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A Unified Approach to
Nonlinear Integro-Differential Inverse Problems

of Parabolic Type

F. Colombo and D. Guidetti

Abstract. We give a unified approach to a class of nonlinear parabolic inverse prob-
lems involving kernels of convolution type. Our main tools are optimal regularity
results, in Sobolev and Hölder spaces, for parabolic equations and analytic semi-
group theory. We apply the main abstract results (Theorems 2.1 - 2.2) to a model of
population dynamics, to the theory of combustion of a material with memory and,
finally, to a parabolic equation with elliptic part of order 2m, which for m = 1 is the
heat equation with memory and with non-linearity containg derivatives up to order
2m− 1.
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1. Introduction and basic notation

The aim of this paper is to give an abstract unified approach which leads to
generalizations of some results already known and to face new inverse problems
not yet investigated. Our abstract theory allows a wide range of applications to
the study of heat propagation in materials with memory, mathematical models
arising in biology, theory of combustion of a material with memory, parabolic
models in viscoelasticity, and many other fields in science and technology (see,
for some examples, Section 3). We can apply our results also to parabolic
inverse problems concerning spatial differential operators of order 2m.

More precisely, we deal with a direct fully nonlinear problem of parabolic
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type when we consider the problem

u′(t) = G(u(t)) +
∫ t

0

h(t− s)F (u(t), u(s)) ds + f(t) (t ∈ [0, T ])

u(0) = u0





(1.1)

in which the term h is a given function, G and F are suitable nonlinear func-
tions on the domains D and D ×D, respectively, where D is a Banach space
continuously embedded into a reference Banach space X. Their properties and
regularity will be specified in the sequel; the main assumption is that G′(u0)
(the Fréchet derivative of G in u0 ∈ D) is supposed to be the generator of an
analytic semigroup.

Problem (1.1) is well studied in literature (see, for example, [18]). The
convolution kernel h, depending only on t, has several meanings, according to
the problem we are considering. For example, h represents the thermal mem-
ory in problems of heat propagation, or the mechanism of spread of infections
in population dynamics models. In practice, h can be seldom considered a
known term, because it is not directly measurable. So we have to face the
problem to reconstruct also h together with u.

In the following we investigate the inverse problem related to a Banach
space X to determine two functions

u : [0, T ] → X

h : [0, T ] → R

satisfying system (1.1) with the additional condition

Φ(u(t)) = g(t) (t ∈ [0, T ]) (1.2)

where Φ is a linear and bounded functional acting on X and g is a given
function. As a rule, in applications Φ has an integral representation, and
physically it represents the additional measurements on u to determine the
function h.

The functional setting is referred to Hölder and Sobolev spaces of frac-
tional order denoted by W β,p(0, T ; X) where β ∈ (0, 1) \ { 1

p} with 1 < p ≤ ∞
and X is a Banach space. Recalling that W β,∞(0, T ;X) coincides with the
space of Hölder continuous functions Cβ([0, T ];X), we give a unified approach
to Sobolev (1 < p < ∞) and Hölder (p = ∞) spaces, using as fundamental
tools optimal regularity results for parabolic equations in those spaces, ana-
lytic semigroup theory and fixed point arguments. We recall that maximal reg-
ularity results establish the existence of linear and topological isomorphisms
between suitable spaces of solutions and data (see [17]). The use of Sobolev
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spaces allows to lower the order of regularity required to the data in order
to get a solution. Moreover, concerning optimal regularity, fractional Sobolev
spaces allow a relatively easy theory, if compared with spaces of integer order
(see, for example, [7]).

