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Existence Result
for the

One-Dimensional Full Model of Phase Transitions

F. Luterotti and U. Stefanelli

Abstract. This note deals with a nonlinear system of partial differential equa-
tions accounting for phase transition phenomena. The existence of solutions to a
Cauchy-Neumann problem is established in the one-dimensional space setting, using
a regularization – a priori estimates – passage to limit procedure.
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1. Introduction

The present analysis is concerned with the evolution of two unknown fields θ
and χ. In particular, we aim to consider the pair of relations

∂tθ + θ∂tχ− ∂xxθ = (∂tχ)2

∂tχ− ∂xxχ + β(χ) 3 θ − θc

}
(1.1)

to be fulfilled for almost every (x, t) ∈ Q = (0, `) × (0, T ), for some `, T > 0.
Here θc > 0 is a parameter and β stands for a maximal monotone graph in
R× R.

The latter system may rise in connection with a model for phase transi-
tion recently proposed by M. Frémond. We shall recall the framework of such
model, referring indeed to the paper [4] for a full discussion about its deriva-
tion. First of all, let us consider a two-phase material located in a domain Ω
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in R3 and let us focus on the state variables θ (absolute temperature) and χ
(local proportion of one of the two phases). We aim to describe the thermal
evolution of this substance with the help of an energy balance equation cou-
pled with a proper phase relation. From the physical point of view, the main
novelty of this model relies on the assumption that the phase changes at the
macroscopic level are affected by the microscopic movements of the molecules
as well. Hence, a microscopic contribution has to be taken into account at the
macroscopic level. Referring to [4, 5] for the details, we are led to consider a
system of the kind

cs∂tθ + L∂tχ− h∆θ = − L

θc
(θ − θc)∂tχ + ξ∂tχ + µ(∂tχ)2 + κ|∇∂tχ|2

µ∂tχ + ξ − κ∆∂tχ− ν∆χ + ∂I[0,1](χ) 3 L

θc
(θ − θc)

(
ξ ∈ α(∂tχ)

)





.

(1.2)
The graph α ⊂ R× R is maximal monotone while the graph ∂I[0,1] turns out
to be the subdifferential of the indicator function I[0,1] of the set [0, 1]. In
particular, we recall that

y ∈ ∂I[0,1](x) ⇐⇒ x ∈ [0, 1] and y(x− z) ≥ 0 ∀ z ∈ [0, 1]

or, equivalently,




∂I[0,1](x) = ∅ if x < 0 or x > 1
∂I[0,1](0) = (−∞, 0]
∂I[0,1](x) = {0} if x ∈ (0, 1)
∂I[0,1](1) = [0,+∞).

Moreover, the quantities cs, L, h, k, θc are positive physical parameters, while
µ, κ, ν are non-negative. The reader is referred to [4, 5] for a full discussion
on their physical meaning.

From the physical point of view, the presence of the nonlinear graph ∂I[0,1]

has to be interpreted as the constraint 0 ≤ χ ≤ 1 (recall that χ is a proportion)
and the possible natural choices for the graph α are α ≡ 0 and α = ∂I[0,+∞).
Indeed, this latter position is specified from the variational inequality

y ∈ ∂I[0,+∞)(x) ⇐⇒ x ∈ [0, +∞) and y(x− z) ≥ 0 ∀ z ∈ [0, +∞)

and accounts for possible irreversibility on the phase transition since ∂tχ is
forced to attain solely non-negative values. On the contrary, this paper in-
vestigates exclusively the case when α ≡ 0 (see (1.2)), i.e. a purely reversible
phase transition is considered.

For the sake of introducing our results, we shall briefly recall some liter-
ature on the model. Many efforts have been recently directed to the analysis
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of Cauchy-Neumann problems related to different possible simplified version
of system (1.2). In particular, most of the former contributions address the
irreversible case α = ∂I[0,+∞), assume κ = 0 and perform some partial sim-
plification of the energy balance equation (1.2)1 [4, 10]. The paper [11] proves
the existence of a solution to the κ = 0 problem (1.2) in the special case of
a graph α = ∂I[0,λ] where λ > 0 stands for some limit speed for the phase
transition. The full problem with κ = ν = 0 have been solved in [7] while,
whenever ν > 0, the irreversible system (1.2) turns out to have a global strong
solution in the one-dimensional setting due to [9]. As for the viscous problem
(1.2) with κ 6= 0, we shall refer to the paper [5] that establishes the local in
time existence of a weak solution to the problem under the assumption that
the term κ|∇∂tχ|2 in (1.2)1 is negligible.

