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Abstract. An integral equation and a related integral-differential equation of first
order over R+ with a quadratic integral term representing the so-called autocorrela-
tion of the unknown function is dealt with. For both equations the general solution
is constructed and estimated in the L2-norm. Further, the asymptotic behaviour
and the stability of the solution are investigated.
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1. Introduction

In stochastics and related applications quadratic integral equations occur
which contain the so-called autocorrelation

(Ap)(t) =
∫ ∞

0

p(s)p(s + t) ds (t > 0) (1.1)

of the unknown function p (which is often a probability density) (cf. [5]). In
our recent paper [6] (see also [7]) a procedure for solving the corresponding
integral equation of the second kind and a related integral-differential equation
is developed and special solution classes for the equations are treated in some
detail.
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In the present paper the (properly defined) general solutions of these equa-
tions are dealt with and investigated in a more complete manner. Under dif-
ferent assumptions on the right-hand side and its Fourier cosine transform
the asymptotic behaviour of the solutions at infinity is determined and the
L2- and L-norm of the Fourier cosine transform of the solution (and hence
the L2-norm and the supremum norm of the solution itself) are estimated.
Further, the stability of the solutions in the L2-norm is shown.

Solutions of the considered integral equation of the second kind can be
used for a regularization of the autocorrelation equation Ap = r [5].

2. Integral equation

We deal with the integral equation

p(t) +
∫ ∞

0

p(s)p(s + t) ds =
g(t)
2

(t > 0) (2.1)

under the assumption g ∈ L(R+) ∩ L2(R+) looking for solutions p ∈ L2(R+)
with Ap ∈ L2(R+). In the following, g and p are always real-valued functions.

We introduce the Fourier cosine and sine transform of p [4]

P (x) =
∫ ∞

0

p(t) cos xt dt ≡ Fcp

Q(x) =
∫ ∞

0

p(t) sin xt dt ≡ Fsp.

By p ∈ L2(R+) we have P, Q ∈ L2(R+). Further, we extend P as an even and
Q as an odd function to the real axis R so that P, Q ∈ L2(R). Applying the
Fourier cosine transformation to (2.1) we obtain the condition

|F̂ (x)|2 = Ĝ(x) (x ∈ R) (2.2)

(cf. [5, 6]) where F̂ (x) = 1 + P (x) + iQ(x) are the boundary values of the
holomorphic function in the upper half-plane Im z > 0

F̂ (z) = 1 +
∫ ∞

0

p(t)eitzdt (z = x + iy) (2.3)

Ĝ(x) = 1 + G(x), G(x) = (Fcg)(x). (2.4)

Problem (2.2) with solutions F̂ of form (2.3) where p ∈ L2(R+) is equivalent
to integral equation (2.1).
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By the assumption g ∈ L(R+) the function G is continuous on R and
G(x) → 0 for x → ±∞ so that Ĝ(x) → 1 for x → ±∞. From (2.2) the
necessary solvability condition Ĝ(x) ≥ 0 on R follows. Somewhat stronger,
we assume that Ĝ(x) > 0 on R.

We are looking for solutions p of equation (2.1) for which the function F̂
is continuous in Im z ≥ 0, has the limit 1 for z → ∞ uniformly in Im z ≥ 0
and F̂ (x) 6= 0 on R. Then F̂ has at most finitely many zeros in Im z > 0
which for real-valued function p are of the form

z0
k = i y0

k (k = 1, ..., K; y0
k > 0)

z1
j = xj + iyj , z2

j = −xj + i yj (j = 1, ..., L; xj , yj > 0).

Here every zero is counted corresponding to its multiplicity. These zeros can
be chosen arbitrarily in the following.

By taking the logarithm in (2.2) and applying the theory of Cauchy inte-
grals [1 - 3] the following solution of boundary value problem (2.2) for F̂ is
obtained (cf. [6]):

F̂ (z) = q0(z)q(z) exp Φ(z) (2.5)

where

q0(z) =
K∏

k=1

z − z0
k

z + z0
k

, q(z) =
L∏

j=1

(z − z1
j )(z − z2

j )

(z − z1
j )(z − z2

j )
(2.6)

Φ(z) = 2z
πi

∫ ∞

0

H(ξ)
ξ2 − z2

dξ, H(x) = 1
2 ln Ĝ(x). (2.7)

In view of the Plemelj-Sochozky formula from (2.5) the solution p = 2
πFcP of

equation (2.1) with

P (x) = −1 + Ĝ(x)1/2
[
Re(q0(x)q(x)) cos I(x) + Im(q0(x)q(x)) sin I(x)

]
(2.8)

follows where

I(x) = x
π

∫ ∞

0

ln Ĝ(ξ)
ξ2 − x2

dξ. (2.9)

We define this solution as the general solution of equation (2.1). The corre-
sponding expression to (2.8) for Q is given by

Q(x) = Ĝ(x)1/2
[
Im(q0(x)q(x)) cos I(x)−Re(q0(x)q(x)) sin I(x)

]
. (2.10)
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3. Asymptotic behaviour of the solution

Let us first have a look to the behaviour of the solution (2.8) for x → ∞.
In addition to Ĝ(x) > 0 on R+, we assume that G is a Hölder continuous
function on R+ with G(x) = O(x−δ) (δ > 1) as x → ∞. Then also H is
Hölder continuous with