The plan of the paper is the following:
Section 1 contains basic notations. In Section 2 we have put the main ab-

stract results of the paper, namely Theorems 2.1 and 2.2. Theorem 2.1 estab-
lishes the existence of a local solution of problem (1.1) - (1.2) in W β,p(0, τ ; D)∩
W 1+β,p(0, τ ; X) for fixed β ∈ (0, 1) and p ∈ [1, +∞] and some τ > 0, under
minimal conditions on the data. We obtain such result employing a certain
optimal regularity result (Theorem 4.1) valid for abstract linear parabolic
problems. Theorem 2.2 is a result of global uniqueness. The following Corol-
lary 2.1 consists in a simple consequence of Theorems 2.1 and 2.2. This is
the result we employ the most in the applications. In Section 3 we have put
three possible applications of the results of the previous section. The two first
applications concern population dynamics and combustion of materials with
memory, respectively. The third application treats fully nonlinear parabolic
problems of higher order in the space variables. Section 4 contains a series of
technical lemmata, which are useful in the sequel. In Section 5 we prove the
results stated in the second section. Finally, the Appendix contains a detailed
proof of a new (in our knowledge) optimal regularity result in the framework
of fractional order Sobolev spaces. An alternative proof can be deduced also
from the results of [6].

In our knowledge the first paper applying maximal regularity techniques
to intergro-differential parabolic inverse problems is [16]. But therein the au-
thors considered only linear problems in spaces of functions which are Hölder
continuous in the time variable. A different functional setting for similar
problems was adopted in [15].

Fully nonlinear parabolic problems are considered also in [10]. The in-
tersection between the class of problems that the authors considered and the
class of problems which is the subject of the present paper is given by prob-
lems like (1.1) - (1.2) with F depending only on u(s). The functional set-
ting is a little different and the authors in [10] find only solutions such that
u ∈ W β,p(0, τ ; X), with β suitably small.

Other authors consider different situations and obtain results which are
not comparable with ours. For example, using Laplace transform methods
important results are due to J. Janno and L. von Wolfersdorf (see, for example,
[13, 22, 23] and the bibliography therein). The case of h depending also on
some space variables (linear equations) is treated in [3, 4], the case of a linear
problem with Φ possibly nonlinear and depending also on h is treated in [9].

Now we give some basic notation that we shall use in the sequel.



434 F. Colombo and D. Guidetti

If X and Y are normed spaces, we indicate with L(X, Y ) the normed space
of bounded linear operators from X to Y . If X = Y , we simply write L(X).
The dual space of X is denoted by X ′. If A is a linear operator in a Banach
space X, we denote with ρ(A) the resolvent set of A. If p ∈ [1, +∞), we set
p′ = p

p−1 . We indicate with N the set of positive integers, i.e. naturals. The
symbol ∗ is used to denote the convolution with respect to time. If τ ∈ R+,
the set of positive reals, we set

∆τ =
{
(t, s) ∈ R2 : 0 < s < t ≤ τ

}
.

Given a function F depending on (x, y), we indicate with d1F and d2F its
partial derivatives with respect to x and y, respectively. If k ∈ N, we indicate
with Ck(R) the set of real-valued functions on R, which are continuous together
with their derivatives of order less or equal to k. If Ω is a bounded open
subset of Rn, we mention the Besov spaces Bθ

p,q(Ω). For their definition and
properties see, for example, [2, 21].

2. Main abstract results

Let D and X be Banach spaces with norms ‖·‖D and ‖·‖, respectively, D ⊆ X
and continuous embedded, and A ∈ L(D,X). We shall mainly think of A as
an unbounded linear operator in X. Assume the following:

(h1) There exist R0 > 0 and M > 0 such that Σ :=
{
λ ∈ C : |λ| ≥

R0 and |Argλ| ≤ π
2

} ⊆ ρ(A). Moreover, for every λ ∈ Σ, ‖(λ −
A)−1‖L(X) ≤ M |λ|−1.

It is well known (see, for example, [17: Chapter 2]) that, if condition (h1)
is satisfied, then A is the infinitesimal generator of an analytic semigroup
{S(t)}t≥0, possibly not strongly continuous in 0.