The aim of this paper is to investigate the purely reversible case in the
1-dimensional setting for κ = 0. Normalizing most of the physical quantities,
system (1.2) turns out to be of the type of system (1.1). The novelty of this
contribution is the proof of the existence of a global strong solution in the
one-dimensional setting. The latter existence result stands as a reversible
counterpart to the result of the paper [9].

Our work is organized as follows. First of all we set some useful notation
in Section 2. Then, Section 3 is devoted to the precise statement of our
existence result. The approximation of system (1.1) is performed in Section
4, and Sections 5 - 7 detail the study of the approximated problem. Finally,
we establish some a priori estimates in Section 8 and the passage to the limit
is obtained in Section 9.

2. Notations

We set
Ω = (0, `)

Qt = (0, `)× (0, t) ∀ t ∈ (0, T ].

Next, we let
H = L2(0, `)

V = H1(0, `)

W = H2(0, `)

and identify H with its dual space H ′, so that

V ⊂ H ⊂ V ′

with dense, compact, and continuous embeddings. Besides, let the symbol ‖·‖
denote the standard norm of H, while ‖·‖E stands for the norm of the general
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normed space E. Moreover, we denote by 〈·, ·〉 the duality pairing between
V ′ and V , by (·, ·) the scalar product in H, and by J : V → V ′ the Riesz
isomorphism of V onto V ′.

Note that, thanks to the one-dimensional framework of our problems, we
have the continuous injections

L1(Ω) ⊂ V ′ and V ⊂ L∞(Ω).

Hence, there exist two constants C1 > 0 and C2 > 0 such that the relations

‖u‖V ′ ≤ C1‖u‖L1(Ω)

‖u‖L∞(Ω) ≤ C2‖u‖V

(u ∈ L1(Ω))

(u ∈ V )
(2.1)

hold.
Now, we recall an elementary inequality which will be useful in the sequel:

ab ≤ δ

2
a2 +

1
2δ

b2 (a, b ∈ R; δ > 0). (2.2)

Finally, we also remark that there exists a constant C3 > 0 depending only
on T such that

‖u‖2L2(0,t;H) ≤ C3

(
‖u(0)‖2 +

∫ t

0

‖∂tu‖2L2(0,s;H)ds

)
(t ∈ (0, T ]) (2.3)

for any u ∈ H1(0, T ; H) holds.

3. Main result

We give here the precise statement of our problem, introducing the following
assumptions on the data:

θc, θ
∗ > 0 are assigned constants





ϕ : R→ [0, +∞] is proper, convex, and lower semicontinuous

and there exist constants C4, C5 > 0 such that ϕ(r) ≥ C4r
2 − C5

for all r ∈ D(ϕ) and β := ∂ϕ and ϕ(0) = 0





θ0 ∈ V and θ0 > 0 in Ω

χ0 ∈ H3(Ω)

χ0 ∈ D(β) a.e. in Q and β0(χ0) ∈ H




(3.1)

where D(ϕ) and D(β) denote the effective domain of ϕ and β, respectively,
and β0(χ0) stands for the element of minimal norm of the set β(χ0).
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Problem 1. Find a triplet (θ, χ, η) such that

θ ∈ H1(0, T ; H) ∩ C0([0, T ];V ) ∩ L2(0, T ; W )

χ ∈ W 1,∞(0, T ; H) ∩H1(0, T ;V ) ∩ L2(0, T ; W )

η ∈ L2(0, T ; H)

∂tθ + θ∂tχ− ∂xxθ = (∂tχ)2 a.e. in QT

∂tχ− ∂xxχ + η = θ − θc a.e. in QT

η ∈ β(χ) a.e. in QT

θ ≥ 0 a.e. in QT

∂xθ(0, ·) = ∂xθ(`, ·) = 0, ∂xχ(0, ·) = ∂xχ(`, ·) = 0 a.e. in (0, T )

θ(·, 0) = θ0, χ(·, 0) = χ0 a.e. in Ω





. (3.2)

Remark 3.1. Let us stress that the coercivity assumption on ϕ in (3.1)2
is perfectly motivated in our framework since I[0,1](r) ≥ r2−1 for all r ∈ [0, 1].
Moreover, the hypothesis ϕ(0) = 0 may be replaced by the weaker 0 ∈ D(ϕ)
without any particular intricacy.

Remark 3.2. We point out that the regularity assumption (3.1)4 is mo-
tivated by the sake of simplicity. Indeed, we are actually able to deal with
data χ0 ∈ W by exploiting a suitable regularization procedure.