H(x) = 1
2 ln[1 + G(x)] = O(x−δ) (3.1)

Ĝ(x)1/2 =
√

1 + G(x) = 1 + O(x−δ). (3.2)

Further,

2x
π

∫ ∞

0

H(ξ)
ξ2 − x2

dξ = − 2
π

1
x

∫ ∞

0

H(ξ) dξ + 2
π

1
x

∫ ∞

0

ξ2H(ξ)
ξ2 − x2

dξ

∫ ∞

0

ξ2H(ξ)
ξ2 − x2

dξ = 1
2

∫ ∞

0

f(η)
η − y

dη = o(1) (x →∞)

where y = x2, η = ξ2 and f(η) =
√

η H(
√

η) = O(η−γ) with γ = δ−1
2 > 0.

Therefore,

I(x) = −H0x
−1 + o(x−1), H0 = 2

π

∫ ∞

0

H(ξ) dξ. (3.3)

Finally,

q0(x)q(x) =
K∏

k=1

(x− i y0
k)2

x2 + (y0
k)2

L∏

j=1

(x− xj − i yj)2(x + xj − i yj)2

[(x− xj)2 + y2
j ][(x + xj)2 + y2

j ]

implying

Re(q0(x)q(x)) = 1− Zx−2 + O(x−4) = 1 + O(x−2) (3.4)
Im(q0(x)q(x)) = −Y x−1 + O(x−3) (3.5)

where

Y = 2
K∑

k=1

y0
k + 4

L∑

j=1

yj .

Z = 2
K∑

k=1

(y0
k)2 + 8

L∑

j=1

y2
j − 8

K∑

k=1

y0
k

L∑

j=1

yj + 4
K−1∑

k=1

K∑

l=k+1

y0
ky0

l + 16
L−1∑

j=1

L∑

m=j+1

yjym.
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In view of (3.2) - (3.5), from (2.8) with (2.9) we obtain

P (x) = −1 + [1 + O(x−δ)] [1 + O(x−2)] = O(x−λ) (3.6)

with λ = min{δ, 2} > 1. Hence P ∈ L(R+) ∩ L2(R+).
We remark that from (2.10) in analogous manner the asymptotic be-

haviour of Q
Q(x) ∼ (H0 − Y )x−1 (x →∞) (3.7)

follows so that Q ∈ L2(R+) but Q /∈ L(R+) if H0 6= Y . Further, the function
F̂ is bounded on Im z ≥ 0 with |F̂ (x)− 1| = |P (x)+ iQ(x)| ∈ L2(R) implying
representation (2.3) for F̂ by a well-known theorem of Paley and Wiener.
Finally, for the more specific asymptotic behaviour

G(x) ∼ g0x
−2 (x →∞) (3.8)

we get
P (x) ∼ p0x

−2 (x →∞) (3.9)

with p0 = g0
2 − Z − H2

0
2 + H0Y .

Theorem 3.1. For any g ∈ L(R+) ∩ L2(R+) with Hölder-continuous
Fourier cosine transform G = Fcg ∈ L2(R+) satisfying G(x) + 1 > 0 on R+

and G(x) = O(x−δ) (δ > 1) for x → ∞ equation (2.1) has the solution
p = 2

πFcP with P ∈ L(R+)∩L2(R+) given by (2.8) and satisfying (3.6). If G
fulfills (3.8), then P satisfies (3.9).

From P ∈ L(R+)∩L2(R+) it follows that p ∈ L2(R+) and p is a continuous
function on R+ with limit p(∞) = 0.

4. Estimation of the solution

We estimate the solution (2.8) under the additional assumption G(x) ≥ 0 on
R+. By [4: Theorem 124] there holds G ∈ L(R+) with G(x) > 0 on R+ if g is
bounded, convex downwards and steadily decreasing to zero as x → ∞. The
solution is decomposed in the form

P (x) = J1 + J2 + J3 + J4

where
J1 = −[1− cos I(x)]

J2 = (Ĝ(x)1/2 − 1) cos I(x)

J3 = Ĝ(x)1/2[Re(q0(x)q(x))− 1] cos I(x)

J4 = Ĝ(x)1/2Im(q0(x)q(x)) sin I(x).
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As in [5], J1 and J2 can be estimated using the Riesz theorem and the in-
equalities ln(1 + u) ≤ u and

√
1 + u− 1 ≤ u

2 for u ≥ 0. We have

‖J1‖2L2 =
∫ ∞

0

[1− cos I(x)]2dx ≤
∫ ∞

0

I2(x) dx

= 1
4

∫ ∞

0

ln2(1 + G(x))dx ≤ 1
4

∫ ∞

0

G2(x)dx = 1
4‖G‖2L2 (4.2)

‖J1‖L =
∫ ∞

0

[1− cos I(x)]dx ≤ 1
2

∫ ∞

0

I2(x)dx ≤ 1
8‖G‖2L2 (4.3)

and

‖J2‖2L2 =
∫ ∞

0

[
(G(x) + 1)1/2 − 1

]2
dx ≤ 1

4

∫ ∞

0

G2(x )dx = 1
4‖G‖2L2 (4.4)

