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A Modified and a Finite Index Weber Transforms

Fadhel Al-Musallam and Vu Kim Tuan

Abstract. This paper introduces, by way of constructing, specific finite and infinite
integral transforms with Bessel functions Jν and Yν in their kernels. The infinite
transform and its reciprocal look deceptively similar to the known Weber transform
and its reciprocal, respectively, but fundamentally differ from them. The new trans-
form enjoys an operational property that makes it useful for applications to some
problems in differential equations with non-constant coefficients. The paper gives
a characterization of the image of some spaces of square integrable functions with
respect to some measure under the infinite and finite transforms.
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1. Introduction

Solutions of the Bessel differential equation

x2 d2y

dx2
+ x

dy

dx
+ (x2 − ν2)y = 0

are known as Bessel functions. There is a great variety of linear integral trans-
forms whose kernels are Bessel functions. The transforms may be made over
either a bounded interval or over a half line, and involve various boundary con-
ditions. An extensive table of integral transforms involving Bessel functions
in their kernels can be found, for example, in [7]. The best known transform
of this kind is the singular Hankel transform

(Hf)(λ) =
∫ ∞

0

xJν(λx)f(x) dx
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that applies to functions f defined over the positive half of the real line R.
Here Jν denotes the Bessel function of the first kind of order ν and the symbols
R and R+ denote the set of all real numbers and the set of all positive real
numbers, respectively. The transform H corresponding to a fixed parameter
ν replaces the differential form

D =
d2

dx2
+

1
x

d

dx
− ν2

x2

on the half-line x > 0 by −λ2H(y), that is

H(Dy) = −λ2H(y). (1)

This operational property is principle one for applications of the transform
to problems in differential equations. Another linear transform whose kernel
involves Bessel functions, and that applies to functions f defined on an interval
of the form [a,∞) with a > 0 and that also satisfies operational property (1)
is the so-called Weber transform

(Wf)(s) =
∫ ∞

a

√
x
[
Yν(sa)Jν(sx)− Jν(sa)Yν(sx)

]
f(x) dx (2)

where Yν denotes the Bessel function of the second kind of order ν. The
Weber transform can be applied, for example, to a heat process problem in a
radial-symmetric region a ≤ r < ∞. Its solution uses the inverse transform of
W which has the form

f(x) =
∫ ∞

0

√
x

Yν(sa)Jν(sx)− Jν(sa)Yν(sx)
J2

ν (sa) + Y 2
ν (sa)

s{(Wf)(s)} ds. (3)

Throughout the paper we shall let

dµ(s) =
s

J2
s (sa) + Y 2

s (sa)
ds

and use this notation in all the proofs. However, we shall display dµ(s) ex-
plicitly in the statements of lemmas, theorems, and corollaries.

In this paper we shall first establish the existence of yet another linear
integral transform with Bessel functions in its kernel that applies to functions
on a half-line [a,∞) (a > 1). More specifically, the transform we derive is

(Wf)(s) =
∫ ∞

a

x2 − 1
x

[
Ys(sa)Js(sx)− Js(sa)Ys(sx)

]
f(x) dx. (4)
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We further show that its reciprocal has the form

f(x) =
∫ ∞

0

Ys(sa)Js(sx)− Js(sa)Ys(sx)
J2

s (sa) + Y 2
s (sa)

s{(Wf)(s)} ds. (5)

The pair of transforms (4) - (5) fundamentally differs from the Weber trans-
form and its inverse in that the orders of the Bessel functions in the kernels
are not fixed, and in the reciprocal transform (5) the order is the variable
of integration. Integral transforms of type (5) are called index transforms.
Details about many other index transforms can be found in [11]. Thus we
shall call Wf the modified Weber transform of f , and the inverse transform
the index Weber transform.

The modified Weber transform turns out to have an operational property
similar to that of Hankel and Weber transforms. In fact, we shall show in
Section 2 that it resolves the differential form

x

x2 − 1
d

dx
x

d

dx
=

x2

x2 − 1
d2

dx2
+

x

x2 − 1
d

dx
,

that is
W

({ x

x2 − 1
d

dx
x

d

dx

}
f
)
(s) = −s2(Wf)(s)

provided that limx→a+ f(x) = 0. The modified Weber transform W can be
applied to solve some boundary value problems. For instance, consider the
equation

∂2u

∂x2
+

∂2u

∂y2
= k

(
1− 1

r2

)
u + f(r) (r2 = x2 + y2, k > 0)

in the exterior of the circle x2+y2 = a2 with the boundary condition u
∣∣
r=a

= 0.
This problem can be reduced to the form

1
r

d

dr

(
r
dv

dr

)
= k

(
1− 1

r2

)
v + f(r) (a < r < ∞)

v(a) = 0



 (v(r) = u(x, y)). (6)

Thus { r

r2 − 1
d

dr
r

d

dr

}
v − kv =

r2

r2 − 1
f.

Since W( r
r2−1

d
dr r d

drv) = −s2Wv we obtain

Wv = − 1
s2 + k

W
( r2

r2 − 1
f
)
.
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Applying the inverse transform (5) to both sides resolves v and solves the
problem. Notice that the Weber transform (2) would not apply to equation
(6) due to the non-constant coefficient 1 − 1

r2 of v. Section 2 is principally
devoted to detail the technical steps of deriving the modified and index We-
ber transforms and to establish the basic operational property we mentioned
earlier.

In many instances one is interested to describe or to characterize the image
of certain subspaces under a given transform. A unified approach had been
developed in [9, 10] to handle a large class of integral transforms arising from
singular Sturm-Liouville problems. In particular, the image under transform
(3) of functions in L2

(
R+, dµ(s)

)
(ν fixed) that have compact support and

those that vanish in a neighborhood of a point λ0 ∈ [0,∞) have been fully
accounted for in [9, 10]. In Section 3 we turn our attention to the study of
the finite index Weber transform that arises from restricting the index Weber
transform (5) to functions F acting on an interval of the form (0, A) with
A > 0. We specifically give a description of the image of L2

(
(0, A); dµ(s)

)
under the finite index Weber transform. The reader is referred to ([2, 3,
9, 10] for characterization of the image of L2

(
(0, A); dρ

)
(A > 0) for some

measure dρ under various integral transforms. It is worth remarking that,
in general, it is much harder to describe the image of L2(dρ) under a finite
integral transform (see [6, 10]) than under an infinite integral transform (see
[5, 8]).

