On the Hilbert Inequality With Weights

Gao Mingzhe, Wei Shongrong and He Leping

Abstract. In this paper, it is shown that a Hilbert-type inequality with weight $\omega(n) = \pi - \frac{\theta}{\sqrt{2n+1}}$ can be established where $\theta = \frac{17}{20}$. As application, a quite sharp result of the Hardy-Littlewood inequality is obtained and some further extensions are obtained.

Keywords: Hilbert inequality with weights, Hardy-Littlewood inequality, infimum, weight functions

AMS subject classification: 41, 26D

1. Introduction

The Hilbert inequality may be written in the form

$$\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{a_m b_n}{m+n+1} < \pi \left(\sum_{n=0}^{\infty} a_n^2\right)^{\frac{1}{2}} \left(\sum_{n=0}^{\infty} b_n^2\right)^{\frac{1}{2}}$$
 (1)

where (a_n) and (b_n) are sequences of real numbers such that $0 < \sum_{n=0}^{\infty} a_n^2 < +\infty$ and $0 < \sum_{n=0}^{\infty} b_n^2 < +\infty$. It is well known that the constant factor π herein is best possible, i.e. π cannot be decreased any more. But we can move the factors in $\pi = \sqrt{\pi}\sqrt{\pi}$ under the summation sign on an average and write a Hilbert-type inequality with weights of the form

$$\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{a_m b_n}{m+n+1} \le \left(\sum_{n=0}^{\infty} \omega(n) a_n^2\right)^{\frac{1}{2}} \left(\sum_{n=0}^{\infty} \omega(n) b_n^2\right)^{\frac{1}{2}}$$
(2)

where the weight function ω is defined by

$$\omega(n) = \pi - \frac{\theta(n)}{\sqrt{2n+1}}.$$

Gao Mingzhe: Xiangxi Educ. Coll. Jishou, Hunan 416000, P.R. China He Leping: Xiangxi Educ. Coll. Jishou, Hunan 416000, P.R. China Wei Shongrong: Zhaqing Coll., Zhaoqing Guangdong 526062, P.R. China Mingzhegao@163.com

Recently, a few papers (see [4, 5]) dealt with the weight function ω . Namely, in [4] it was shown that $\theta(n) > \frac{4n+1}{3(n+1)(2n+1)} > 0$ $(n \in \mathbb{N}_0)$. Clearly, this inequality is related to n, and $\frac{4n+1}{3(n+1)(2n+1)} \to 0$ as $n \to \infty$. In addition, the expression of $\theta(n)$ is relatively complicated. Further, in [5] it was shown that $\omega(n) < \pi - \frac{\alpha}{\sqrt{n+1}}$ where $\alpha = 0.5292496^+$.

The purpose of the present paper is to simplify and to refine the results of [4, 5]. The method and theory employed by us are different from those in [4, 5]. To be specific, we use the expansion of functions into power series and the approximation theory. Similarly, our results can be extended to a Hilbert-type integral inequality with weights. Applying the results to the Hardy-Littlewood inequality, a sharp result there is obtained.

For convenience, we define the function θ by

$$\theta(x) = u(x) + v(x)\xi \qquad (x \ge 0) \tag{3}$$

where ξ is a constant satisfying the condition $0 < \xi < 1$ and the functions u and v are defined by

$$u(x) = 2\sqrt{2x+1} \arctan \sqrt{\frac{3}{2x+1}} - \frac{2x+1}{x+1} - \frac{\sqrt{3}(2x+1)}{6(x+2)}$$
(4)

$$v(x) = -\frac{\sqrt{3}(2x+1)(x+5)}{108(x+2)^2},\tag{5}$$

respectively.

2. Lemmas and their proofs

In order to prove our assertions we need the following lemmas.

Lemma 1. Let u be the function defined by (4). Then $u(x) > \frac{5\sqrt{3}}{3} - 2$ for $x \ge 8$.