‖J2‖L =
∫ ∞

0

[
(G(x) + 1)1/2 − 1

]
dx ≤ 1

2

∫ ∞

0

G(x)dx = 1
2‖G‖L. (4.5)

For estimating J3 and J4 we use the inequalities

|Re(q0(x)q(x))− 1| ≤ C1

1 + x2

|Im(q0(x)q(x))| ≤ C2x

1 + x2

(4.6)

where
C1 = supx∈R+

[1 + x2]
∣∣Re(q0(x)q(x))− 1

∣∣

C2 = supx∈R+

1 + x2

x

∣∣Im(q0(x)q(x))
∣∣

are finite by (3.4) - (3.5) and Im (q0(x)q(x)) = O(x) for x → 0. Further,

Ĝ(x)1/2 ≤ M = sup
x∈R+

(G(x) + 1)1/2 < ∞ (4.7)

due to the continuity of G on R+ and the limit G(∞) = 0. Hence we obtain
the estimates

‖J3‖2L2 ≤ M2C2
1

∫ ∞

0

dx

(1 + x2)2
= π

4 M2C2
1 (4.8)

‖J3‖L ≤ MC1

∫ ∞

0

dx

1 + x2
= π

2 MC1 (4.9)
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and

‖J4‖2L2 ≤ M2C2
2

∫ ∞

0

x2

(1 + x2)2
dx = π

4 M2C2
2 (4.10)

‖J4‖L ≤ MC2

∫ ∞

0

x

1 + x2
|I(x)| dx

≤ MC2

( ∫ ∞

0

x2

(1 + x2)2
dx

) 1
2
( ∫ ∞

0

I2(x) dx

) 1
2

≤ MC2

√
π

2

(
1
4

∫ ∞

0

G2(x) dx

) 1
2

=
√

π M
4 C2‖G‖L2 . (4.11)

From (4.1) and (4.2), (4.4), (4.8), (4.10), resp. (4.3), (4.5), (4.9), (4.11)
the estimations

‖P‖L2 ≤ ‖G‖L2 +
√

π
2 M(C1 + C2) (4.12)

‖P‖L ≤ 1
8‖G‖2L2 + 1

2‖G‖L + M
(

π
2 C1 +

√
π

4 C2‖G‖L2

)
(4.13)

follow. Also the Paley-Wiener conditions for representation (2.3) of F̂ are
fulfilled.

Theorem 4.1. For any g ∈ L(R+) ∩ L2(R+) with non-negative G =
Fcg ∈ L2(R+) equation (2.1) has the solution p = 2

πFcP ∈ L2(R+) with
P ∈ L2(R+) given by (2.8) satisfying estimation (4.12).

If, in addition, G ∈ L(R+), then also P ∈ L(R+) satisfying estimation
(4.13), and p is continuous on R+ with limit p(∞) = 0.

Theorem 4.1 generalizes [6: Theorem 1].

In avoiding the assumption G(x) ≥ 0 on R+ we further consider functions
G obeying an inequality of the form

− C0

a2
0 + x2

≤ G(x) ≤ C

a2 + x2
on R+ (4.14)

where a, a0 > 0 and C,C0 > 0 with C0 < a2
0 ensuring that G(x) + 1 > 0 on

R+. Then ∫ ∞

0

ln2(1 + G(x)) dx ≤ A2

where

A2 = max
{ ∫ ∞

0

ln2 (C + a2) + x2

a2 + x2
dx,

∫ ∞

0

ln2 (a2
0 − C0) + x2

a2
0 + x2

dx

}
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implying the estimations for J1

‖J1‖2L2 ≤ 1
4A2, ‖J1‖L ≤ 1

8A2. (4.15)

Further, ∣∣(G(x) + 1)1/2 − 1
∣∣ ≤ N(x)

where

N(x) = max
{√

(C + a2) + x2 −√a2 + x2

√
a2 + x2

,

√
a2
0 + x2 −

√
(a2

0 − C0) + x2

√
a2
0 + x2

}

with N(x) = O(x−2) for x → +∞. Hence for J2 the estimates

‖J2‖2L2 ≤ B2, ‖J2‖L ≤ D (4.16)

with the integrals B2 =
∫∞
0

N2(x) dx and D =
∫∞
0

N(x) dx hold.
The estimates for J3 and J4 are independent of the assumption G(x) ≥ 0.

Hence, for functions G fulfilling (4.14) we obtain the estimations

‖P‖L2 ≤ 1
2A + B +

√
π

2 M(C1 + C2) (4.17)

‖P‖L ≤ 1
8A2 + D + M

(
π
2 C1 +

√
π

4 C2‖G‖L2

)
(4.18)

with the constants M, C1, C2 from above and A,B,D from (4.15) - (4.16).

Theorem 4.2. For any g ∈ L(R+) ∩ L2(R+) with G = Fcg obeying
inequality (4.14) equation (2.1) has the solution p = 2

πFcP with P ∈ L(R+)∩
L2(R+) given by (2.8) satisfying estimations (4.17) − (4.18). The solution p
is continuous on R+ with limit p(∞) = 0.

We remark that analogously to (4.14) functions G satisfying − C0
(a2

0+x2)γ0 ≤
G(x) ≤ C

(a2+x2)γ where γ, γ0 > 1
2 can be dealt with, too.