2. The modified Weber transform

In this section we derive the modified Weber transform and its reciprocal, the
index Weber transform, and make precise the space of functions on which they
act on. This is the content of Theorem 1 below. Theorem 2 gives equivalent
conditions under which a basic operational property will hold.

Theorem 1. Fix a > 1 and set I0 = [a,∞). Then the mapping f →Wf
given by

F (s) = (Wf)(s) =
∫ ∞

a

x2 − 1
x

[
Ys(sa)Js(sx)− Js(sa)Ys(sx)

]
f(x) dx (7)

defines an isometric transform from L2(I0,
x2−1

x dx) onto L2

(
R+, s

J2
s (sa)+Y 2

s (sa)ds
)

and thus the Parseval identity

∫ ∞

a

|f(x)|2 x2 − 1
x

dx =
∫ ∞

0

s|F (s)|2
J2

s (sa) + Y 2
s (sa)

ds
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holds. Moreover, the inverse transform is given by

f(x) =
∫ ∞

0

Ys(sa)Js(sx)− Js(sa)Ys(sx)
J2

s (sa) + Y 2
s (sa)

sF (s) ds. (8)

The integrals in (7) and (8) are understood to exist in the sense of mean
convergence, that is

lim
N→∞

∫ ∞

0

|F (s)− FN (s)|2dµ(s) = 0

lim
M→∞

∫ ∞

a

|f(x)− fM (x)|2 x2 − 1
x

dx = 0

where

FN (s) =
∫ N

a

x2 − 1
x

[
Ys(sa)Js(sx)− Js(sa)Ys(sx)

]
f(x) dx

fM (x) =
∫ M

0

[
Ys(sa)Js(sx)− Js(sa)Ys(sx)

]
F (s) dµ(s).

We shall expound upon the proof of the theorem before starting it. Con-
sider a second order differential equation of the form

A(x)
d2Y

dx2
+ B(x)

dY

dx
+ λY = 0 (x0 ≤ x < ∞)

where it is assumed that A(x) > 0 and twice differentiable, and B(x) is
differentiable. Set

r(x) = 4
√

A(x) exp
(
− 1

2

∫
B(x)
A(x)

dx

)
.

The change of variables

t = γ(x) :=
∫

dx√
A(x)

ensures that if y = y(t) is twice differentiable, then one has

{
A(x)

d2

dx2
+ B(x)

d

dx

}
r(x)y = r(x)

{
d2

dt2
− q(t)

}
y (9)

where

q(t) =
1
4
β2(t)+

1
2

dβ(t)
dt

and β(t) =
1√
A(x)

{
B(x)−1

2
dA(x)

dx

}
(x = γ−1(t)).
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For shortness we shall let

L =
d2

dt2
− q(t) and D = A(x)

d2

dx2
+ B(x)

d

dx
.

Then (9) will read as
(
D

{
r(x)y(γ(x))

})
(x) = r(x){Ly}(γ(x)).

If f is twice differentiable with respect to x, then setting y(t) = f(γ−1(t))
r(γ−1(t)) in

the above relation gives

(Df)(x) = r(x)
{

L

(
f(γ−1(t))
r(γ−1(t))

)}
(γ(x)).

More generally, for any n ∈ N0, Dnf exists if and only if Ln
( f(γ−1(t))

r(γ−1(t))

)
exists.

In this case

(Dnf)(x) = r(x)
{

Ln

(
f(γ−1(t))
r(γ−1(t))

)}
(γ(x)) (n ∈ N0). (10)

If Y = Y (x) is a solution for

(D + λ)Y = 0, (11)

then

y(t) =
Y (γ−1(t))
r(γ−1(t))

(12)

is a solution for
(L + λ)y = 0. (13)

In the reverse direction, if y = y(t) is a solution for equation (13), then
Y (x) = r(x)y(γ(x)) is a solution for equation (11).

Specializing the above proceedings to the differential equation

x2

x2 − 1
d2y

dx2
+

x

x2 − 1
dy

dx
+ λy = 0 (a ≤ x < ∞) (14)

gives

r(x) =
1

4
√

x2 − 1

t = γ(x) =
∫ √

x2 − 1
x

dx =
√

x2 − 1− sec−1 x (a ≤ x < ∞) (15)

D =
x2

x2 − 1
d2

dx2
+

x

x2 − 1
d

dx
=

x

x2 − 1
d

dx
x

d

dx
(16)
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and

L =
d2

dt2
− q(t) (17)

where

q(t) =
−x2(x2 + 4)
4(x2 − 1)3

(x = γ−1(t)). (18)

Thus if Dnf is well-defined, then (10) will read as

{Dnf}(x) = (x2 − 1)−
1
4
(
Ln

{
4
√

[γ−1(t)]2 − 1 f(γ−1(t))
})

(γ(x)). (19)

Put t0 = γ(a). Since for any measurable function f on I0

∫ ∞

a

|f(x)|2 x2 − 1
x

dx =
∫ ∞

t0

∣∣( 4
√

[γ−1(t)]2 − 1 f(γ−1(t))
)
(t)

∣∣2dt

it follows that

f ∈ L2(I0,
x2−1

x dx) ⇐⇒ 4
√

[γ−1(·)]2 − 1 f(γ−1(·)) ∈ L2(t0,∞).

In particular, relation (19) ensures that if Dnf exists for any n ∈ N0, then

Dnf ∈ L2(I0,
x2−1

x dx) ⇐⇒ Ln
{

4
√

[γ−1(·)]2 − 1 f(γ−1(·))} ∈ L2(t0,∞)

and in this case
∫ ∞

a

|Dnf |2 x2 − 1
x

dx =
∫ ∞

t0

∣∣Ln
(

4
√

[γ−1(t)]2 − 1 f(γ−1(t))
)∣∣2dt.