Now, we are able to state the main result of the paper.

Theorem 3.3 (Existence). Let assumptions (3.1) hold. Then Problem 1
admits at least one solution.

The proof of this result will be carried out throughout the remainder of
the paper by exploiting an approximation procedure. Indeed, we replace β
with its Yosida approximation βε and solve the regularized problem by the
means of fixed point techniques. Then, proper a priori estimates independent
of ε are established and the passage to the limit is obtained via compactness
and monotonicity arguments.

4. Approximation

For the sake of proving Theorem 3.3 we apply a regularization procedure to
the maximal monotone graph β. Namely, let βε be the Yosida approximation
of β (we refer to [6] for details) and, consequently, denote by ϕε the unique
primitive of βε verifying ϕε(0) = 0. Note that (see [6: p. 28]) one has

|βε(r)| ≤ |β0(r)| for all ε > 0 and r ∈ D(β). (4.1)
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Moreover, it is straightforward to check that

ϕε(r) = min
s∈D(ϕ)

( 1
2ε
|r − s|2 + ϕ(s)

)
.

Thus, we readily have

ϕε(r) ≤ ϕ(r) ∀ r ∈ D(ϕ). (4.2)

Moreover, the function ϕε is defined in all R and, taking into account the
coercivity assumption in (3.1)2, it turns out to be coercive as well. Namely,
we have

ϕε(r) ≥ C4

2
r2 − C5 ∀ r ∈ R, ∀ ε ∈ (0, 1

2C4
). (4.3)

Indeed, let us consider r ∈ R, s ∈ D(ϕ) and ε ∈ (0, 1
2C4

). Then

C4

2
r2 ≤ C4|r − s|2 + C4s

2

≤ 1
2ε
|r − s|2 + C4s

2 − C5 + C5

≤ 1
2ε
|r − s|2 + ϕ(s) + C5

and assertion (4.3) is proved.

Let us introduce the approximating problems (the regularization param-
eter ε > 0 being fixed):

Problem 1ε. Find a pair (θε, χε) such that

θε ∈ H1(0, T ; H) ∩ C0([0, T ]; V ) ∩ L2(0, T ; W )

χε ∈ H2(0, T ;H) ∩W 1,∞(0, T ;V ) ∩H1(0, T ;W )

∂tθε + θε∂tχε − ∂xxθε = (∂tχε)2 a.e. in QT

∂tχε − ∂xxχε + βε(χε) = θε − θc a.e. in QT

∂xθε(0, ·) = ∂xθε(`, ·) = 0, ∂xχε(0, ·) = ∂xχε(`, ·) = 0 a.e. in (0, T )

θε(·, 0) = θ0, χε(·, 0) = χ0 a.e. in Ω





.

(4.4)

Remark 4.1. We stress that the approximation of relation (3.2)6 does
not come into play in the formulation of Problem 1ε above. Indeed, the
regularized graph βε is actually single-valued.
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5. Uniqueness for the approximating problem

As regards the uniqueness of solutions to Problem 1ε, we are able to state and
prove a result which also applies to more general situations.

Proposition 5.1 (Uniqueness to approximating problem). Assume we
are given θ0, χ0 : Ω → R. Then there exists at most one solution to Problem
1ε.

Proof. We proceed by contradiction. Let (θ1, χ1), (θ2, χ2) be two solu-
tions to Problem 1ε and set θ̃ = θ1 − θ2 and χ̃ = χ1 − χ2. Moreover, let us
consider the difference between the corresponding equations (4.4)4, multiply
by ∂tχ̃ and integrate over Qt. Thanks to the Lipschitz continuity of βε and
to (2.2) - (2.3), we obtain

‖∂tχ̃‖2L2(0,t;V ) +
1
2
‖∂xχ̃(t)‖2

≤ 1
4
‖∂tχ̃‖2L2(0,t;H) + C

(
‖θ̃‖2L2(0,t;H) +

∫ t

0

‖∂tχ̃‖L2(0,s;H) ds

) (5.1)

where C depends on C3 and ε. Next, we consider the difference between
equation (4.4)3 written for (θ1, χ1) and the same equation written for (θ2, χ2),
multiply by θ̃ and integrate over Qt. Using the Hölder inequality we get

1
2
‖θ̃(t)‖2 + ‖∂xθ̃‖2L2(0,t;H)