5. Stability theorem

We investigate the stability of the solution p in L2(R+) for fixed zeros of F̂ .
Let gj ∈ L(R+)∩L2(R+) (j = 1, 2) with Gj = Fcgj satisfying the assumptions

Ĝj(x) = 1 + Gj(x) ≥ δ2
j > 0 on R+. (5.1)

The difference of the corresponding Fourier cosine transforms Pj = Fcpj of
the solutions pj (j = 1, 2) of (2.8) is given by

P1(x)− P2(x) = K1(x) + K2(x) (5.2)
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where

K1(x) =
[
Ĝ1(x)1/2 − Ĝ2(x)1/2

]

×
[
Re(q0(x)q(x)) cos I1(x) + Im(q0(x)q(x)) sin I1(x)

]

K2(x) = Ĝ2(x)1/2
{

Re(q0(x)q(x))
[
cos I1(x)− cos I2(x)

]

+ Im(q0(x)q(x))
[
sin I1(x)− sin I2(x)

]}

with

Ij(x) = x
π

∫ ∞

0

ln Ĝj(ξ)
ξ2 − x2

dξ (j = 1, 2).

There holds

Ĝ1(x)1/2 − Ĝ2(x)1/2 =
Ĝ1(x)− Ĝ2(x)

Ĝ1(x)1/2 + Ĝ2(x)1/2

implying ∣∣Ĝ1(x)1/2 − Ĝ2(x)1/2
∣∣ ≤ 1

δ

∣∣G1(x)−G2(x)
∣∣

with δ = δ1 + δ2 > 0. Further,

∣∣Re(q0q) cos I1 + Im(q0q) sin I1

∣∣ =
∣∣Re[exp(−iI1)q0q]

∣∣ ≤ |q0(x)q(x)| = 1.

Therefore, |K1(x)| ≤ 1
δ |G1(x)−G2(x)| on R+ and

‖K1‖L2 ≤ 1
δ‖G1 −G2‖L2 . (5.3)

From ∣∣Re(q0q)[cos I1 − cos I2] + Im(q0q)[sin I1 − sin I2]
∣∣

= 2
∣∣Im(exp(− i

2 [I1 + I2])q0q)
∣∣ · ∣∣ sin I1−I2

2

∣∣
≤ 2|q0q|

∣∣ sin I1−I2
2

∣∣
≤

∣∣I1(x)− I2(x)
∣∣

we obtain
|K2(x)| ≤ M2|I1(x)− I2(x)| (5.4)

where M2 = supx∈R+
Ĝ2(x)1/2. Further, by the Riesz theorem

‖I1 − I2‖L2 = 1
2

∥∥ ln Ĝ1

Ĝ2

∥∥
L2 (5.5)
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and

∣∣∣ ln
Ĝ1(x)

Ĝ2(x)

∣∣∣ ≤ ln
(
1 +

|G1(x)−G2(x)|
γ0

)
≤ 1

γ0

∣∣G1(x)−G2(x)
∣∣ (5.6)

where γ0 = δ2
0 = min{δ2

1 , δ2
2} > 0. In view of (5.4) - (5.6) we get

‖K2‖L2 ≤ 1
γ0

M2
2 ‖G1 −G2‖L2 . (5.7)

From (5.2) and (5.3), (5.7) the inequality

‖P1 − P2‖L2 ≤ E‖G1 −G2‖L2 , E = 1
δ + M2

2γ0

follows which is equivalent to the stability estimation for the solution pj (j =
1, 2) of equation (2.1)

‖p1 − p2‖L2 ≤ E‖g1 − g2‖L2 . (5.8)

Theorem 5.1. Let gj ∈ L(R+)∩L2(R+) (j = 1, 2) with Gj = Fcgj sat-
isfying assumptions (5.1). Then for the corresponding solutions pj ∈ L2(R+)
of equation (2.1) stability estimation (5.8) holds.

Theorem 5.1 generalizes [5: Theorem 3] (see there also for a relaxation of
the assumptions gj ∈ L(R+)).

6. Integral-differential equation

In the following we deal with the integral-differential equation of first order

p′(t) + µp(t) +
∫ ∞

0

p(s)p(s + t) ds = g(t)
2 (t > 0) (6.1)

where µ ∈ R and we again assume g ∈ L(R+) ∩ L2(R+) looking for solutions
p ∈ L2(R+) which are continuous on R+ with p(∞) = 0 having the derivative
p′ ∈ L2(R+).

Applying the Fourier cosine transformation to equation (6.1) we obtain
the condition

|F̂ (x)|2 = Ĝ(x) + 2α (x ∈ R) (6.2)

(cf. [6]) where
F̂ (x) = µ + ix + P (x) + iQ(x)
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are the boundary values of the holomorphic function in the upper half-plane
Im z > 0

F̂ (z) = µ + iz +
∫ ∞

0

p(t)eitzdt (z = x + i y) (6.3)

and α = p(0),
Ĝ(x) = µ2 + x2 + G(x) (x ∈ R). (6.4)

Again P = Fcp,Q = Fsp and G = Fcg. Assuming P ∈ L(R+), we have

α = 2
π

∫ ∞

0

P (x) dx. (6.5)

Problem (6.2) with (6.5) and solutions F̂ of form (6.3) where p′ ∈ L2(R+) is
equivalent to integral-differential equation (6.1). Further, stronger than the
necessary solvability condition Ĝ(x) + 2α ≥ 0 on R for condition (6.2) we
assume Ĝ(x) + 2α > 0 on R.