Henceforth, and for the rest of this paper, the symbols D and L will always
denote the operators defined in (16) and (17), respectively, and q will be as in
(18). Moreover, the variables t and x are understood to be related as in (15).

Let ϕ = ϕ(t, λ) and θ = θ(t, λ) be the solutions of

(L + λ)y =
d2y

dt2
+ (λ− q(t))y = 0

that satisfy the initial conditions

ϕ(t0, λ) = 0

ϕ′(t0, λ) = −1

}
and

θ(t0, λ) = 1

θ′(t0, λ) = 0

}
.

Then there always exists a function m = m(λ), known as a Titchmarsh-Weyl
function [8], which is analytic in the upper half plane Im λ > 0 and such that

Ψ(t, λ) = θ(t, λ) + m(λ)ϕ(t, λ)
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is in L2(t0,∞) for each λ with Im λ > 0. Moreover, the function

ρ(λ) = − 1
π

lim
δ→0+

∫ λ

0

Imm(u + iδ) du (λ ∈ R) (20)

is monotone increasing on R, and thus defines a Lebesgue-Stieltjes measure
on R. Further, the mapping g → G given by

G(λ) =
∫ ∞

t0

ϕ(t, λ)g(t) dt
(
g ∈ L2(t0,∞)

)
(21)

defines an isometric transform from L2(t0,∞) onto L2(R, dρ), so that
∫ ∞

t0

|g(t)|2dt =
∫ ∞

−∞
|G(λ)|2dρ(λ), (22)

and the inverse transform is given by

g(t) =
∫ ∞

−∞
ϕ(t, λ)G(λ) dρ(λ). (23)

Because of relation (19) we shall be able to relate the theory concerning the
operator L, and eluded to above, to the operator D.

The proof of Theorem 1 is not particularly difficult. It fundamentally
revolves about the facts elucidated above; exhibits, somewhat, lengthy and
manipulative computations, and contains a very small amount of trickery. To
aid the reader in following the proof we list the steps involved in it.
1. Solving equation (14) and obtaining the general solution of the Sturm-

Liouville equation associated with it.
2. Obtaining the function ϕ = ϕ(t, λ).
3. Determining the Titchmarsh-Weyl function m(λ).
4. Determining explicitly the measure dρ(λ) and prove that dρ(λ) = 0 for

λ < 0.
5. Obtaining the modified and index Weber transforms.

Proof of Theorem 1. Step 1. Put λ = s2. Then the change of variables
z = sx gives dy

dx = sdy
dz and d2y

dx2 = s2 d2y
dz2 and transforms equation (14) into

z2 d2y

dz2
+ z

dy

dz
+ (z2 − s2)y = 0.

Two linearly independent solutions to the last equation are the Bessel func-
tions Js(z) and Ys(z). Therefore solutions to equation (14) are Js(sx) and
Ys(sx) with Wronskian [1]

W
(
Js(·), Ys(·)

)
(u) =

2
πu

. (24)
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Moreover, because of relation (12) 4
√

x2 − 1Js(sx) and 4
√

x2 − 1Ys(sx) (x =
γ−1(t)) are two linearly independent solutions of the equation

(L + λ)y =
d2y

dt2
+ (λ− q(t))y = 0 (t0 ≤ t < ∞). (25)

Thus its general solution is given by

y(t, λ) = 4
√

x2 − 1
[
AλJs(sx) + BλYs(sx)

]
(x = γ−1(t)) (26)

where Aλ and Bλ are arbitrary constants that may depend on λ.
Step 2. Since

d

dt
4
√

x2 − 1 =
x

2
(x2 − 1)−

3
4
dx

dt
=

x2

2(x2 − 1)
5
4

d

dt
Js(sx) =

sx√
x2 − 1

J ′s(sx)

d

dt
Ys(sx) =

sx√
x2 − 1

Y ′
s (sx)

where J ′s means dJs

dx and similarly for Y ′
s , differentiating y(t, λ) given in (26)

with respect to t results in

d

dt
y(t, λ) =

x2

2(x2 − 1)
3
2
y(t, λ) +

sx
4
√

x2 − 1

[
AλJ ′s(sx) + BλY ′

s (sx)
]
. (27)

Let ϕ(t, λ) be the solution of equation (25) such that ϕ(t0, λ) = 0 and ϕ′(t0, λ) =
−1. Thus from (26) - (27) we see that the boundary conditions on ϕ(t, λ) give
the system of equations

AλJs(sa) + BλYs(sa) = 0

AλJ ′s(sa) + BλY ′
s (sa) = −

4
√

a2 − 1
sa





which upon solving yields

Aλ =
4
√

a2 − 1Ys(sa)
sa W (Js(z), Ys(z))(sa)

=
π 4
√

a2 − 1
2

Ys(sa)

Bλ =
− 4
√

a2 − 1Js(sa)
sa W (Js(z), Ys(z))(sa)

= −π 4
√

a2 − 1
2

Js(sa)





where we used (24) for W
(
Js(z), Ys(z)

)
. Therefore,

ϕ(t, λ) =
π 4
√

a2 − 1
2

4
√

x2 − 1
[
Ys(sa)Js(sx)− Js(sa)Ys(sx)

]
. (28)
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Step 3. Since for any measurable function k on [t0,∞)
∫ ∞

t0

|k(t)|2dt =
∫ ∞

a

|k(γ(x))|2
√

x2 − 1
x

dx

and since 0 <
√

1− 1
a2 <

√
1− 1

x2 < 1 for a < x, it follows that

∫ ∞

a

|k(γ(x))|2dx ≥
∫ ∞

t0

|k(t)|2dt

=
∫ ∞

a

|k(γ(x))|2
√

x2 − 1
x

dx

≥
√

1− 1
a2

∫ ∞

a

|k(γ(x))|2dx.