≤
∫∫

Qt

(
|∂tχ1| |θ̃|+ |θ2| |∂tχ̃|+ |∂tχ1 + ∂tχ2| |∂tχ̃|

)
|θ̃|

≤
∫ t

0

(
‖∂tχ1‖L∞(Ω)‖θ̃‖+ ‖θ2‖L∞(Ω)‖∂tχ̃‖

+ ‖∂tχ1 + ∂tχ2‖L∞(Ω)‖∂tχ̃‖
)
‖θ̃‖

≤
∫ t

0

‖∂tχ1‖L∞(Ω)‖θ̃‖2 +
1
2

∫ t

0

‖θ2‖2L∞(Ω)‖∂tχ̃‖2 +
1
2

∫ t

0

‖θ̃‖2

+
1
2

∫ t

0

‖∂tχ1 + ∂tχ2‖2L∞(Ω)‖θ̃‖2 +
1
2
‖∂tχ̃‖2L2(0,t;H).

(5.2)

Now we add (5.1) and (5.2) and apply the Gronwall lemma (see, e.g., [2]),
noting that ‖∂tχ1‖L∞(Ω), ‖θ2‖2L∞(Ω), ‖∂tχ1 + ∂tχ2‖2L∞(Ω) belong to L∞(0, T ).

We deduce that θ̃ = ∂tχ̃ = 0 a.e. in Q and the assertion is proved

Remark 5.2 (on uniqueness). Let us stress that the uniqueness result
still holds for any Lipschitz continuous function βε. Indeed, our proof does not
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rely on the particular properties of the Yosida approximation of β. Moreover,
we did not use any information on ∂ttχε. Hence, in the case of β Lipschitz
continuous, no regularization is needed and the solution to Problem 1, given
by Theorem 3.3 is also unique.

6. Existence for the approximating problem

We conclude the well-posedness proof for Problem 1ε stating and proving the
existence part.

Proposition 6.1 (Existence for the approximating problem). Let as-
sumptions (3.1) hold. Then there exists at least one solution to Problem 1ε.

Proof. We are going to apply the Schauder fixed point theorem. To this
end, we introduce

Y :=
{
f ∈ H1(0, T ; H) ∩ L∞(0, T ; V )}.

Standard arguments ensure that the following problem admits a unique solu-
tion u:

Problem 1εa. Let f ∈ Y be given. Find u such that

u ∈ H2(0, T ; H) ∩W 1,∞(0, T ;V ) ∩H1(0, T ;W )

∂tu− ∂xxu + βε(u) = f − θc a.e. in QT

∂xu(0, ·) = ∂xu(`, ·) = 0 a.e. in (0, T )

u(·, 0) = χ0 a.e. in Ω





. (6.1)

Now, given such u, it is easy to find the unique solution v of the following

Problem 1εb. Let u ∈ L∞(QT ) with ∂tu ∈ L∞(QT ) be given. Find v
such that

v ∈ H1(0, T ; H) ∩ L∞(0, T ; V ) ∩ L2(0, T ; W )

∂tv + v∂tu− ∂xxv = (∂tu)2 a.e. in QT

∂xv(0, ·) = ∂xv(`, ·) = 0 a.e. in (0, T )

v(·, 0) = θ0 a.e. in Ω





. (6.2)

We have implicitly defined a mapping S : Y → Y with S(f) = v. The
continuity of S may be proved arguing as in the derivation of (6.8) - (6.10)
below and we omit its direct check for the sake of simplicity. Since we aim to
deduce the existence of fixed points, we need to prove that the S is compact in
Y , i.e. it maps bounded sets into compact ones. Hence, let {fn} be a bounded
set in Y , namely

‖fn‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ C7 (6.3)
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for some constant C7 > 0. By a classical compactness result (see, e.g., [8]),
there exists f such that, at least for subsequences (not relabeled),

fn → f strongly in L2(0, T ; H) (6.4)

as n → +∞.
Denote by un the solution of Problem 1εa corresponding to the datum fn

and by vn the solution of Problem 1εb corresponding to un. As for to prove
the strong convergence of {vn} in Y , we need some a priori bounds on ∂tun

and vn in order to deal with the nonlinearities. Henceforth C will denote any
constant, possibly depending on data, ε and C7 but not on n. Of course, C
may vary from line to line.

First of all, we multiply (6.1)2 (with fn and un instead of f and u, respec-
tively) by ∂tun and integrate over Qt. Using (2.2) - (2.3) we find

‖∂tun‖2L2(0,t;H) +
1
2
‖∂xun(t)‖2

≤ 1
2
‖∂xχ0ε‖2 +

1
2
‖∂tun‖2L2(0,t;H)

+ C

(
‖χ0‖2 + ‖fn‖2L2(0,t;H) +

∫ t

0

‖∂tun‖L2(0,s;H) ds

)
.