Proof. Taking the derivative of u we obtain after some simplifications

$$u'(x) = \frac{2}{\sqrt{2x+1}} \arctan \sqrt{\frac{3}{2x+1}} - \frac{\sqrt{3}}{x+2} - \frac{1}{(x+1)^2} - \frac{\sqrt{3}}{2(x+2)^2}.$$

Let us expand u' into power series of $\frac{1}{2x+1}$ and drop the negative remainder which consists of all terms with powers higher than 5. In such a way we may find via algebraic calculations

$$u'(x) < (2\sqrt{3} - 4)t^2 + \left(8 - \frac{12\sqrt{3}}{5}\right)t^3 + A(t)t^4 < -\frac{1}{2}t^2 + 4t^3 + A(t)t^4$$
 (6)

where $t = \frac{1}{2x+1}$ and $A(t) = -(12 + \frac{54\sqrt{3}}{7}) + (16 + 234\sqrt{3})t$. In fact, when $0 < \alpha < 1$, using the inequality $\arctan \alpha < \alpha - \frac{1}{3}\alpha^3 + \frac{1}{5}\alpha^5 - \frac{1}{7}\alpha^7 + \frac{1}{9}\alpha^9$ we get

$$2\sqrt{t}\arctan\sqrt{3t} < 2\sqrt{3}\,t - 2\sqrt{3}\,t^2 + \frac{18\sqrt{3}}{5}\,t^3 - \frac{54\sqrt{3}}{7}\,t^4 + 18\sqrt{3}\,t^5$$

and

$$\begin{split} -\frac{\sqrt{3}}{x+2} &= -\frac{2\sqrt{3}\,t}{1+3t} < -2\sqrt{3}\,t + 6\sqrt{3}\,t^2 - 18\sqrt{3}\,t^3 + 54\sqrt{3}\,t^4 \\ -\frac{1}{(x+1)^2} &= -\frac{4\,t^2}{(1+t)^2} < -4\,t^2 + 8\,t^3 - 12\,t^4 + 16\,t^5 \\ -\frac{\sqrt{3}}{2(x+2)^2} &= -\frac{2\sqrt{3}\,t^2}{(1+3t)^2} < -2\sqrt{3}\,t^2 + 12\sqrt{3}\,t^3 - 54\sqrt{3}\,t^4 + 216\sqrt{3}\,t^5. \end{split}$$

Adding these inequalities, we get inequality (6). Notice that for A(t) contained in (6) we have $A(t) < -25 + 422 \, t$. Evidently, A(t) < 0 when $t \in (0, \frac{1}{17})$. Hence inequality (6) can be reduced to $u'(x) < (-\frac{1}{2} + 4t)t^2 < 0$ where $t = \frac{1}{2x+1}$ and $x \geq 8$. It follows that u(x) is monotone decreasing in the interval $[8, +\infty)$ whence we have $\inf_{x \geq 8} u(x) = u(\infty) = \frac{5\sqrt{3}}{3} - 2$ and the lemma is proved \blacksquare

Lemma 2. Let v be the function defined by (5). Then $v(x) \ge -\frac{\sqrt{3}}{48}$ for $x \ge 0$.

Proof. Taking the derivative, after simplifications we get $v'(x) = \frac{\sqrt{3}(x-4)}{36(x+2)^3}$. Evidently, v(4) is a minimum of v in $[0, +\infty)$. This implies that the lemma is true \blacksquare

Lemma 3. Let θ be the function defined by (3). Then $\theta(n) > \frac{17}{20}$ for all $n \in \mathbb{N}_0$.

Proof. For $n \geq 8$ we have with the use of Lemmas 1 and 2

$$\theta(n) = u(n) + v(n)\,\xi > u(n) + v(n) > \left(\frac{5\sqrt{3}}{3} - 2\right) - \frac{\sqrt{3}}{48} > \frac{17}{20}$$

where ξ is a constant satisfying $0 < \xi < 1$. It remains to prove only that $u(n) > \frac{5\sqrt{3}}{3} - 2$ when $0 \le n \le 7$. By direct computations we attain from (4)

$$u(0) = 0.9500$$
 $u(1) = 0.9320$ $u(2) = 0.9198$ $u(3) = 0.9130$ $u(4) = 0.9085$ $u(5) = 0.9054$ $u(6) = 0.9031$ $u(7) = 0.9013$.

This way $\theta(n) > \frac{17}{20}$ for all $n \ge 0$ and the lemma is proved

3. Main results

Now let us came to our main results.

Theorem 1. If $0 < \sum_{n=0}^{\infty} a_n^2 < \infty \text{ and } 0 < \sum_{n=0}^{\infty} b_n^2 < +\infty, \text{ then } 0 < \sum_{n=0}^{\infty} b_n^2 < +\infty$

$$\sum_{m,n=0}^{\infty} \frac{a_m b_n}{m+n+1} < \left\{ \sum_{n=0}^{\infty} \left(\pi - \frac{\theta}{\sqrt{2n+1}} \right) a_n^2 \right\}^{\frac{1}{2}} \left\{ \sum_{n=0}^{\infty} \left(\pi - \frac{\theta}{\sqrt{2n+1}} \right) b_n^2 \right\}^{\frac{1}{2}}$$
(7)

where $\theta = \frac{17}{20}$.