Let now α ∈ (0, 1) and p ∈ (1,+∞]. We set

DA(α, p) =
{

x ∈ X : t → v(t) = ‖t1−α− 1
p AS(t)x‖ ∈ Lp(0, 1)

}
(2.1)

and, if x ∈ DA(α, p),

[x]DA(α,p) = ‖v‖Lp(0,1) (2.2)
‖x‖DA(α,p) = ‖x‖+ [x]DA(α,p). (2.3)

DA(α, p) is a Banach space with the norm ‖ · ‖DA(α,p) and coincides up to
equivalent norms with the real interpolation space (X, D)α,p (see [17: Propo-
sition 2.2.2]).
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We introduce now for −∞ < a < b < +∞, β ∈ (0, 1) and p ∈ [1, +∞] the
spaces W β,p(a, b;X). Namely, we set

W β,p(a, b;X)

=





f ∈ Lp(a, b; X)

∣∣∣∣∣∣∣

∫ b

a

( ∫ t

a
‖f(t)−f(s)‖p

(t−s)1+βp ds
)
dt < ∞ if p < +∞

sup
a≤s<t≤b

‖f(t)−f(s)‖
(t−s)β < ∞ if p = +∞





.

(2.4)
Observe that the space W β,∞(a, b;X) coincides with the space Cβ([a, b];X)
of Hölder-continuous functions. We set also, for k ∈ N,

W k+β,p(a, b;X) =
{

f ∈ W k,p(a, b; X) : f (j) ∈ W β,p(a, b;X) (1 ≤ j ≤ k)
}

.

(2.5)
Of course, here the derivatives are intended in the sense of vector-valued distri-
butions. If β > 1

p , then by the Sobolev embedding theorem (see [2: Theorem
7.57]), every element of W β,p(a, b; X) can be identified with a continuous func-
tion. Before giving a more precise result, we introduce the following notation:
for 1 < p ≤ +∞, 0 < β < 1 and f ∈ W β,p(a, b;X) we set

[f ]W β,p(a,b;X) =





(
∫ b

a

( ∫ t

a
‖f(t)−f(s)‖p

(t−s)1+βp ds
)
dt)

1
p if 1 ≤ p < +∞

supa≤s<t≤b
‖f(t)−f(s)‖

(t−s)β if p = +∞.
(2.6)

We want to study the problem

u′(t) = G(u(t)) +
∫ t

0

h(t− s)F (u(t), u(s)) ds + f(t) (t ∈ [0, τ ])

u(0) = u0

Φ(u(t)) = g(t) (t ∈ (0, τ))





(2.7)

under the following conditions:

(k1) X and D are Banach spaces, D is continuously embedded into X.
(k2) F ∈ C2(D × D; X) and F ′′ are uniformly Lipschitz continuous from

D×D to L(
D×D;L(D×D;X)

)
in every bounded subset of D×D.

(k3) G ∈ C2(D; X) and G′′ are uniformly Lipschitz continuous from D to
L(D; L(D; X)) in every bounded subset of D.

(k4) u0 ∈ D.
(k5) A = G′(u0) considered as an unbounded operator in X satisfies as-

sumption (h1).
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(k6) Φ ∈ X ′.
(k7) f ∈ W 1+β,p(0, T ; X) for some β ∈ (0, 1) and p ∈ (1, +∞].

We are interested in the existence and uniqueness of a solution (u, h) of
problem (2.7) belonging to

(
W 2+β,p(0, τ ; X) ∩W 1+β,p(0, τ ;D)

)×W β,p(0, τ)

for some τ > 0, with p ∈ (1, +∞] and β ∈ (0, 1) \ { 1
p}.

The main abstract results are the followings two theorems.

Theorem 2.1. Assume that conditions (k1) - (k7) are satisfied and let
p ∈ (1,+∞], β ∈ (0, 1) \ { 1

p} and T > 0. Assume, moreover, the following:

(i) G(u0) + f(0) ∈ DA(1 + β − 1
p , p) if β < 1

p and G(u0) + f(0) ∈ D if
β > 1

p .