We are looking for solutions p of equation (6.1) for which the function
F̂ (z) − iz is continuous in Im z ≥ 0 with the limit µ for z → ∞ uniformly
in Im z ≥ 0 and F̂ (x) 6= 0 on R. Then F̂ has at most finitely many zeros in
Im z > 0 of the form as above:

z0
k = i y0

k (k = 1, ..., K)

z1,2
j = ±xj + i yj (j = 1, ..., L)

where y0
k, xj , yj > 0. Again these zeros of F̂ can be chosen in arbitrary manner.

From (6.2) the following solution for F̂ is obtained (cf. [6] again):

F̂ (z) = (i z − b)q0(z)q(z)F̃ (z), F̃ (z) = exp Φ̃(z) (6.6)

where b > 0 is an arbitrarily chosen number (for instance, b = 1), q0 and q
are given by (2.6) again and

Φ̃(z) = 2z
πi

∫ ∞

0

H̃(ξ)
ξ2 − z2

dξ, H̃(x) = 1
2 ln G̃(x) (6.7)

with

G̃(x) =
Ĝ(x) + 2α

x2 + b2
→ 1 (x → ±∞).

Therefore, the general solution of equation (6.1) is given by p = 2
πFcP with

P (x) = −µ + G̃(x)1/2

×
[
Re

(
(ix− b)q0(x)q(x)

)
cos I(x) + Im

(
(ix− b)q0(x)q(x)

)
sin I(x)

]

(6.8)
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where now

I(x) = x
π

∫ ∞

0

ln G̃(ξ)
ξ2 − x2

dξ. (6.9)

The parameter α has to fulfill equation (6.5). The integral in (6.5) can be
calculated by ∫ ∞

0

P (x) dx = 1
2 lim

R→∞

∫

KR

[µ− F̂ (z)] dz

where KR denotes the upper semi-circle with centre 0 and radius R. There
hold the asymptotic relations

H̃(x) ∼ h1x
−2 (x → ±∞)

Φ̃(z) ∼ iH1z
−1 + h1z

−2

h1 = α + 1
2 (µ2 − b2)

H1 = 2
π

∫∞
0

H̃(ξ) dξ

for z →∞, Im z > 0 (cf. [6]) implying

F̃ (z) ∼ 1 + Φ̃(z) + Φ̃2(z)

∼ 1 + i H1z
−1 + [h1 − 1

2H2
1 ]z−2

(6.10)

for z →∞, Im z > 0. Further, for z →∞

q0(z) ∼ 1− 2i

K∑

k=1

y0
k · z−1 −

(
2

K∑

k=1

(y0
k)2 + 4

K−1∑

k=1

K∑

l=k+1

y0
ky0

l

)
z−2

q(z) ∼ 1− 4i

L∑

j=1

yj · z−1 −
(

8
L∑

j=1

y2
j + 16

L−1∑

j=1

L∑

m=j+1

yjym

)
z−2

yielding
µ− F̂ (z) ∼ −i z + A + Bi z−1 (6.11)

for z →∞, Im z > 0 where

A = µ + b + H1 − Y, Y = 2
K∑

k=1

y0
k + 4

L∑

j=1

yj

and some longer expression for B. From (6.11) it follows that relation (6.5)
holds if and only if A = 0 and B = −α.

Some algebra shows that B = −α is a consequence of A = 0. Hence
relation (6.5) is equivalent to the condition A = 0, i.e. H1 = Y − µ − b or,
explicitely,

1
π

∫ ∞

0

ln
µ2 + x2 + 2α + G(x)

x2 + b2
dx = Y − µ− b. (6.12)

This condition for α is independent of b(> 0) as it must be. Its left-hand side
is a strictly increasing, concave function of α tending to +∞ as α → +∞. So
there exists at most one root α0 of this equation for which Ĝ(x) + 2α0 > 0 on
R.
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7. Asymptotic behaviour of the solution

We again make the stronger assumption that G is a Hölder continuous function
on R+ with G(x) = O(x−δ) (δ > 1) as x →∞. Then also G̃ and H̃ are Hölder
continuous with

G̃(x)1/2 = 1 + h1x
−2 + O(x−2−λ)

H̃(x) = h1x
−2 + O(x−2−λ)

where h1 = α + 1
2 (µ2 − b2) as above and λ = min{δ, 2} > 1. Further (cf. [6]),

I(x) = −H1x
−1 + O(x−3), H1 = 2

π

∫ ∞

0

H̃(ξ) dξ

implying

F̃ (x) = 1 + iH1x
−1 + [h1 − 1

2H2
1 ]x−2 + i O(x−3) + O(x−2−λ) (7.1)

with real O-terms. Relation (7.1) is analogous to (6.10) above and a similar
algebra as there leads from (7.1) to

F̂ (x) = i x + [µ−A]− i Bx−1 + O(x−2) + iO(x−1−λ) (7.2)

with real O-terms which is analogous to (6.11) with the same constants A and
B. Assuming the solvability condition A = 0 with B = −α, we obtain the
asymptotic relations

P (x) = O(x−2)

xQ(x)− α = O(x−λ) (λ > 1)

}
(x →∞) (7.3)

which yield P, xQ−α ∈ L(R+)∩L2(R+). Therefore, the solution p = 2
πFcP ∈

L2(R+) and its derivative p′ = 2
πFc(xQ − α) ∈ L2(R+) are continuous func-

tions on R+ with limits p(∞) = p′(∞) = 0.