Hence k ∈ L2(t0,∞) if and only if k(γ(·)) ∈ L2(a,∞).
Let θ = θ(t, λ) be the solution of equation (25) such that θ(t0, λ) = 1

and θ′(t0, λ) = 0 and let m = m(λ) be the Titchmarsh-Weyl function so that,
for each λ with Imλ > 0, Ψ(·, λ) = θ(·, λ) + m(λ)ϕ(·, λ) ∈ L2(t0,∞). We
could determine explicitly the form of the solution θ(·, λ), as we have done for
ϕ(·, λ), and then determine Ψ(·, λ) in terms of m(λ) and then use it finally
to obtain m(λ). This laborious effort, however, can be avoided, for from the
asymptotic formulas for the Bessel functions [1]

Jν(z) =
(

2
πz

) 1
2
[
cos

(
z − π

2 ν − π
4

)
+ e|Imz|O(|z|−1)

]
(|argz| < π) (29)

Yν(z) =
(

2
πz

) 1
2
[
sin

(
z − π

2 ν − π
4

)
+ e|Imz|O(|z|−1)

]
(|argz| < π) (30)

H(1)
ν (z) ∼ (

2
πz

) 1
2 ei(z−π

2 ν−π
4 ) (−π < argz < 2π)

as |z| → ∞ where H
(1)
ν = Jν + iYν it immediately follows that, for λ with

Im λ > 0, the linearly independent solutions 4
√

x2 − 1Js(sx) and 4
√

x2 − 1Ys(sx)
of equation (25) do not belong to L2(a,∞), while the solution y0(t, λ) =
4
√

x2 − 1H
(1)
s (sx) does. Thus the solutions of equation (25), which are in

L2(a,∞) for λ with Imλ > 0, are precisely the constant multiples of y0(·, λ).
Hence Ψ(·, λ) must be a multiple of y0(·, λ). Since Ψ(t0, λ) = 1 and dΨ

dt (t0, λ) =
−m(λ) we must have

m(λ) = −
dΨ
dt (t0, λ)
Ψ(t0, λ)

= −
dy0
dt (t0, λ)
y0(t0, λ)

.

From (27)

dy0

dt
(t0, λ) =

a2

2(a2 − 1)
3
2

y0(t0, λ) +
sa

4
√

a2 − 1

[
J ′s(sa) + iY ′

s (sa)
]
.



A Modified and a Finite Index Weber Transforms 325

Hence

m(λ) = − sa√
a2 − 1

{J ′s(sa) + iY ′
s (sa)

Js(sa) + iYs(sa)

}
− a2

2(a2 − 1)
3
2

(Im λ > 0). (31)

Since Ψ(·, λ) is a multiple of 4
√

x2 − 1H
(1)
s (sx) and Ψ(t0, λ) = 1, we have

Ψ(t, λ) =
1

4
√

a2 − 1H
(1)
s (sa)

4
√

x2 − 1H(1)
s (sx) (Im λ > 0). (32)

Step 4. Now as m = m(λ) had been determined, the next step is to
determine the measure dρ(λ). Formula (31) makes it clear that limδ→0+ m(λ+
iδ) = m(λ) for all 0 6= λ ∈ R so that m = m(λ) is continuously extendable
from the upper half-plane to the real λ-axis (λ 6= 0). Thus (20) is reduced to

dρ(λ) = − 1
π{Imm(λ)}dλ (0 6= λ ∈ R).

Suppose that λ > 0, that is s is real. Then Js(sa), Ys(sa), J ′s(sa), Y ′
s (sa) are

real quantities and
[
J ′s(sa) + iY ′

s (sa)
] [

Js(sa)− iYs(sa)
]

= J ′s(sa)Js(sa) + Ys(sa)Y ′
s (sa) + iW (Js, Ys)(sa)

= J ′s(sa)Js(sa) + Ys(sa)Y ′
s (sa) + i 2

πsa .

Hence

Imm(λ) =
−sa√
a2 − 1

Im
{J ′s(sa) + iY ′

s (sa)
Js(sa) + iYs(sa)

}

=
−2

π
√

a2 − 1
[
J2

s (sa) + Y 2
s (sa)

]
(λ > 0). (33)

Suppose that λ < 0 or, equivalently, s is purely imaginary, say s = iu with u
real. Then s̄ = −s, and with the aid of the relations

H(1)
ν (iz) = 2

πie
− 1

2 νπiKν(z), Kν(z) = Kν̄(z̄), K−ν(z) = Kν(z)

where Kν is the Macdonald function we obtain

s
{J ′s(sa) + iY ′

s (sa)
Js(sa) + iYs(sa)

}
= s

H
(1)′
s (sa)

H
(1)
s (sa)

= iu
H

(1)′
s (iua)

H
(1)
s (iua)

= iu
1
i

{
2
πie

− 1
2 sπiK ′

s(ua)
}

2
πie

− 1
2 sπiKs(ua)

= u
K ′

s(ua)
Ks(ua)

.
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Since
{K′

s(ua)
Ks(ua)

}
= K′

−s(ua)

K−s(ua) = K′
s(ua)

Ks(ua) ,
K′

s(ua)
Ks(ua) is real. Hence

Im m(λ) =
−a√
a2 − 1

Im s

{
J ′s(sa) + iY ′

s (sa)
Js(sa) + iYs(sa)

}
= 0 (λ < 0). (34)

Putting together (33) and (34) yields

dρ(λ) = − 1
π{Im m(λ)}dλ =

{
4

π2
√

a2−1
sds

J2
s (sa)+Y 2

s (sa) for λ > 0

0 for λ < 0.
(35)

Step 5. With ϕ(t, λ) as given in (28) and dρ(λ) as given in (35), for-
mula (21) will define a transform g → G from L2(t0,∞) onto L2(R+, dρ(λ)),
whose reciprocal is given by formula (23), and the Parseval identity (22) holds.
Armed with this information, we are now ready to deliver the statement of
the theorem. Let f ∈ L2(Ia, x2−1

x dx) and put

g(t) =
2

π 4
√

a2 − 1
4
√

(γ−1(t))2 − 1f(γ−1(t)). (36)

Then g belongs to L2(t0,∞) and

g(γ(x)) =
2

π 4
√

a2 − 1
4
√

x2 − 1f(x).