(ii) g ∈ W 2+β,p(0, T ).
(iii) Φ(u0) = g(0) and Φ(G(u0) + f(0)) = g′(0).
(iv) χ := Φ(F (u0, u0)) 6= 0.
(v) If β > 1

p , then A[G(u0) + f(0)] + f ′(0) +HF (u0, u0) ∈ DA(β − 1
p , p)

where H is defined as

H = χ(0)−1
{
g′′(0)− Φ

[
A(G(u0) + f(0)) + f ′(0)

]}
. (2.8)

(vi) F (u0, u0) ∈ D.

Consider the functions v0 and h0 defined in (5.12) and (5.14), respectively,
and for R > 0 and τ ∈ (0, T ] set

B(τ, R) =




(v, h) ∈ W β,p(0, τ ; D)×W β,p(0, τ)

∣∣∣∣∣∣∣

max
{‖v − v0‖W β,p(0,τ ;D)

‖h− h0‖W β,p(0,τ)

}
≤ R

h(0) = H if β > 1
p





(2.9)
with the norms ‖ · ‖W β,p(0,τ ;D) and ‖ · ‖W β,p(0,τ) defined in (4.21).

Then for every R > 0 there exists τ(R) ∈ (0, T ] such that for every τ ∈
(0, τ(R)] problem (2.7) has a unique solution

(u, h) ∈ (
W 2+β,p(0, τ ; X) ∩W 1+β,p(0, τ ; D)

)×W β,p(0, τ)

such that if v := ∂tu, then (v, h) ∈ B(τ,R).
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Theorem 2.2. Assume that the assumptions of Theorem 2.1 are satisfied.
Let T > 0 and let

(u1, h1) ∈
(
W 2+β,p(0, T ; X) ∩W 1+β,p(0, T ; D)

)×W β,p(0, T )

be a solution of problem (2.7) with τ = T . Set v1 = ∂tu1 and assume, more-
over, the following:

a) For all t ∈ [0, T ), the operator Av1,h1(t) defined in (2.7) satisfies con-
dition (h1), with R0 and M which can depend on t.

b) For all t ∈ [0, T ), Φ(F (u1(t), u0)) 6= 0.

c) For all t ∈ [0, T ), F (u1(t), u0) ∈ D.

Then (u1, h1) is the unique solution of problem (2.7) belonging to

(
W 2+β,p(0, T ; X) ∩W 1+β,p(0, T ; X)

)×W β,p(0, T ).

Corollary 2.1. Assume that the assumptions of Theorem 2.1 are satisfied
and that, moreover, F (u, u0) ∈ D for every u ∈ D. Then there exists a τ > 0
such that problem (2.7) has a unique solution (u, h) ∈ (

W 2+β,p(0, τ ; X) ∩
W 1+β,p(0, τ ; D)

)×W β,p(0, τ).

3. Applications

We are now in the position to solve some problems of particular interest,
applying the abstract results of Section 1. We have decided to give the details,
for sake of simplicity, in three different fields of science even though many other
applications can be mentioned.

Problem P1: Population dynamics. We consider the well known Lotka-
Volterra model with diffusion. For other results concerning systems of this
form, see also [8]. The non-linearity in the integral term appearing in the
first equation in the sequel is analogous to that of the Kermack-McKendrick
system arising in the theory of spread of infections. The semilinear case with
particular diffusion terms has been studied in [9]. Here we consider a more
general case.