Finally, the function F̂ − µ − i z fulfills the Paley-Wiener condition on
Im z ≥ 0 with |F̂ (x) − µ − i x| = |P (x) + iQ(x)| ∈ L2(R) implying represen-
tation (6.3) for F̂ .

Theorem 7.1. For any g ∈ L(R+) ∩ L2(R+) with Hölder continuous
Fourier cosine transform G = Fcg ∈ L2(R+) satisfying G(x) = O(x−δ) with
δ > 1 for x → ∞ and a real parameter α satisfying relation (6.12) for b > 0
where G(x)+µ2+x2+2α > 0 on R+, equation (6.1) has the solution p = 2

πFcP

with P = Fcp ∈ L(R+) ∩ L2(R+) given by (6.8) and satisfying together with
Q = Fsp the asymptotic relations (7.3) for x → ∞. The solution p and its
derivative p′ are in L2(R+) and are continuous functions on R+ with limits
p(∞) = p′(∞) = 0.

Theorem 7.1 generalizes [6: Theorem 2].
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8. Estimation of the solution

In the following we estimate the L2-norm of the solution under the assump-
tions g ∈ L(R+) ∩ L2(R+) and

G(x) + µ2 + 2α ≥ δ2 > 0 on R+ (8.1)

with some δ > 0 where α satisfies equation (6.12). Further, without loss of
generality, we choose b with 0 < b ≤ δ so that

G0(x) ≡ G(x) + µ2 + 2α− b2 ≥ 0 on R+. (8.2)

In this and the next section we write ‖ · ‖ instead of ‖ · ‖L2 , for simplicity.
Substituting µ = Y − b − H1 from (6.12) into (6.8), the function P can be
decomposed in the form

P (x) =
7∑

k=1

Jk (8.3)

where

J1 = (b− Y )[1− cos I(x)]

J2 =
{
b− Y + Re

[
(i x− b)q0(x)q(x)

]}
cos I(x)

J3 = [G̃(x)1/2 − 1] Re
[
(i x− b)q0(x)q(x)

]
cos I(x)

J4 = H1 + xI(x)

J5 = x[sin I(x)− I(x)]

J6 =
{
Im

[
(ix− b)q0(x)q(x)

]− x
}

sin I(x)

J7 = [G̃(x)1/2 − 1] Im
[
(ix− b)q0(x)q(x)

]
sin I(x)

and I is given by (6.9) with

G̃(x) = 1 +
G0(x)
x2 + b2

. (8.4)
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At first we estimate the expressions J1, J4 and J5. We have

‖J1‖2 =
∫ ∞

0

J2
1dx

= (b− Y )2
∫ ∞

0

[1− cos I(x)]2dx

≤ (b− Y )2
∫ ∞

0

I2(x) dx

= (b−Y )2

4

∫ ∞

0

ln2 G̃(x) dx

≤ (b−Y )2

4

∫ ∞

0

G2
0(x)

(x2 + b2)2
dx

≤ (b−Y )2

2

[
(µ2 + 2α− b2)2

∫ ∞

0

dx

(x2 + b2)2
+

∫ ∞

0

G2(x)
(x2 + b2)2

dx

]

≤ (b−Y )2

2

[
π

4b3 (µ2 + 2α− b2)2 + 1
b4 ‖G‖2

]

and hence
‖J1‖ ≤ |b−Y |√

2b

[
1
2 (π

b )1/2|µ2 + 2α− b2|+ 1
b‖G‖

]
. (8.5)

Further, we use the integral inequality of Hardy and Littlewood (cf. [2:
Chapter II/§ 3])

Iβ,p ≡
∫ ∞

0

xβ

∣∣∣∣ x
π

∫ ∞

0

f(ξ)
ξ2 − x2

dξ

∣∣∣∣
p

dx ≤ Cp
β,p

∫ ∞

0

xβ |f(x)|pdx

holding for −p− 1 < β < p− 1 (p > 1) with Cβ,p = 1
2Mβ,p where Mβ,p is the

norm of the Hilbert transformation in the corresponding weighted Lebesgue
space. So, for the integral

J4 = 1
π

∫ ∞

0

ξ2 ln G̃(ξ)
ξ2 − x2

dξ

there holds

‖J4‖2 ≤ A2
2

∫ ∞

0

x2 ln2 G̃(x) dx

≤ A2
2

∫ ∞

0

x2G2
0(x)

(x2 + b2)2
dx

≤ 2A2
2

∫ ∞

0

1
x2 + b2

[
(µ2 + 2α− b2)2 + G2(x)