Applying the Gronwall lemma and thanks to (6.3), we deduce that

‖un‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ C. (6.5)

Next, we differentiate (6.1)2 (with fn and un instead of f and u, respectively)
with respect to t, multiply the resulting equation by ∂ttun and integrate over
Qt. One obtains

‖∂ttun‖2L2(0,t;H) +
1
2
‖∂xtun(t)‖2

≤ 1
2
‖∂xtun(0)‖2 +

∫ t

0

β′ε(un)‖∂tun‖ ‖∂ttun‖+
∫ t

0

‖∂tfn‖ ‖∂ttun‖.

Let us stress that setting t = 0 in (6.1)2 (with fn and un instead of f and u,
respectively) we have

‖∂tun(0)‖V ≤ ‖χ0‖H3(Ω) + ‖βε(χ0)‖V + ‖θ0‖V + ‖θc‖V .

Using the Lipschitz continuity of βε (for ε fixed) (3.1)3, (6.3) and (6.5), we
deduce

‖un‖H2(0,T ;H)∩W 1,∞(0,T ;V ) ≤ C. (6.6)
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Next, we multiply (6.2)2 (with ∂tun and vn instead of ∂tu and v, respectively)
by ∂tvn and integrate over Qt obtaining

‖∂tvn‖2L2(0,t;H) +
1
2
‖∂xvn(t)‖2 ≤ 1

2
‖∂xθ0‖2 +

∫ t

0

|vn∂tun + (∂tun)2| |∂tvn|.

Thanks to the Hölder inequality, the integral in the above right-hand side is
bounded by

∫ t

0

(
‖vn‖L∞(Ω)‖∂tun‖+ ‖∂tun‖L∞(Ω)‖∂tun‖

)
‖∂tvn‖.

Using now (2.1) - (2.2), (6.6) and the Gronwall lemma, we deduce

‖vn‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ C. (6.7)

Recall that f is the strong limit of fn (see (6.4)) and denote by u the
corresponding solution of Problem 1εa. We set f̃ = fn − f and ũ = un − u;
we consider the difference between the related equations (6.1)2, multiply by
∂tũ and integrate over Qt. Arguing as in the derivation of (5.1), the Gronwall
lemma and (6.4) enable us to deduce

∂tun → ∂tu strongly in L2(0, T ; H) (6.8)

as n → +∞. Our aim is to prove

vn → v strongly in H1(0, T ; H) ∩ L∞(0, T ; V ) (6.9)

as n → +∞ where v is the solution of Problem 1εb corresponding to the
datum u.

We set ṽ = vn − v and consider the difference between equation (6.2)2
written for vn and the same relation written for v, multiply by ∂tṽ, and
integrate over Qt. Arguing as above, we have

‖∂tṽ‖2L2(0,t;H) +
1
2
‖∂xṽ(t)‖2

≤
∫ t

0

‖∂tun‖2L∞(Ω)‖ṽ‖2 +
∫ t

0

‖v‖2L∞(Ω)‖∂tũ‖2

+
∫ t

0

‖∂tun + ∂tu‖2L∞(Ω)‖∂tũ‖2ds +
3
4
‖∂tṽ‖2L2(0,t;H).

(6.10)

Thanks to (2.1) and (6.6) - (6.8), we achieve (6.9). This completes the proof
of Proposition 6.1 and hence our approximating Problem 1ε is well posed
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7. Positivity for the approximating problem

Finally, we aim to establish a crucial lower bound for θε in Q. Indeed, we will
prove the following

Lemma 7.1 (Positivity for the approximating problem). Let (θε, χε) be
a solution to Problem 1ε. Then there exists a constant θ∗ε > 0 such that

θε ≥ θ∗ε a.e. in Q. (7.1)

Proof. Let us take into account relation (4.4)3. One has

∂tθε − ∂xxθε = −∂tχεθε + (∂tχε)2 =: aθε + b.