Let Ω be an open bounded set in Rn, lying on one side of ∂Ω, which is a
submanifold of Rn of class C2. The problem is to determine two functions

u : [0, T ]× Ω → R
h : [0, T ] → R
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satisfying the integro-differential system

∂tu(t, x) = d(u(t, x))∆u(t, x) + bu(t, x)
∫ t

0

h(t− s)u(s, x) ds

+ f(u(t, x))
(
(t, x) ∈ [0, T ]× Ω

)

u(0, x) = u0(x) (x ∈ Ω)

u(t, x′) = 0
(
(t, x′) ∈ [0, T ]× ∂Ω

)
∫

Ω

φ(x)u(t, x) dx = g(t) (t ∈ [0, T ])




(3.1)

where the following conditions are fulfilled:

(h11) d, f ∈ C3(R), d real-valued and positive.
(h12) b ∈ R \ {0}.
(h13) φ ∈ Lp′(Ω) for a certain p ∈ (1, +∞) with p > n

2 .

(h14) g ∈ W 2+β,p(0, T ) for some β ∈ (0, 1) with β 6∈ { 1
p , 3

2p − 1, 3
2p}.

We have the following

Theorem 3.1. Consider problem (3.1) under conditions (h11) - (h14).
Assume, moreover, the following:

(h15) u0 ∈ W 2,p(Ω) ∩W 1,p
0 (Ω).

(h16) If G(u0) := d(u0)∆u0 + f(u0), then

G(u0) ∈





B
2(1+β− 1

p )
p,p (Ω) if β < 3

2p − 1
{
u ∈ B

2(1+β− 1
p )

p,p (Ω) : u|∂Ω = 0
}

if 3
2p − 1 < β < 1

p

W 2,p(Ω) ∩W 1,p
0 (Ω) if β > 1

p .

(h17)
∫
Ω

φ(x)u0(x) dx = g(0),
∫
Ω

φ(x)
[
d(u0(x))∆u0(x) + f(u0(x))

]
dx =

g′(0).
(h18) χ :=

∫
Ω

φ(x)u0(x)2dx 6= 0.

(h19) d′(u0)G(u0)∆u0 + d(u0)∆G(u0) + f ′(u0)G(u0) +Hbu2
0

∈




B
2(β− 1

p )
p,p (Ω) if 1

p < β < 3
2p{

u ∈ B
2(β− 1

p )
p,p (Ω) : u|∂Ω = 0

}
if 3

2p < β

with

H = χ−1

[
g′′(0)−

∫

Ω

φ
{
d(u0)∆G(u0) +

[
d′(u0)∆u0 + f ′(u0)

]
G(u0)

}
dx

]
.
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Then for some τ ∈ (0, T ] problem (3.1) has a unique solution

(u, h) ∈ (
W 2+β,p(0, τ ; Lp(Ω)) ∩W 1+β,p(0, τ ;W 2,p(Ω))

)×W β,p(0, τ).

Proof. We introduce a proper functional setting. For this, first put

X = Lp(Ω) (3.2)

D = W 2,p(Ω) ∩W 1,p
0 (Ω). (3.3)

Observe that, owing to condition (h13), D ⊆ C(Ω). Further, set

F : D ×D → X, F (u1, u2) = bu1u2 (u1, u2 ∈ D). (3.4)

It can be easily seen that F satisfies condition (k2). Finally, set

G : D → X, G(u) = d(u)∆u + f(u) (u ∈ D). (3.5)

Then G satisfies condition (k3). Condition (k4) is exactly assumption (h15).
We have also, for every v ∈ D,

G′(u0)v = d(u0)∆v + [d′(u0)∆u0 + f ′(u0)]v

so that condition (k5) is satisfied by [20: Section 3.8]. Condition (k6) follows
from assumption (h13), setting

Φ(u) =
∫

Ω

φ(x)u(x) dx. (3.6)

Concerning assumptions (i) - (v) in Theorem 2.1 it suffices to say that, if
θ ∈ (0, 1) \ { 1

2p}, we have

DA(θ, p) =

{
B2θ

p,p(Ω) if θ < 1
2p{

u ∈ B2θ
p,p(Ω) : u|∂Ω = 0

}
if 1

2p < θ
(3.7)