In fact, the assignment f → g defines a homeomorphism from L2(Ia, x2−1
x dx)

onto L2

(
t0,∞

)
. We define

(Wf)(s) = G(s2)

where G is the transform of g, as given in (36), under transform (21). It is
plain that the transform W is onto L2

(
R+, dµ(s)

)
. The change of variables

t = γ(x), the form of the solution ϕ(t, λ) as given by (28), formula (35) for
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dρ(λ) together with (36) give

(Wf)(s) =
∫ ∞

t0

g(t)ϕ(t, s2)dt

=
∫ ∞

a

g(γ(x))ϕ(γ(x), s2)
√

x2 − 1
x

dx

=
∫ ∞

a

x2 − 1
x

[
Ys(sa)Js(sx)− Js(sa)Ys(sx)

]
f(x) dx

f(x) =
π 4
√

a2 − 1
2 4
√

x2 − 1
g(γ(x))

=
π 4
√

a2 − 1
2 4
√

x2 − 1

∫ ∞

0

G(λ)ϕ(γ(x), λ) dρ(λ)

=
∫ ∞

0

G(s2)
[
Ys(sa)Js(sx)− Js(sa)Ys(sx)

]
dµ(s)

=
∫ ∞

0

{(Wf)(s)}[Ys(sa)Js(sx)− Js(sa)Ys(sx)
]
dµ(s)

and, finally,
∫ ∞

a

|f(x)|2 x2 − 1
x

dx =
∫ ∞

t0

∣∣ 4
√

(γ−1(t))2 − 1f(γ−1(t))
∣∣2dt

=
π2
√

a2 − 1
4

∫ ∞

t0

|g(t)|2dt

=
π2
√

a2 − 1
4

∫ ∞

0

|G(λ)|2dρ(λ)

=
∫ ∞

0

|(Wf)(s)|2dµ(s).

This ends the proof of Theorem 1

For f ∈ L2(I0,
x2−1

x dx) we call Wf as defined in (7) the modified Weber
transform of f . We call a function f ∈ L2(I0,

x2−1
x dx) the index Weber trans-

form of a function F ∈ L2

(
R+, dµ(s)

)
if f = W−1F , that is if relation (8)

holds between f and F .
To facilitate many of the proofs in this section, the interplay between the

operators L and D is emphasized. The following remark is of this nature.

Remark 1. It is clear from the proof of Theorem 1 that if f ∈ L2(I0,
x2−1

x dx)
and

g(t) =
2

π 4
√

a2 − 1
4
√

(γ−1(t))2 − 1f(γ−1(t)),
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then g ∈ L2(t0,∞),

(Wf)(s) =
∫ ∞

t0

ϕ(t, s2)g(t) dt

g(t) =
∫ ∞

0

G(λ)ϕ(t, λ) dρ(λ)





where G(λ) = (Wf)(
√

λ).

Moreover, G ∈ L2(R+, dρ(λ)). In particular, if Df is well-defined and belongs
to L2(I0,

x2−1
x dx), then

{W(Df)}(s) =
∫ ∞

t0

ϕ(t, s2)(Lg)(t) dt

since because of (19) applied with n = 1 we have

4
√

(γ−1(t))2 − 1
{{Df}(γ−1(t))

}
=

(
L

{
4
√

[γ−1(t)]2 − 1f(γ−1(t))
})

(t)

= π 4√a2−1
2 (Lg)(t).

Lemma 1. If g is any function such that g, Lg ∈ L2(t0,∞), then

lim
t→∞

ϕ(t, λ)g(t) = 0 = lim
t→∞

ϕ(t, λ)g′(t)

lim
t→∞

ϕ′(t, λ)g(t) = 0 = lim
t→∞

ϕ′(t, λ)g′(t).

Proof. From relation (15) between t and x we get
√

x2 − 1 − π
2 ≤ t =

γ(x) ≤ √
x2 − 1 < x and thus t = γ(x) →∞ if and only if x →∞. Hence the

definition of q in (18) implies

lim
t→∞

q(t) = lim
x→∞

−x2(x2 + 4)
4(x2 − 1)3

= 0.

We now turn our attention to the behavior of g and g′ at ∞. The function q
is bounded on (t0,∞) and therefore g′′ = qg + Lg ∈ L2(t0,∞). We have, by
a Hardy-Littlewood inequality [4: p. 187/Formula 259]

∫ ∞

t0

|g′(t)|2dt ≤ 2
( ∫ ∞

t0

|g(t)|2dt

) 1
2
( ∫ ∞

t0

|g′′(t)|2dt

) 1
2

.

Thus g′ ∈ L2(t0,∞) since g, g′′ ∈ L2(t0,∞), and therefore gg′ ∈ L1(t0,∞).
Now

2
∫ t

t0

g(u)g′(u) du =
∫ t

t0

d

du
g2(u) du = g2(t)− g2(t0)
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and the limit of the most left side exists as t →∞. Consequently, limt→∞ g2(t)
exists. But g2 ∈ L1(t0,∞), so this limit must be zero. Hence limt→∞ g(t) = 0.
Similarly, the relation

2
∫ t

t0

g′(u)g′′(u) du =
∫ t

t0

d

du
[g′(u)]2du = [g′(t)]2 − [g′(t0)]2

and the fact that g′g′′, g
′2 ∈ L1(t0,∞) show that limt→∞ g′(t) = 0. From

asymptotic expansion formulas (29) - (30) and formulas [1: p. 364/Formulas
9.2.11 - 9.2.12]

J ′ν(z) =
(

2
πz

) 1
2
[− sin(z − π

2 ν − π
4 ) + O(|z|−1)

]

Y ′
ν(z) =

(
2

πz

) 1
2
[
cos(z − π

2 ν − π
4 ) + O(|z|−1)

]



 (z →∞)

we see that

4
√

x2 − 1Js(sx) =
(

2
πs

) 1
2 4

√
1− 1

x2

[
cos(xa− π

2 s− π
4 ) + O(|x|−1)

]

4
√

x2 − 1Ys(sx) =
(

2
πs

) 1
2 4

√
1− 1

x2

[
sin(xa− π

2 s− π
4 ) + O(|x|−1)

]

x
4
√

x2 − 1
d

dx
Js(sx) =

(
2

πs

) 1
2 1

4

√
1− 1

x2

[− sin(sx− π
2 s− π

4 ) + O(|x|−1)
]

x
4
√

x2 − 1
d

dx
Ys(sx) =

(
2

πs

) 1
2 1

4

√
1− 1

x2

[
cos(sx− π

2 s− π
4 ) + O(|x|−1)

]
.

