), therefore u ∈ W 1,2(Ω̃) may be considered as
continuous on cl Ω̃. Hence, we can apply all propositions or corollaries in this
paper to (4.8) because all assumptions required are satisfied.

Consider the auxiliary problem

minimize F (ta,tb)(v) =
∫ tb

ta
(4v + |v′|2) dx

subject to v ∈ W 1,2(ta, tb), v(ta) = a, v(tb) = b
(4.9)

where Ω̃ = (ta, tb) ⊂ (−2, 3) ⊂ R. The corresponding Euler equation

2− v′′ = 0 (4.10)
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yields v(x) = x2 + cx + d for some c, d ∈ R. Combining with the boundary
condition

v = g̃ on ∂Ω̃ where g̃(x) =
{

a for x = ta
b for x = tb

(4.11)

we obtain

uΩ̃,g̃(x) = x2 + cx + d where

{
c = b−a

tb−ta
− ta − tb

d = atb−bta

tb−ta
+ tatb

which satisfies Euler equation (4.10) and boundary condition (4.11). More-
over, 0 is the Gateaux derivative of the convex functional F (ta,tb) at uΩ̃,g̃,
therefore 0 ∈ ∂F (ta,tb)(uΩ̃,g̃) (see [6: p. 22 and p. 46]), which is sufficient for
uΩ̃,g̃ to be optimal to problem (PΩ̃,g̃) given by (4.9) (see [6: p. 81]).

Let us now apply the conclusions stated above.
(a) Clearly, uΩ,g(x) = x2 − 0.8 x − 1.6 (x ∈ Ω) is optimal to problem

(PΩ,g). By Definition 3.1, uΩ,g is a lower barrier. Therefore, Proposition 3.1
yields for the optimal solution uΩ,g

r to problem (PΩ,g
r ) given by (4.8) that

uΩ,g
r (x) ≥ x2 − 0.8 x− 1.6 (x ∈ Ω). Since

L+(uΩ,g − r,Ω) =
{
x ∈ (−2, 3) : x2 − 0.8 x− 1.6− |x| > 0

}

=
(− 2,−0.1−

√
1.61

) ∪ (
0.9 +

√
2.41, 3

)
,

Corollary 3.2 implies
(− 2,−0.1−√1.61

) ∪ (
0.9 +

√
2.41, 3

) ⊂ N (uΩ,g
r ).

(b) For z ∈ [−2 +
√

2,−0.5], g̃(−2) = z2 + 4z + 6, g̃(3) = z2 − 6z + 6 we
can show that uΩ,g̃(x) = x2− (1+2z)x+ z2 is optimal to problem (PΩ,g̃) and
satisfies (3.13) - (3.14). Therefore, by Definition 3.2, uΩ,g̃ is an upper barrier,
that yields by Proposition 3.4 uΩ,g

r (x) ≤ x2 − (1 + 2z)x + z2. Moreover, since
uΩ,g̃(z) = −z = |z| = r(z), according to Definition 3.3, z is a bottle-neck point.
Hence, Proposition 3.5 implies uΩ,g

r (z) = r(z) = −z for z ∈ [−2 +
√

2,−0.5],
that means [−2 +

√
2,−0.5] ⊂ C(uΩ,g

r ).
(c) With g̃(−2) = 4.25 and g̃(3) = 9.25 we have

uΩ,g̃(x) = x2 + 0.25 ≥ r(x) = |x| (−2 ≤ x ≤ 3)

uΩ,g̃(±0.5) = 0.5 = | ± 0.5| = r(±0.5)

i.e. (3.18) - (3.19) hold for Ω̂ = (−0.5, 0.5). Consequently, Proposition 3.6
implies uΩ,g

r (x) = x2 + 0.25 for |x| ≤ 0.5.