Now, owing to regularity (4.4)2, we easily deduce a, b ∈ L∞(Q) and b ≥ 0 a.e.
in Q. Let us set θ∗ = min θ0 (recall that θ0 ∈ V ) and C5,ε = ‖a‖L∞(Q). It
suffices to multiply (4.4)3 by the function ϑ := (θε− θ∗e−C5,εt)− ∈ L2(Q) and
take the integral over Qt for t ∈ (0, T ). We obtain

∫ t

0

∫

Ω

(
∂t(θ∗e−C5,εs − ϑ)ϑ− ϑ2

x − a(θ∗e−C5,εs − ϑ)ϑ
)
dxds ≥ 0,

hence

1
2
‖ϑ(t)‖2 +

∫ t

0

∫

Ω

(
|∂xϑ(x, s)|2 + θ∗(C5,ε + a(x, s))e−C5,εsϑ

)
dxds

≤ 1
2
‖ϑ(0)‖2 + C5,ε

∫ t

0

‖ϑ(s)‖2ds.

Since ϑ(0) = 0, an application of the Gronwall lemma implies ϑ = 0 a.e. on
Q. Hence relation (7.1) is proved with θ∗ε := θ∗e−C5,εT

8. A priori estimates

We are now interested in deducing some estimates for (θε, χε), independent of
the parameter ε. Henceforth, let C denote any constant, possibly depending
on the data, but not on ε. Of course, C may vary from line to line.

8.1 First estimate. Let us multiply (4.4)3 by 1 and integrate over Qt.
Moreover, we multiply (4.4)4 by ∂tχε and integrate over Qt. Taking the sum
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of the resulting expressions and performing some cancellations, we obtain

∫

Ω

θε(t) +
1
2
‖∂xχε(t)‖2 +

∫

Ω

ϕε(χε(t))

≤
∫

Ω

θ0 +
1
2
‖∂xχ0‖2 +

∫

Ω

ϕε(χ0) + θc

∣∣∣∣
∫

Ω

(χε(t)− χ0)
∣∣∣∣

≤
∫

Ω

ϕ(χ0) + θc‖χε(t)‖L1(Ω) + C

(8.1)

where we also used assumptions (3.1)3−4 and relation (4.2). In order to control
the right-hand side of (8.1) it suffices to recall (3.1)5 and to observe that (see
(4.3))

θc‖χε(t)‖L1(Ω) ≤
C4

4
‖χε(t)‖2 + C ≤ 1

2

∫

Ω

ϕε(χε(t)) + C

whenever ε is small enough. Hence, moving from (7.1) we readily deduce

‖θε‖L∞(0,T ;L1(Ω))

‖χε‖L∞(0,T ;V )

‖ϕε(χε)‖L∞(0,T ;L1(Ω))




≤ C (8.2)

at least for sufficiently small ε.

8.2 Second estimate. Let us multiply equation (4.4)3 by the function − 1
θε

.
The latter choice turns out to be admissible due to (7.1) since − 1

θε
∈ L∞(QT ).

Moreover, we integrate on Qt, and exploit (3.1)3 and (8.2)1 in order to get

−
∫

Ω

ln(θε(t)) +
∫∫

Qt

( (∂xθε)2

θ2
ε

+
∂tχ

2
ε

θε

)

≤ −
∫

Ω

ln(θ0) +
∫∫

Qt

∂tχε

≤ −
∫

Ω

ln(θ0) +
1
2

∫∫

Qt

(∂tχ
2
ε

θε
+ θε

)

≤ C +
1
2

∫∫

Qt

∂tχ
2
ε

θε
.

Of course, the first term in the latter left-hand side is bounded by means of
(8.2)1. Then, the bound (8.2)1 and the continuity of the inclusion W 1,1(Ω) ⊂
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L∞(Ω) entail in particular
∫ T

0

‖θ‖L∞(Ω) =
∫ T

0

‖θ 1
2 ‖2L∞(Ω)

≤ C

∫ T

0

(‖∂x(θ
1
2 )‖2L1(Ω) + ‖θ‖2L1(Ω)

)

≤ C

(
1 +

∫ T

0

(∫

Ω

∂xθ

θ
1
2

)2
)

≤ C

(
1 +

∫ T

0

(∥∥∥∂xθ

θ

∥∥∥ ‖θ 1
2 ‖

)2
)

≤ C

(
1 +

∫ T

0

∥∥∥∂xθ

θ

∥∥∥
2
)

≤ C.