From the first two expansions it follows that ϕ(t, λ) is bounded as t → ∞,
and the last two expansions imply that ϕ′(t, λ) is bounded as t →∞ since

ϕ′(t, λ) =
x2

2(x2 − 1)
3
2
ϕ(t, λ)

+
π 4
√

a2 − 1
2

sx
4
√

x2 − 1

[
Ys(sa)J ′s(sx)− Js(sa)Y ′

s (sx)
]
.

Therefore the assertions hold

Associated with the operator L given in (17) is the Green function G(t, u, σ)
which is defined for a non-real complex number σ with Im σ > 0 as

G(t, u, σ) =
{

Ψ(t, σ)ϕ(u, σ) if t0 ≤ u ≤ t
Ψ(u, σ)ϕ(t, σ) if u > t ≥ t0
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where ϕ and Ψ are as in (28) and (32), respectively. The resolvent of g is the
function Rσg given by

(Rσg)(t) =
∫ ∞

t0

G(t, u, σ)g(u) du

= Ψ(t, σ)
∫ t

t0

ϕ(u, σ)g(u) du + ϕ(t, σ)
∫ ∞

t

Ψ(u, σ)g(u) du.

It is well-known [5, 8] that if g ∈ L2(t0,∞), then Rσg ∈ L2(t0,∞), Rσg is
twice differentiable and

(L + σ)Rσg = g. (37)

The resolvent function also has the integral representation [7: p. 52/Formula
3.7]

(Rσg)(t) =
∫ ∞

0

ϕ(t, λ)
G(λ)
σ − λ

dρ(λ). (38)

Theorem 2. Let f ∈ L2

(
I0,

x2−1
x dx

)
. Then the following assertions are

equivalent:

(i) (·)2(Wf)(·) ∈ L2

(
R+, s

J2
s (sa)+Y 2

s (sa)ds
)
.

(ii) limx→a+ f(x) = 0, Df is well-defined and Df ∈ L2

(
I0,

x2−1
x dx

)
.

(iii) Df is well-defined, Df ∈ L2

(
I0,

x2−1
x dx

)
and {W(Df)}(s) = −s2(Wf)(s).

Proof. The implication (iii)⇒ (i) is easy. Since if f, Df ∈ L2

(
I0,

x2−1
x dx

)
,

then Wf and W(Df) are well-defined and belong to L2

(
R+, dµ(s)

)
. But then

{W(Df)}(s) = −s2(Wf)(s) implies assertion (i). Thus we only need to show
that (i) ⇒ (ii) ⇒ (iii).

(i) ⇒ (ii): Suppose that (·)2(Wf)(·) ∈ L2

(
R+, dµ(s)

)
. Then the function

f1 defined by

f1(x) =
(W−1{s2Wf})(x)

=
∫ ∞

0

s2(Wf)(s)
[
Ys(sa)Js(sx)− Js(sa)Ys(sx)

]
dµ(s)

is well-defined and belongs to L2

(
I0,

x2−1
x dx

)
. Put

g(t) =
2

π 4
√

a2 − 1
4
√

(γ−1(t))2 − 1f(γ−1(t)) (39)

g1(t) =
2

π 4
√

a2 − 1
4
√

(γ−1(t))2 − 1f1(γ−1(t))
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and G(λ) = (Wf)(
√

λ). Then (see Remark 1) g, g1 ∈ L2(t0,∞) and G, (·)G(·) ∈
L2(R+, dρ(λ)). Moreover,

g(t) =
∫ ∞

0

ϕ(t, λ)G(λ) dρ(λ)

g1(t) =
∫ ∞

0

λG(λ)ϕ(t, λ) dρ(λ).

Since

lim
t→t0

g(t) = lim
t→t0

∫ ∞

0

ϕ(t, λ)G(λ) dρ(λ)

ϕ(t0, λ) = 0,

it is immediate that limt→t0 g(t) = 0 and consequently limx→a+ f(x) = 0. Fix
a non-real complex number σ with Im σ > 0. Then integral representation
(38) yields

g(t) =
∫ ∞

0

ϕ(t, λ)G(λ) dρ(λ)

=
∫ ∞

0

(σ − λ)ϕ(t, λ)
G(λ)
σ − λ

dρ(λ)

= σ

∫ ∞

0

ϕ(t, λ)
G(λ)
σ − λ

dρ(λ)−
∫ ∞

0

ϕ(t, λ)
λG(λ)
σ − λ

dρ(λ)

= σ(Rσg)(t)− (Rσg1)(t)

= Rσ(σg − g1)(t).

Because σg − g1 ∈ L2(t0,∞), it follows that g = Rσ(σg − g1) is twice differ-
entiable. Moreover, formula (37) gives (L + σ)g = (L + σ)Rσ(σg − g1) =
σg − g1. Thus Lg = −g1 and therefore Lg ∈ L2(t0,∞). Consequently,
Df ∈ L2

(
I0,

x2−1
x dx

)
.