(d) Assume now Ω̃ = Ω = (−2, 3), g̃(−2) = 4 and g̃(3) = 9. Then
uΩ̃,g̃(x) = x2 is optimal to problem (PΩ̃,g̃). Since

d

dx

(
uΩ̃,g̃(x)− r(x)

)
=

d

dx
(x2 − |x|)

{
> 0 if −0.5 < x < 0
< 0 if 0 < x < 0.5
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each closed interval [−α, α] contained in (−0.5, 0.5) is a locally strictly max-
imal region. Therefore, Proposition 4.3 yields [−α, α] ⊂ N (uΩ,g

r ) whenever
|α| < 0.5. Hence, (−0.5, 0.5) ⊂ N (uΩ,g

r ). Actually, we also obtain this in-
clusion from Proposition 4.2 because (4.2) is satisfied for Ω̂ = (−0.5, 0.5)
and m = −0.25. Since uΩ̃,g̃ − r attains its global minimum at x = ±0.5 and
uΩ̃,g̃(±0.5)−r(±0.5) = −0.25 < 0, Proposition 4.4 shows that ±0.5 ∈ C(uΩ,g

r ).
Obviously, this result is appropriate to the one in (c).

(e) By choosing g̃(3) = g(3) = 5 and varying g̃(−2) = 10z − 5 for z ∈
[0.9, 3−√2] we obtain uΩ,g̃(x) = x2 + (1− 2z)x + 6z − 7 as optimal solution
to problem (PΩ,g̃), which satisfies uΩ,g̃(−2) = g̃(−2) ≥ 4 = g(−2) by z ≥ 0.9.
Moreover, for z ∈ [0.9, 3 − √

2], the function uΩ,g̃(x) − r(x) = x2 + (1 −
2z)x + 6z − 7 − |x| (x ∈ Ω = (−2, 3)) attains its global minimum at x = z,
and uΩ,g̃(z) − r(z) = −(z − 3)2 + 2 ≤ 0 by z ≤ 3 − √

2. Consequently,
Proposition 4.4 implies uΩ,g

r (z) = r(z) = z for z ∈ [0.9, 3 − √2], that means
[0.9, 3−√2] ⊂ C(uΩ,g

r ).
(f) Similarly as in (e), by choosing g̃(−2) = g(−2) = 4 and varying

g̃(3) = 14−10z for z ∈ [0.5, 0.9] we obtain uΩ,g̃(x) = x2 +(1−2z)x+2(1−2z)
as optimal solution to problem (PΩ,g̃), which satisfies

uΩ,g̃(3) = g̃(3) ≥ 5 = g(3)

uΩ,g̃(z)− r(z) = −z2 − 4z + 2 ≤ 0.

Moreover, for z ∈ [0.5, 0.9] the function uΩ,g̃(x) − r(x) = x2 + (1 − 2z)x +
2(1 − 2z) − |x| (x ∈ Ω = (−2, 3)) attains its global minimum at x = z.
Consequently, Proposition 4.4 implies [0.5, 0.9] ⊂ C(uΩ,g

r ).

Actually, the results of (e) - (f) can be obtained in a shorter way as it was
done in (b). But we took this longer way on purpose to demonstrate how to
use Proposition 4.4.

We have seen how the conclusions of this paper can be applied to inves-
tigate optimal solutions to obstacle problems. By choosing different Ω̃ and g̃,
it is possible to locate noncoincidence and coincidence points of the optimal
solution uΩ,g

r to the obstacle problem (PΩ,g
r ). It was shown in such a way that

[−2 +
√

2,−0.5] ∪ [0.5, 3−
√

2] ⊂ C(uΩ,g
r ).

These are already all coincidence points of the optimal solution uΩ,g
r to obstacle

problem (4.8), which can be shown to equal

uΩ,g
r (x) =





x2 + (3− 2
√

2)x + 6− 4
√

2 if x ∈ [−2,−2 +
√

2]
x2 + 0.25 if |x| ≤ 0.5
x2 − (5− 2

√
2)x + 11− 6

√
2 if x ∈ [3−√2, 3]

|x| if x ∈ [−2+
√

2,−0.5] ∪ [0.5, 3−√2].
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Concluding remarks. Using the notion of “supersolution”, similar re-
sults as Proposition 3.4 were obtained for some problem classes which require
some coercive assumption (see, for instance, [7, 15]). In this paper, we do not
assume any coercive condition, but only the uniqueness of the optimal solu-
tion to auxiliary problems (PΩ̃,g̃), which is ensured if e.g. the performance
index is strictly convex in KΩ̃,g̃. It is to mention that the existence question
is not investigated here.
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