(see [11]). Finally, assumption (vi) is obviously satisfied, as D is dense in X

Problem P2: Combustion of a material with memory. The semilinear
version of the model was studied in [4] in spaces of Hölder-continuous func-
tions. In this application we consider the quasilinear version in Sobolev spaces.
We denote by u the temperature, by v the density of the combustible and,
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as usual, by h the memory kernel. The system governing the evolution of
(u, v, h) is given by

∂tu(t, x) = D1,1(u(t, x), v(t, x))∆u(t, x)

+
∫ t

0

h(t− s)D1,2(u(s, x), v(s, x))∆u(s, x) ds

+ f1(u(t, x), v(t, x))
(
(t, x) ∈ [0, T ]× Ω

)

∂tv(t, x) = D2,1(u(t, x), v(t, x))∆v(t, x)

+ f2(u(t, x), v(t, x))
(
(t, x) ∈ [0, T ]× Ω

)

u(0, x) = u0(x) (x ∈ Ω)

v(0, x) = v0(x) (x ∈ Ω)

u(t, x′) = v(t, x′) = 0
(
(t, x′) ∈ [0, T ]× ∂Ω

)
∫

Ω

φ(x)u(t, x) dx = g(t) (t ∈ [0, T ]).





(3.8)

The problem is to determine three functions

u : [0, T ]× Ω → R
v : [0, T ]× Ω → R
h : [0, T ] → R

satisfying the above integro-differential system.

The functions f1 and f2 are given by the Arhenius kinetics (see [4]), while
the term

∫
Ω

φ(x)u(t, x) dx = g(t) represents the additional measurements on
the temperature to identify the convolution kernel h which is not directly
measurable.

In the following we shall assume the following:

(h21) D1,1, D1,2, D2,1 ∈ C3(R2,R), D1,1(u, v) > 0 and D2,1(u, v) > 0 for all
(u, v) ∈ R2.

(h22) f1, f2 ∈ C3(R2,R).

(h23) Ω is an open bounded subset in Rn, lying on one side of ∂Ω, which is
a submanifold of Rn of class C2.

(h24) p ∈ (n
2 ∨ 1, +∞).

(h25) φ ∈ Lp′(Ω).

(h26) u0, v0 ∈ W 2,p(Ω) ∩W 1,p
0 (Ω).
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We introduce now a proper functional setting. For this we put first

X = Lp(Ω)× Lp(Ω) (3.9)

D =
(
W 2,p(Ω) ∩W 1,p

0 (Ω)
)× (

W 2,p(Ω) ∩W 1,p
0 (Ω)

)
. (3.10)

Further, if U = (u, v) and V = (z, w) are elements of D, we define

G(U) =
(
D1,1(u, v)∆u + f1(u, v), D2,1(u, v)∆v + f2(u, v)

)
(3.11)

F (U, V ) = (D1,2(V )∆z, 0) (3.12)
U0 = (u0, v0) (3.13)

and

A(V ) = G′(U0)(V )

=
(

D1,1(U0)∆z + ∆u0
∂D1,1

∂x
(U0)z

+ ∆u0
∂D1,1

∂y
(U0)w +

∂f1

∂x
(U0)z +

∂f1

∂y
(U0)w,

D2,1(U0)∆w + ∆v0
∂D2,1

∂x
(U0)z

+ ∆v0
∂D2,1

∂y
(U0)w +

∂f2

∂x
(U0)z +

∂f2

∂y
(U0)w

)
.

(3.14)

Now we can give the following

Theorem 3.2. Consider problem (3.8) under assumptions (h21) - (h26).
Further, let X,D, G, F, U0, A have the meaning declared in (3.9) − (3.14),
respectively, and let also β ∈ (0, 1) \ { 1

p , 3
2p , 3

2p − 1}. Concerning the data
U0 = (u0, v0), φ and g we suppose the following:

(i) If β < 1
p , then G(U0) ∈ B

2(1+β− 1
p )

p,p (Ω)2, and G(U0) vanishes in ∂Ω if
β > 3

2p − 1.