(ii) ⇒ (iii): Assume that f ∈ L2

(
I0,

x2−1
x dx

)
, limx→a+ f(x) = 0 and Df

is well-defined and belongs to L2

(
I0,

x2−1
x dx

)
. The functions F = Wf and

H = W(Df) are well-defined and both belong to L2

(
R, dµ(s)

)
. Let g be as

in (39). Then limt→t0 g(t) = 0 and (see Remark 1)

F (s) =
∫ ∞

t0

ϕ(t, s2)g(t) dt (40)

H(s) =
∫ ∞

t0

ϕ(t, s2)(Lg)(t) dt. (41)
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We show that H(s) = −s2F (s). Choose a real sequences {tn} such that
t0 < tn < ∞, tn →∞ as n →∞ and

F (s) = lim
n→∞

∫ tn

t0

ϕ(t, s2)g(t) dt (42)

H(s) = lim
n→∞

∫ tn

t0

ϕ(t, s2)(Lg)(t) dt (43)

almost everywhere. This is possible since the integrals in (40) - (41) converge
in L2(R+, dρ)-norm, and this guarantees the existence of a sequence {tn} for
which (42) - (43) hold almost everywhere. Since (Lg)(t) = g′′(t)− q(t)g(t),

∫ tn

t0

ϕ(t, s2)(Lg)(t) dt =
∫ tn

t0

ϕ(t, s2)g′′(t) dt−
∫ tn

t0

q(t)ϕ(t, s2)g(t) dt.

Apply integration by parts to obtain

∫ tn

t0

ϕ(t, s2)g′′(t) dt =
∫ tn

t0

ϕ(t, s2)(g′(t))′dt

= ϕ(t, s2)g′(t)
∣∣tn

t0
−

∫ tn

t0

ϕ′(t, s2)g′(t) dt

= ϕ(tn, s2)g′(tn)−
{

ϕ′(t, s2)g(t)
∣∣tn

t0
−

∫ tn

t0

ϕ′′(t, s2)g(t) dt

}

= ϕ(tn, s2)g′(tn)− ϕ′(tn, s2)g(tn) +
∫ tn

t0

ϕ′′(t, s2)g(t) dt

where we used in the above computation ϕ(t0, s2) = 0 and limt→t0 g(t) = 0 in
the third and last line, respectively. Hence

∫ tn

t0

ϕ(t, s2)(Lg)(t) dt

= ϕ(tn, s2)g′(tn)− ϕ′(tn, s2)g(tn) +
∫ tn

t0

{
ϕ′′(t, s2)− q(t)ϕ(t, s2)

}
g(t) dt.

Since ϕ′′(t, s2)− q(t)ϕ(t, s2) = −s2ϕ(t, s2) we finally arrive at

∫ tn

t0

ϕ(t, s2)(Lg)(t) dt

= ϕ(tn, s2)g′(tn)− ϕ′(tn, s2)g(tn)− s2

∫ tn

t0

ϕ(t, s2)g(t) dt.

(44)
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By Lemma 1,

lim
n→∞

ϕ(tn, s2)g′(tn) = 0 = lim
n→∞

ϕ′(tn, s2)g(tn),

and because of (42) - (43), letting n →∞ in (44) yields
{
(W(Df)

}
(s) = H(s) = −s2F (s) = −s2(Wf)(s).

Theorem 2 is proved

The following corollary is a “hyper” version of Theorem 2 and will serve
a crucial role in Section 3.

Corollary 1. Let f ∈ L2

(
I0,

x2−1
x dx

)
. Then the following assertions are

equivalent:
(i) (·)n(Wf)(·) ∈ L2

(
R+, s

J2
s (sa)+Y 2

s (sa)ds
)

for any n ∈ N0.

(ii) Dnf is well-defined, Dnf ∈ L2

(
I0,

x2−1
x dx

)
and limx→a+(Dnf)(x) =

0 for any n ∈ N0.

(iii) Dnf is well-defined, Dnf ∈ L2

(
I0,

x2−1
x dx

)
and

{W(Dnf)
}
(s) =

(−s2)n(W f)(s) for any n ∈ N0.

Proof. (i) ⇒ (ii): Suppose that (·)n(Wf)(·) ∈ L2(R+, dµ(s)) for any
n ∈ N0. Let F = Wf and put Fn(s) = (−s2)nF (s). Then Fn ∈ L2(R+, dµ(s))
and fn = W−1Fn is well-defined and belongs to L2

(
I0,

x2−1
x dx

)
. Since

s2(Wfn)(s) = −(−s2)
n+1

F (s) = −Fn+1(s)

belongs to L2(R+, dµ(s)), Theorem 2 would apply for fn. Therefore limx→a+ fn(x) =
0, Dfn is well-defined and belongs to L2

(
I0,

x2−1
x dx

)
, and

{W(Dfn)
}
(s) = −s2(Wfn)(s) = Fn+1(s)

or, equivalently,
Dfn = fn+1. (45)

By iterating (45) and recognizing that f = f0 and D0f = f we obtain Dnf =
fn. Thus Dnf belongs to L2

(
I0,

x2−1
x dx

)
since fn does, and limx→a+(Dnf)(x) =

limx→a+ fn(x) = 0.

(ii)⇒ (iii): Assume for any n ∈ N0, Dnf is well-defined, Dnf ∈ L2(I0,
x2−1

x dx)
and limx→a+(Dnf)(x) = 0. Then Theorem 2 would apply in relation to the
function Dnf . Therefore (·)2{WDnf)}(·) ∈ L2(R+, dµ(s)) and, moreover,

{WDn+1f)}(s) = {W(D(Dnf))}(s) = −s2{W(Dnf)}(s) (n ∈ N0). (46)
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Iterating (46) we get {WDnf)}(s) = (−s2)n(Wf)(s) (n ∈ N0)

(iii)⇒ (i): If assertion (iii) holds, then clearly (·)2n(Wf)(·) ∈ L2(R+, dµ(s))
for any n ∈ N0. But then the function defined by [s2n + s2(n+1)](Wf)(s) be-
longs to L2(R+, dµ(s)), and since

[s2n + s2(n+1)] |(Wf)(s)| = s2n(1 + s2)|(Wf)(s)| ≥ 2s2n+1|(Wf)(s)|,

it follows that (·)2n+1(Wf)(·) ∈ L2(R+, dµ(s)) for any n ∈ N0. This completes
the proof

3. The finite index Weber transform

Let A be a fixed positive real number, but otherwise arbitrary. Associate with
each function F ∈ L2((0, A), dµ(s)) the function fA defined by

fA(x) =
∫ A

0

sF (s)
Ys(sa)Js(sx)− Js(sa)Ys(sx)

J2
s (sa) + Y 2

s (sa)
ds (a ≤ x < ∞). (47)

We will call fA the finite index Weber transform of F . Clearly, fA ∈ L2

(
I0,

x2−1
x dx

)
and ∫ ∞

a

|fA(x)|2 x2 − 1
x

dx =
∫ A

0

|F (s)|2 dµ(s).