Hence
‖θε‖L1(0,T ;L∞(Ω)) ≤ C

and finally, by interpolation with (8.2)1,

‖θε‖L2(0,T ;H) ≤ C. (8.3)

8.3 Third estimate. Taking into account (8.3) it is now a standard matter
to choose v = ∂tχε in (4.4)4, to integrate on Qt, to exploit the monotonicity
of βε and to obtain the bound

‖χε‖H1(0,T ;H) ≤ C. (8.4)

8.4 Fourth estimate. We multiply (4.4)3 by J−1∂tθε in the duality pairing
between V ′ and V and take the integral with respect to time. Moreover, let
us differentiate (4.4)4 with respect to t, multiply it by ∂tχε and integrate over
Qt. Finally, we add the resulting expressions and, thanks to the monotonicity
of βε, we obtain

‖∂tθε‖2L2(0,t;V ′) +
1
2
‖θε(t)‖2 +

1
2
‖∂tχε(t)‖2 + ‖∂xtχε‖2L2(0,t;H)

≤ 1
2
‖θ0‖2 +

1
2
‖∂tχε(0)‖2 +

∫ t

0

|〈θε, J
−1∂tθε〉|+

∫ t

0

|〈θε∂tχε, J
−1∂tθε〉|

+
∫ t

0

|〈(∂tχε)2, J−1∂tθε〉|+
∫ t

0

|(∂tθε, ∂tχε)|.
(8.5)



348 F. Luterotti and U. Stefanelli

We now estimate the integrals in the right-hand side herein. Using (2.1), the
definition of J and (2.2) we get

∫ t

0

|〈θε, J
−1∂tθε〉| ≤

∫ t

0

‖θε‖V ′‖J−1∂tθε‖V

≤ C

∫ t

0

‖θε‖2 +
1
8
‖∂tθε‖2L2(0,t;V ′)

∫ t

0

|〈θε∂tχε, J
−1∂tθε〉| ≤

∫ t

0

‖θε∂tχε‖V ′‖J−1∂tθε‖V

≤ C1

∫ t

0

‖θε∂tχε‖L1(Ω)‖∂tθε‖V ′

≤ 2C2
1

∫ t

0

‖θε‖2‖∂tχε‖2 +
1
8
‖∂tθε‖2L2(0,t;V ′)

∫ t

0

|〈(∂tχε)2, J−1∂tθε〉| ≤
∫ t

0

‖(∂tχε)2‖V ′‖J−1∂tθε‖V

≤ C1

∫ t

0

‖(∂tχε)2‖L1(Ω)‖∂tθε‖V ′

≤ 2C2
1

∫ t

0

‖∂tχε‖4 +
1
8
‖∂tθε‖2L2(0,t;V ′)

∫ t

0

|(∂tθε, ∂tχε)| ≤
∫ t

0

‖∂tθε‖V ′‖∂tχε‖V

≤ 1
2
‖∂tχε‖2L2(0,t;V ) +

1
2
‖∂tθε‖2L2(0,t;V ′).

Taking these estimates into account, relation (8.5) becomes

1
8
‖∂tθε‖2L2(0,t;V ′) +

1
2
‖θε(t)‖2 +

1
2
‖∂tχε(t)‖2 +

1
2
‖∂xtχε‖2L2(0,t;H)

≤ 1
2
‖θ0‖2 +

1
2

∥∥∂xxχ0 − βε(χ0) + θ0 − θc

∥∥2 +
1
2

∫ t

0

‖∂tχε‖2

+ C

∫ t

0

‖θε‖2 + C2
1

∫ t

0

‖θε‖4 + 3C2
1

∫ t

0

‖∂tχε‖4.

We remark that thanks to (3.1)5 and (4.1) we have ‖βε(χ0)‖ ≤ C. Owing to
(8.3) - (8.4) we are now in the position of applying the Gronwall lemma in
order to conclude that the upper bounds

‖θε‖H1(0,T ;V ′)∩L∞(0,T ;H)

‖χε‖W 1,∞(0,T ;H)∩H1(0,T ;V )

}
≤ C (8.6)
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hold.

8.5 Fifth estimate. We multiply (4.4)4 by −∂xxχε and integrate over Qt

obtaining

1
2
‖∂xχε(t)‖2 + ‖∂xxχε‖2L2(0,t;H) +

∫∫

Qt

β′ε(χε)|∂xχε|2

≤ 1
2
‖∂xχ0‖2 + ‖θε‖2L2(0,t;H) + θ2

c`T +
1
2
‖∂xxχε‖2L2(0,t;H).

Thus, recalling (3.1)4 and the monotonicity of βε and taking into account
standard elliptic estimates, we deduce the bound

‖χε‖L2(0,T ;W )∩L∞(0,T ;V ) ≤ C. (8.7)

8.6 Sixth estimate. We multiply (4.4)3 by ∂tθε and integrate over Qt getting

‖∂tθε‖2L2(0,t;H) +
1
2
‖∂xθε(t)‖2

≤ 1
2
‖∂xθ0‖2 +

1
4
‖∂tθε‖2L2(0,t;H) + ‖∂tχε‖2L∞(0,t;H)‖∂tχε‖2L2(0,t;L∞(Ω))

+
1
4
‖∂tθε‖2L2(0,t;H) +

∫ t

0

‖∂tχε‖2‖θε‖2L∞(Ω).