Proof. We apply Cauchy's inequality to estimate the left-hand side of (7) as follows:

$$\begin{split} \sum_{m,n=0}^{\infty} \frac{a_m b_n}{m+n+1} \\ &= \sum_{m,n=0}^{\infty} \frac{a_m b_n}{(m+n+1)^{\frac{1}{2}}} \Big(\frac{2m+1}{2n+1}\Big)^{\frac{1}{4}} \frac{b_n}{(m+n+1)^{\frac{1}{2}}} \Big(\frac{2n+1}{2m+1}\Big)^{\frac{1}{4}} \\ &\leq \left\{ \sum_{m,n=0}^{\infty} \frac{a_m^2}{m+n+1} \Big(\frac{2m+1}{2n+1}\Big)^{\frac{1}{2}} \right\}^{\frac{1}{2}} \left\{ \sum_{m,n=0}^{\infty} \frac{b_n^2}{m+n+1} \Big(\frac{2n+1}{2m+1}\Big)^{\frac{1}{2}} \right\}^{1/2} \\ &= \left\{ \sum_{n=0}^{\infty} \Big(\sum_{m=0}^{\infty} \frac{1}{m+n+1} \Big(\frac{2n+1}{2m+1}\Big)^{\frac{1}{2}} \Big) a_n^2 \right\}^{\frac{1}{2}} \\ &\times \left\{ \sum_{n=0}^{\infty} \Big(\sum_{m=0}^{\infty} \frac{1}{m+n+1} \Big(\frac{2n+1}{2m+1}\Big)^{\frac{1}{2}} \Big) b_n^2 \right\}^{\frac{1}{2}} \\ &= \left\{ \sum_{n=0}^{\infty} \omega(n) a_n^2 \right\}^{\frac{1}{2}} \left\{ \sum_{n=0}^{\infty} \omega(n) b_n^2 \right\}^{\frac{1}{2}} \end{split}$$

where $\omega(n) = \sum_{m=0}^{\infty} \frac{1}{m+n+1} \left(\frac{2n+1}{2m+1}\right)^{1/2}$. Let us define the function F by

$$F(t) = \frac{1}{t+n+1} \left(\frac{2n+1}{2t+1}\right)^{\frac{1}{2}}.$$

Applying the Euler-Maclaurin summation fomula to $\omega(n)$ we get

$$\omega(n) = F(0) + \sum_{m=1}^{\infty} F(m) = F(0) + \int_{1}^{\infty} F(t) dt + \frac{1}{2} F(1) + R(n)$$
 (8)

where R(n) is the remainder. See [2, 3] for various expressions of it. Here we give the remainder in the form $R(n) = -\frac{\xi}{12}F'(1)$ (0 < ξ < 1). By

computation we obtain the relation $\sqrt{2n+1} R(n) = v(n)\xi$ where v is the function defined by (5), and $\int_1^\infty F(t) dt = \pi - 2 \arctan \sqrt{3/(2n+1)}$. In view of (4) we may write (8) in form

$$\omega(n) = \pi - \frac{u(n) + v(n)\xi}{\sqrt{2n+1}} = \pi - \frac{\theta(n)}{\sqrt{2n+1}}$$

where θ is the function defined by (3). Basing on Lemma 3 we get $\omega(n) < \pi - \frac{\theta}{\sqrt{2n+1}}$ where $\theta = \frac{17}{20}$ and the proof of the theorem is completed

Remark. Theorem 1 is obviously an improvement on the result of [5] because $\frac{\theta}{\sqrt{2n+1}} = \frac{\theta}{\sqrt{2}(n+\frac{1}{2})^{\frac{1}{2}}} > \frac{\theta}{\sqrt{2}(n+1)^{\frac{1}{2}}} > \frac{\alpha}{(n+1)^{\frac{1}{2}}}$ where $\theta = \frac{17}{20}$ and $\alpha = 0.5292496^+$.

Corollary 1. If $0 < \sum_{n=0}^{\infty} a_n^2 < +\infty$, then

$$\sum_{m,n=0}^{\infty} \frac{a_m a_n}{m+n+1} < \sum_{n=0}^{\infty} \left(\pi - \frac{\theta}{\sqrt{2n+1}}\right) a_n^2$$
 (9)

where $\theta = \frac{17}{20}$.