]
dx

≤ 2A2
2

[
1
b (µ2 + 2α− b2)2 + 1

b2 ‖G‖2
]
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where A2 = C−2,2 and

‖J4‖ ≤
√

2A2

[
1√
b
|µ2 + 2α− b2|+ 1

b‖G‖
]
. (8.6)

Moreover,

‖J5‖2 =
∫ ∞

0

x2
[
I(x)− sin I(x)

]2
dx

≤ 1
36

∫ ∞

0

x2I6(x) dx

≤ A2
3

36

∫ ∞

0

x2 ln6 G̃(x) dx

≤ 16
9 A2

3

[
|µ2 + 2α− b2|6

∫ ∞

0

x2

(x2 + b2)6
dx +

∫ ∞

0

x2G6(x)
(x2 + b2)6

dx

]

≤ 16
9 A2

3

[
|µ2 + 2α− b2|6

∫ ∞

0

dx

(x2 + b2)5
+ 1

b10

∫ ∞

0

G6(x) dx

]

≤ 16
9 A2

3

[|µ2 + 2α− b2|6 π
2

1
b9 + 1

b10 M2
1 ‖G‖2

]

where A3 = C3
2,6 and M1 = supx∈R+

G2(x), yielding

‖J5‖ ≤ 4
3

1
b5 A3

[
(πb

2 )1/2|µ2 + 2α− b2|3 + M1‖G‖
]
. (8.7)

Secondly, we estimate J2 and J6. We get

|J2| ≤
∣∣b− Y + Re

[
(i x− b)q0(x)q(x)

]∣∣
|J6| ≤

∣∣Im[
(i x− b)q0(x)q(x)

]− x
∣∣.

The asymptotic relation

q0(x)q(x) = 1− iY x−1 + O(x−2) + iO(x−3) (x → ±∞)

with real O-terms (cp. (3.4) - (3.5)) implies

b− Y + Re
[
(i x− b)q0(x)q(x)

]
= O(x−2)

Im
[
(i x− b)q0(x)q(x)

]− x = O(x−1).

Therefore the inequalities

|J2| ≤ D1

1 + x2

|J6| ≤ D2x

1 + x2

(x ∈ R+)
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hold where

D1 = supx∈R+
[1 + x2]

∣∣b− Y + Re
[
(i x− b)q0(x)q(x)

]∣∣ < ∞
D2 = supx∈R+

[1 + x2] 1
x

∣∣Im[
(i x− b)q0(x)q(x)

]∣∣ < ∞
(cp. (4.6)). This gives the estimates

‖J2‖ ≤ D1
2

√
π

‖J6‖ ≤ D2
2

√
π.

(8.8)

Finally, we have to estimate J3 and J7. It is

|J3| ≤ A(x)
∣∣Re

[
(i x− b)q0(x)q(x)

]∣∣
|J7| ≤ A(x)

∣∣Im[
(i x− b)q0(x)q(x)

]∣∣

where A(x) = G̃1/2(x)− 1. Now by (8.4)

A(x) ≤ G0(x)
x2 + b2

≤ M0

x2 + b2
, M0 = sup

x∈R+

G0(x)

and, in view of |q0(x)q(x)| = 1,
∣∣Re

[
(i x− b)q0(x)q(x)

]∣∣
∣∣Im[

(i x− b)q0(x)q(x)
]∣∣

}
≤ x + b on R+.

Therefore,

‖J3‖2, ‖J7‖2 ≤ M2
0

∫ ∞

0

(x + b)2

(x2 + b2)2
dx ≤ 2M2

0

∫ ∞

0

dx

x2 + b2
=

M2
0 π

b

and
‖J3‖, ‖J7‖ ≤ (π

b )1/2M0. (8.9)

From (8.3) and (8.2) - (8.9) we obtain the estimation ‖P‖ ≤ E0 + E1‖G‖
where E0 and E1 are determined by the coefficients in estimates (8.2) - (8.9).
This yields the estimation for the L2-norm of the solution p

‖p‖ ≤ 2
π E0 + E1‖g‖. (8.10)

Theorem 8.1. For any g ∈ L(R+)∩L2(R+) satisfying (8.1) and choosing
0 < b ≤ δ the norm of the solution p ∈ L2(R+) fulfills estimation (8.10).

Remark. For obtaining an analogous estimation for the norm of p′ one
can use equation (6.1) where in estimating the Fourier cosine transform of the
integral term the norm of P 2 can be dealt with in a similar way as the norm
of P and it should be observed that Q is the Hilbert transform of P .
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9. Stability theorem

Let gj ∈ L(R+)∩L2(R+) (j = 1, 2) with Gj = Fcgj satisfying the inequalities

Gj(x) + µ2 + 2αj ≥ δ2
j > 0 on R+ (9.1)

with some δj > 0 where αj obeys the corresponding equation (6.12) with some
joint b > 0. By (6.8) the difference P1 − P2 of the corresponding solutions
with the same fixed zeros of F̂j can be decomposed in the form

P1 − P2 =
4∑

m=1

Km (9.2)

where

K1 =
[
G̃

1/2
1 (x)− G̃

1/2
2 (x)

]
Re

[
(ix− b)q0(x)q(x)

]
cos I1(x)

K2 =
[
G̃

1/2
1 (x)− G̃

1/2
2 (x)

]
Im

[
(ix− b)q0(x)q(x)

]
sin I1(x)

K3 = G̃
1/2
2 (x)Re

[
(i x− b)q0(x)q(x)

](
cos I1(x)− cos I2(x)

)

K4 = G̃
1/2
2 (x) Im

[
(i x− b)q0(x)q(x)

](
sin I1(x)− sin I2(x)

)

with

G̃j(x) =
Ĝj(x) + 2αj

x2 + b2
, Ĝj(x) = µ2 +x2 +Gj(x), Ij(x) = x

π

∫ ∞

0

ln G̃j(ξ)
ξ2 − x2

dξ.