Hence, thanks to (2.1), (3.1)3 and (8.6)2, the Gronwall lemma allows us to
deduce the bound

‖θε‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ C. (8.8)

8.7 Further estimates. By comparison in (4.4)3 and owing to (8.6)2, (8.8)
and standard elliptic estimates, we obtain the bound

‖θε‖L2(0,T ;W ) ≤ C (8.9)

while from (4.4)4 (thanks to (8.6) - (8.7)) the information is

‖βε(χε)‖L2(0,T ;H) ≤ C. (8.10)
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9. Passage to the limit

Taking into account well-known compactness results, bounds (8.6)2 and (8.7)
- (8.10) allow us to deduce the existence of a triplet of functions (θ, χ, η) such
that (possibly passing to not relabeled subsequences) the following conver-
gences hold:

θε −→ θ weakly in H1(0, T ;H) ∩ L2(0, T ; W )

θε −→ θ weakly star in L∞(0, T ; V )

χε −→ χ weakly in H1(0, T ;V ) ∩ L2(0, T ;W )

χε −→ χ weakly star in W 1,∞(0, T ;H)

βε(χε) −→ η weakly in L2(0, T ;H)





. (9.1)

Moreover, from (8.6)2, (8.7) - (8.8) and the generalized Ascoli theorem (see,
e.g., [12: Corollary 4]) we may also infer the convergences

θε −→ θ strongly in C0([0, T ];H) ∩ L2(0, T ;V )

χε −→ χ strongly in C0([0, T ]; V )

}
(9.2)

Let us stress that owing to (7.1) convergence (9.2)1 entail that (3.2)7 holds.
Hence, we can pass to the limit in (4.4)4 and see that properties (3.2)1−3 along
with (3.2)5 are fulfilled by the triplet (θ, χ, η). As for the interpretation of η, we
observe that relations (9.1)5 and (9.2)2 allow us to use [3: p. 42/Proposition
1.1] which readily yields (3.2)6.

Our next goal is to pass to the limit in (4.4)3. We remark that from
(9.1)1,3−4 and (9.2)1 we achieve

θε∂tχε −→ θ∂tχ weakly star in L∞(0, T ;H).

The critical term is (∂tχε)2. We will prove that

lim
ε→0

∫∫

QT

(∂tχε)2 =
∫∫

QT

(∂tχ)2. (9.3)

Let us multiply (4.4)4 by ∂tχε, integrate over QT , and obtain

∫∫

QT

(∂tχε)2 = −1
2
‖∂xχε(T )‖2 +

1
2
‖∂xχ0‖2

+
∫∫

QT

(θε − θc)∂tχε −
∫

Ω

ϕε(χε(T )) +
∫

Ω

ϕε(χ0).
(9.4)
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We are now forced to discuss a technical argument about the convergence
of convex functionals. Indeed, the functional induced by ϕε on H, namely

Φε(v) =
∫

Ω

ϕε(v) dx (v ∈ H)

turns out to converge in the sense of Mosco [1: p. 354/Proposition 3.56] in H
to the functional

Φ(v) =
{ ∫

Ω
ϕ(v) dx if v ∈ H,ϕ(v) ∈ L1(Ω)

+∞ otherwise.

In particular, owing to (9.2)2 one has
∫

Ω

ϕ(χ(T )) ≤ lim sup
ε→0

∫

Ω

ϕε(χε(T )).

Hence, taking into account the latter relation, (4.2), (9.1)3 and (9.2) and
passing to the limsup as ε → 0 of both sides of (9.4) we infer

lim sup
ε−→0

∫∫

QT

(∂tχε)2 ≤ −1
2
‖∂xχ(T )‖2 +

1
2
‖∂xχ0‖2

+
∫∫

QT

(θ − θc)∂tχ−
∫

Ω

ϕ(χ(T )) +
∫

Ω

ϕ(χ0)

=
∫∫

QT

(∂tχ)2

and relation (9.3) is a straightforward consequence of the lower semicontinuity
of the norm. Finally, owing to (9.3) we readily get ∂tχε → ∂tχ strongly in
L2(0, T ; H). Hence, we easily pass to the limit in equation (4.4)3 obtaining
(3.2)4. The proof of Theorem 3.3 is complete
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