Clearly, this is an immediate consequence of (7).

Theorem 2. Let $f, g \in L^2[0, +\infty)$. Then

$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x)g(y)}{x+y+1} dxdy$$

$$\leq \pi \left\{ \int_{0}^{\infty} \left(1 - \frac{1}{2\sqrt{2x+1}} \right) f^{2}(x) dx \right\}^{\frac{1}{2}} \left\{ \int_{0}^{\infty} \left(1 - \frac{1}{2\sqrt{2x+1}} \right) g^{2}(x) dx \right\}^{\frac{1}{2}}.$$
(10)

Equality herein holds if and only if f = 0 or g = 0.

Proof. Similar to the proof of Theorem 1 we obtain

$$\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x+y+1} \, dx dy \le \left\{ \int_0^\infty p(x)f^2(x) \, dx \right\}^{\frac{1}{2}} \left\{ \int_0^\infty p(x)g^2(x) \, dx \right\}^{\frac{1}{2}}$$

where the weight function p is defined by

$$P(x) = \int_0^\infty \frac{1}{x+y+1} \left(\frac{2x+1}{2y+1}\right)^{\frac{1}{2}} dy = \pi - 2 \arctan \frac{1}{\sqrt{2x+1}} = \pi - \frac{\alpha(x)}{\sqrt{2x+1}}$$

where $\alpha(x) = 2\sqrt{2x+1}$ arctan $\frac{1}{\sqrt{2x+1}}$. It is easy to prove that the function α is monotonely increasing in the interval $[0, +\infty)$. In fact,

$$\alpha'(x) = \frac{2}{\sqrt{2x+1}} \arctan \frac{1}{\sqrt{2x+1}} - \frac{1}{x+1}.$$

Notice that $\arctan t > t - \frac{1}{3}t^3$ when 0 < t < 1. Hence

$$\alpha'(x) > \frac{2}{2x+1} - \frac{2}{3(2x+1)^2} - \frac{1}{x+1}$$

$$= \frac{1}{(2x+1)(x+1)} - \frac{2}{3(2x+1)^2}$$

$$= \frac{1}{2x+1} \left(\frac{1}{x+1} - \frac{1}{3x+\frac{3}{2}}\right)$$

$$> 0$$

and $\alpha'(0) = \frac{\pi}{2} - 1 > 0$. So our assertion is proved. Hence $\inf_{x \geq 0} \alpha(x) = \alpha(0) = \frac{\pi}{2}$ and $p(x) \leq \pi - \frac{\alpha(0)}{\sqrt{2x+1}} = \pi \left(1 - \frac{1}{2\sqrt{2x+1}}\right)$. It follows that (10) is valid and the theorem is proved \blacksquare

Corollary 2. If $f \in L^2[0, +\infty)$, then

$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x)f(y)}{x+y+1} \, dx dy \le \pi \int_{0}^{\infty} \left(1 - \frac{1}{2\sqrt{2x+1}}\right) f^{2}(x) \, dx. \tag{11}$$

Equality herein holds if and only if f = 0.

4. Applications

Let $f \in L^2(0,1)$ and $f(x) \neq 0$ for all x. If $a_n = \int_0^1 x^n f(x) dx$ $(n \in \mathbb{N}_0)$, then we get the Hardy-Littlewood inequality (cf. [1]) in the form

$$\sum_{n=0}^{\infty} a_n^2 < \pi \int_0^1 f^2(x) \, dx \tag{12}$$

where π is the best constant that keeps (12) valid. The following improvement of (12) will be obtained by means of Corollary 1.

Theorem 3. Under the assumptions just described we have

$$\left(\sum_{n=0}^{\infty} a_n^2\right)^2 < \left\{\sum_{n=0}^{\infty} \left(\pi - \frac{\theta}{\sqrt{2n+1}}\right) a_n^2\right\} \int_0^1 f^2(x) \, dx \tag{13}$$

where $\theta = \frac{17}{20}$.