(ii) If β > 1
p , then G(U0) ∈ D.

(iii) g ∈ W 2+β,p(0, T ).
(iv)

∫
Ω

φ(x)u0(x) dx = g(0).

(v)
∫
Ω

φ(x)
[
D1,1(u0(x), v0(x))∆u0(x) + f1(u0(x), v0(x))

]
dx = g′(0).

(vi) χ :=
∫
Ω

φ(x)D1,2(u0(x), v0(x))∆u0(x) dx 6= 0.

(vii) If β > 1
p , let the set H be defined as in (2.8). Then AG(U0) +

HF (U0, U0) ∈
[
B

2(β− 1
p )

p,p (Ω)
]2 and the expression vanishes in ∂Ω if

β > 3
2p .
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Then for some τ ∈ (0, T ] problem (3.8) has a unique solution

((u, v), h) = (U, h) ∈ (
W 2+β,p(0, τ ; X) ∩W 1+β,p(0, τ ; D)

)×W β,p(0, τ).

Proof. The proof follows the same arguments as in the proof of Theorem
3.1

Problem P3: A fully nonlinear inverse problem with spatial derivatives
of order 2m (the case m = 1 represents the heat equation with memory). The
problem is to determine two functions

u : [0, τ ]× Ω → R
h : [0, T ] → R

satisfying the system

∂tu(t, x) = d(A(x, ∂x)u(t, x)) +
∫ t

0

h(t− s)e(A(x, ∂x)u(s, x)) ds

+ f(t, x) (t ∈ [0, τ ], x ∈ Ω)

Bj(x, ∂x)u(t, x) = 0 (j ∈ {1, ..., m}, t ∈ [0, τ ], x ∈ ∂Ω)

u(0, x) = u0(x) (x ∈ Ω)∫

Ω

u(t, x)µ(dx) = g(t) (t ∈ [0, τ ])





(3.15)
under the following assumptions:

(h31) d, e ∈ C3(R), d′(u) > 0 for all u ∈ R.
(h32) Ω ⊂ Rn is an open bounded subset, lying on one side of ∂Ω, which is

a submanifold of Rn of class C2m (m ∈ N).
(h33) A(x, ∂x) is a strongly elliptic operator of order 2m with coefficients in

C(Ω).
(h34) Bj(x, ∂x) (j = 1, . . . ,m) is a linear differential operator of order

mj < 2m with coefficients in C2m−mj (∂Ω).
(h35) {Bj(x, ∂x)}1≤j≤m is a normal system of boundary operators in the

sense of [20: Definition 3.7.1].
(h36) The operator A(x, ∂x) with vanishing boundary conditions Bj(x, ∂x) (1 ≤

j ≤ m) has Argλ = θ as a ray of minimal growth of the resolvent in
the sense of [20: Definition 3.8.1].

(h37) µ is a Borel measure in Ω.

We set
X = C(Ω) (3.16)
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and

D =

{
u ∈

⋂
1<p<+∞

W 2m,p(Ω)

∣∣∣∣∣
A(x, ∂x)u ∈ X and Bj(x, ∂x)u ≡ 0

in ∂Ω for all j = 1, ...,m

}
. (3.17)

If u and v are elements of D, we define

G(u) = d(A(x, ∂x)u) (3.18)
F (u) = e(A(x, ∂x)u). (3.19)

Observe that
G′(u)v = d′(A(x, ∂x)u)A(x, ∂x)v.

Now we can give the following

Theorem 3.3. Consider problem (3.15) under assumptions (h31) - (h37).
Further, let X, D, G, F be as in (3.16)− (3.19), respectively, and let β ∈ (0, 1)
such that 2mβ 6∈ N. Concerning the data u0, f, µ, g we suppose the following:

(i) u0 ∈ D.
(ii) f ∈ C1+β(0, T ; X).
(iii) G(u0) + f(0) ∈ D.
(iv) g ∈ C2+β(0, T ).
(v)

∫
Ω

u0(x)µ(dx) = g(0).
(vi)

∫
Ω
[G(u0)(x) + f(0, x)]µ(dx) = g′(0).