This section is solely devoted to the description of the image of L2((0, A), dµ(s))
under transform (47). For this purpose we need the following

Lemma 2. Let (·)nF (·) ∈ L2

(
R+, s

J2
s (sa)+Y 2

s (sa) ds
)

for any n ∈ N0. Then

lim
n→∞

{ ∫ ∞

0

s4n|F (s)|2 s

J2
s (sa) + Y 2

s (sa)
ds

} 1
4n

= sup
s∈suppF

s.

Proof. The lemma is trivial if F = 0. Thus, first suppose that F 6= 0 has
compact support and let sups∈suppF s = A > 0. Then

∫ ∞

0

s4n|F (s)|2dµ(s) =
∫ A

0

s4n|F (s)|2dµ(s) ≤ A4n

∫ A

0

|F (s)|2dµ(s).

Hence

lim sup
n→∞

{∫ ∞

0

s4n|F (s)|2dµ(s)
} 1

4n

≤ A lim sup
n→∞

{ ∫ A

0

|F (s)|2dµ(s)
} 1

4n

= A.
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On the other hand, if 0 < ε < A = sups∈suppF s, then
∫ A

A−ε
|F (s)|2dµ(s) > 0.

Thus

lim inf
n→∞

{ ∫ ∞

0

s4n|F (s)|2dµ(s)
} 1

4n

≥ lim inf
n→∞

{ ∫ A

A−ε

s4n|F (s)|2dµ(s)
} 1

4n

≥ lim inf
n→∞

{
(A− ε)4n

∫ A

A−ε

|F (s)|2dµ(s)
} 1

4n

≥ A− ε.

Because ε > 0 is arbitrary, limn→∞
{ ∫∞

0
s4n|F (s)|2dµ(s)

}1/4n = A.
Suppose now that F 6= 0 has unbounded support. Then, for any N large

enough,
∫∞

N
|F (s)|2dµ(s) > 0. Consequently,

lim inf
n→∞

{ ∫ ∞

0

s4n|F (s)|2dµ(s)
} 1

4n

≥ lim inf
n→∞

{ ∫ ∞

N

s4n|F (s)|2dµ(s)
} 1

4n

≥ lim inf
n→∞

{
N4n

∫ ∞

N

|F (s)|2dµ(s)
} 1

4n

= N.

Letting N → ∞ we obtain limn→∞
{ ∫∞

0
s4n|F (s)|2dµ(s)

}1/4n = ∞. This
completes the proof

The next theorem is the main result of this section. It describes the image
of the space L2

(
(0, A), dµ(s)

)
under the finite index Weber transform.

Theorem 3. A function fA is the finite index Weber transform of a
function F ∈ L2

(
(0, A), s

J2
s (sa)+Y 2

s (sa)ds
)

if and only if the following is true:

(i) For any n ∈ N0, DnfA is well-defined, DnfA ∈ L2

(
I0,

x2−1
x dx

)
and

limx→a+ (DnfA)(x) = 0.

(ii) limn→∞ ‖DnfA‖
1
2n

L2(I0, x2−1
x dx)

≤ A.

Proof. We start with proving the “only if” part. Let F ∈ L2

(
(0, A), dµ(s)

)
.

Then its extension by 0 on (A,∞) yields a function F̃ ∈ L2(R+, dµ(s)) such
that (·)nF̃ (·) ∈ L2(R+, dµ(s)) for all n, suppF̃ ⊂ (0, A) and the index Weber
transform W−1F̃ is again fA. Thus Corollary 1 applies to fA. In particular,
assertion (ii) of Corollary 1 holds which is precisely item (i) of the lemma,
and for every n, assertion (iii) of Corollary 1 holds, namely, DnfA is well-
defined, belongs to L2

(
I0,

x2−1
x dx

)
and {W(DnfA)}(s) = (−s2)n(WfA)(s).
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Since WfA = F̃ , we have {W(DnfA)}(s) = (−s2)nF̃ (s) and by the Parseval
identity

‖DnfA‖L2(I0, x2−1
x dx)

= ‖W(DnfA)‖L2(R+,dµ(s)).

Hence

‖DnfA‖L2(I0, x2−1
x dx)

=
{ ∫ ∞

0

s4n|F̃ (s)|2dµ(s)
} 1

2

.

Therefore, Lemma 2 gives

lim
n→∞

‖DnfA‖
1
2n

L2(I0, x2−1
x dx)

= lim
n→∞

{ ∫ ∞

0

s4n|F̃ (s)|2dµ(s)
} 1

4n

= sup
s∈suppF̃

s ≤ A

which is condition (ii). This completes the proof of the “only if” part.
We prove now the “if” part of the statement. So assume that conditions (i)

and (ii) hold. Then because of (i) Corollary 1 applies and therefore, for all n ∈
N0, (·)n(WfA)(·) ∈ L2(R+, dµ(s)) and {W(DnfA)}(s) = (−s2)n(WfA)(s).
Put F̃ = WfA. Then the above relation gives

{ ∫ ∞

0

s4n|F̃ (s)|2dµ(s)
} 1

2

= ‖W(DnfA)‖L2(R+,dµ(s)) = ‖DnfA‖L2(I0, x2−1
x dx)

where the last equality follows since W is an isometry. Thus one can apply
Lemma 2 to obtain

sup
s∈suppF̃

s = lim
n→∞

{ ∫ ∞

0

s4n|F̃ (s)|2dµ(s)
} 1

4n

= lim
n→∞

‖DnfA‖
1
2n

L2(I0, x2−1
x dx)

≤ A.

Thus suppF̃ ⊂ (0, A) and the index Weber transform (8) turns out to be the
finite index Weber transform (47) of F = F̃ |[0,A], the restriction of F̃ to [0, A].
The theorem is proved
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