Proof. By our assumption, $a_n^2 = \int_0^1 a_n x^n f(x) dx$. Using the Cauchy-Schwarz inequality and Corollary 1 we get

$$\left(\sum_{n=0}^{\infty} a_n^2\right)^2 = \left(\sum_{n=0}^{\infty} \int_0^1 a_n x^n f(x) dx\right)^2$$

$$= \left(\int_0^1 \left(\sum_{n=0}^{\infty} a_n x^n\right) f(x) dx\right)^2$$

$$\leq \int_0^1 \left(\sum_{n=0}^{\infty} a_n x^n\right)^2 dx \int_0^1 f^2(x) dx$$

$$= \left\{\sum_{m,n=0}^{\infty} \frac{a_m a_n}{m+n+1}\right\} \int_0^1 f^2(x) dx$$

$$\leq \left\{\sum_{n=0}^{\infty} \left(\pi - \frac{\theta}{\sqrt{2n+1}}\right) a_n^2\right\} \int_0^1 f^2(x) dx$$

$$(14)$$

where $\theta = \frac{17}{20}$. Since $f(x) \neq 0$ for all x, $a_n \neq 0$ for all $n \geq 0$. Therefore it is impossible to take equality in (14). It follows that (13) is valid

Remark. If in (13) we replace θ by zero, then (12) follows. Clearly, this is a refinement of the Hardy-Littlewood inequality.

Theorem 4. Let $g \in L^2(0,1)$ with $g(t) \neq 0$ for all t and define f by

$$f(x) = \int_0^1 t^x g(t)dt \qquad (x \ge 0).$$

Then

$$\left(\int_{0}^{\infty} f^{2}(x)dx\right)^{2} < \pi \left(\int_{0}^{\infty} \left(1 - \frac{1}{\sqrt{2x+1}}\right) f^{2}(x)dx\right) \int_{0}^{1} g^{2}(t)dt.$$
 (15)

Proof. We may write f^2 in the form $f^2(x) = \int_0^1 f(x)t^x g(t)dt$. Applying

the Cauchy-Schwarz inequality and using Corollary 2 we get

$$\left(\int_{0}^{\infty} f^{2}(x)dx\right)^{2} = \left\{\int_{0}^{\infty} \left(\int_{0}^{1} f(x)t^{x}g(t)dt\right)dx\right\}^{2}$$

$$= \left\{\int_{0}^{1} \left(\int_{0}^{\infty} f(x)t^{x}dx\right)g(t)dt\right\}^{2}$$

$$\leq \int_{0}^{1} \left(\int_{0}^{\infty} f(x)t^{x}dx\right)^{2}dt \int_{0}^{1} g^{2}(t)dt$$

$$= \int_{0}^{1} \left(\int_{0}^{\infty} f(x)t^{x}dx\right) \left(\int_{0}^{\infty} f(y)t^{y}dy\right)dt \int_{0}^{1} g^{2}(t)dt$$

$$= \int_{0}^{1} \left(\int_{0}^{\infty} \int_{0}^{\infty} f(x)f(y)t^{x+y}dxdy\right)dt \int_{0}^{1} g^{2}(t)dt$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x)f(y)}{x+y+1}dxdy \int_{0}^{1} g^{2}(t)dt$$

$$\leq \pi \int_{0}^{\infty} \left(1 - \frac{1}{2\sqrt{2x+1}}\right)f^{2}(x)dx \int_{0}^{1} g^{2}(t)dt.$$
(16)

Since $g(t) \neq 0$ for all t, whence $f(x) \neq 0$ for all x. It is impossible to take equality in (16). Hence (15) is valid \blacksquare

Remark. We point out that if $\frac{1}{2\sqrt{2x+1}}$ contained in (15) is replaced by zero, then we obtain immediately a new inequality of the form $\int_0^\infty f^2(x)dx < \pi \int_0^1 g^2(t)dt$. Obviously, this is an extension of the Hardy-Littlewood inequality (12).

Acknowledgements. The authors would like to express their thanks to the referees for their help and patience. The authors express also their thanks to Prof. L.C. Hsu for his encouragement.

References

- [1] Hardy, G. H., Littlewood, J. E. and G. Polya: *Inequalities*. Cambridge: Univ. Press 1952.
- [2] Gao Mingzhe: A note on the Hardy-Hilbert inequality. J. Math. Anal. Appl. 204 (1996), 346 351.
- [3] Gao Mingzhe: An improvement of Hardy-Riesz's extension of the Hilbert inequality. J. Math. Res. Exp. 14 (1994), 255 259 (MR 95m.26040).
- [4] Gao Mingzhe: On Hilbert's inequality and its applications. J. Math. Anal. Appl. 212 (1997), 316 323.

[5] Yang Bicheng: A refinement of Hilbert's inequality (in Chinese). Huanghuai J. 13 (1997)2, 47 - 51.

Received 24.01.2001; in revised form 14.11.2001