At first we estimate K1 and K2. We have

|K1| ≤ A0(x)
∣∣Re

[
(i x− b)q0(x)q(x)

]∣∣
|K2| ≤ A0(x)

∣∣Im[
(i x− b)q0(x)q(x)

]∣∣

where A0(x) =
∣∣G̃1/2

1 (x)− G̃
1/2
2 (x)

∣∣. Now

A0(x) ≤ (x2 + b2)−1/2

(x2 + δ2
1)1/2 + (x2 + δ2

2)1/2

[|G1(x)−G2(x)|+ 2|α1 − α2|
]

and again ∣∣Re
[
(i x− b)q0(x)q(x)

]∣∣
∣∣Im[

(i x− b)q0(x)q(x)
]∣∣

}
≤ x + b on R+

implying

|K1|, |K2| ≤ 1√
2(x2+δ2

0)1/2

[|G1(x)−G2(x)|+ 2|α1 − α2|
]
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where δ0 = min{δ1, δ2} > 0. Therefore

‖K1‖2, ‖K2‖2 ≤ 1
2

∫ ∞

0

|G1(x)−G2(x)|2
x2 + δ2

0

dx + 2(α1 − α2)2
∫ ∞

0

dx

x2 + δ2
0

≤ 1
2δ2

0
‖G1 −G2‖2 + π

δ0
(α1 − α2)2

and
‖K1‖, ‖K2‖ ≤ 1√

2 δ0
‖G1 −G2‖+

(
π
δ0

)1/2|α1 − α2|. (9.3)

It remains to estimate K3 and K4. As above we have

|K3|, |K4| ≤ D2(x + b)|I1(x)− I2(x)|

where D2
2 = supx∈R G̃2(x) < ∞. Further, by the Riesz theorem,

∫ ∞

0

|I1(x)− I2(x)|2dx = 1
4

∥∥∥ ln
G̃1

G̃2

∥∥∥
2

≤ 1
4

∫ ∞

0

ln2
(
1 +

|G1(x)−G2(x)|+ 2|α1 − α2|
x2 + δ2

0

)
dx

≤ 1
4

∫ ∞

0

( |G1(x)−G2(x)|+ 2|α1 − α2|
x2 + δ2

0

)2

dx

≤ 1
2

[
1
δ4
0
‖G1 −G2‖2 + π

δ3
0
(α1 − α2)2

]
.

Finally, in view of relation (6.12),
∫∞
0

ln G̃1(x)

G̃2(x)
dx = 0 and therefore

I1(x)− I2(x) = x−1

π

∫ ∞

0

ξ2 ln G̃1(ξ)

G̃2(ξ)

ξ2 − x2
dξ.

Applying the Hardy-Littlewood inequality from above, we obtain

∫ ∞

0

x2|I1(x)− I2(x)|2dx

≤ A2
2

∫ ∞

0

x2 ln2 G̃1(x)

G̃2(x)
dx

≤ 2A2
2

[ ∫ ∞

0

x2

(x2 + δ2
0)2

|G1(x)−G2(x)|2dx + 4(α1 − α2)2
∫ ∞

0

x2

(x2 + δ2
0)2

dx

]

≤ 2A2
2

[
1
δ2
0
‖G1 −G2‖2 + 2π

δ0
(α1 − α2)2

]
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where A2 = C−2,2. Hence

‖K3‖2, ‖K4‖2 ≤ D2
2

{(
b2

δ4
0

+ 4
δ2
0
A2

2

)‖G1 −G2‖2 +
(

2π
δ3
0

+ 8π
δ0

A2
2

)
(α1 − α2)2

}

and

‖K3‖
‖K4‖

}
≤ D2

{
1
δ2
0
(b2 + 4δ2

0A2
2)

1
2 ‖G1 −G2‖+

(
2π
δ3
0

) 1
2 (1 + 4δ2

0A2
2)

1
2 |α1 − α2|

}
.

(9.4)
From (9.2) - (9.4) the estimation

‖P1 − P2‖ ≤ B0|α1 − α2|+ B1‖G1 −G2‖
follows where B0 and B1 are determined by the coefficients in estimates (9.3)
- (9.4). Then for the solutions p1 and p2 we get

‖p1 − p2‖ ≤ 2
π B0|α1 − α2|+ B1‖g1 − g2‖. (9.5)

Theorem 9.1. For any gj ∈ L(R+) ∩ L2(R+) (j = 1, 2) satisfying (9.1)
the norm of the difference of the solutions pj ∈ L2(R+) (j = 1, 2) fulfills
estimation (9.5).
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