(vii) χ :=
∫
Ω

F (u0)(x)µ(dx) 6= 0.
(viii) Put A = G′(u0) and let H be defined as in (2.8). Then A[G(u0) +

f(0)] + f ′(0) +HF (u0) ∈ C2mβ(Ω). Moreover, for all j ∈ {1, ..., m}
such that mj < 2mβ, Bj(x, ∂x)

{[
A[G(u0) + f(0)] + f ′(0) +HF (u0)

]}
vanishes in ∂Ω.

(ix) If min1≤j≤m mj = 0, then F (u0) vanishes in ∂Ω.

Then for some τ ∈ (0, T ] problem (3.15) has a unique solution

(U, h) ∈ (
C2+β(0, τ ; X) ∩ C1+β(0, τ ; D)

)× Cβ(0, τ).

Proof. The proof can be obtained from Corollary 2.1 using the following
known facts:

a) The operator A satisfies assumption (h1) (see [19]).
b) If α ∈ (0, 1) and 2mα 6∈ N, one has (see [1])

DA(α,∞) =

{
u ∈ C2mα(Ω)

∣∣∣∣∣
Bj(x, ∂x)u ≡ 0 in ∂Ω ∀ j ∈ {1, ..., m}
such that mj < 2mα

}
.

(3.20)
c) The set D coincides with X if min1≤j≤m mj ≥ 1 and with {f ∈ X :

f|∂Ω = 0} if min1≤j≤m mj = 0
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4. Preliminary lemmata

Here we give some preliminary lemmata and theorems that will be useful in
Section 5.

Lemma 4.1. Let X be a Banach space, and let p > 1, 1 > γ > 1
p and

−∞ < a < b < +∞. Then, for every u ∈ W γ,p(a, b; X),

‖u‖L∞(a,b;X) ≤ ‖u(a)‖+ C(b− a)γ− 1
p [u]W γ,p(a,b;X)

where C > 0 is a constant independent of a, b and u.

Proof. We have

‖u‖L∞(a,b;X) ≤ ‖u(a)‖+ ‖u− u(a)‖L∞(a,b;X).

So we are reduced to treat the case u(a) = 0. Let C > 0 be such that, for
every v ∈ W γ,p(0, 1;X) with v(0) = 0, ‖v‖L∞(0,1;X) ≤ C [v]W γ,p(0,1;X). Then,
if u ∈ W γ,p(a, b;X) and u(a) = 0,

‖u‖L∞(a,b;X) =
∥∥u(a + (b− a))

∥∥
L∞(0,1;X)

≤ C
[
u(a + (b− a))

]
W γ,p(0,1;X)

= C(b− a)γ− 1
p [u]W γ,p(a,b;X).

and the lemma is proved

To introduce a suitable norm in W β,p(a, b; X) for β < 1
p we shall use the

following known

Proposition 4.1. Let 1 < p < +∞ and f ∈ W β,p(a, b; X). Then:

a) If 0 < β < 1
p , then

∫ b

a
(t− a)−βp‖f(t)‖pdt < +∞.

b) If 1
p < β < 1, then

∫ b

a
(t − a)−βp‖f(t) − f(a)‖pdt ≤ C [f ]p

W β,p(a,b;X)

where C > 0 is independent of a, b and f .

Proof. See [5: Lemma 7]

Next, we put

‖f‖W β,p(a,b;X)

=

{( ∫ b

a
(t− a)−βp‖f(t)‖pdt

) 1
p + [f ]W β,p(a,b;X) if 0 < β < 1

p

‖f(a)‖+ [f ]W β,p(a,b;X) if 1
p < β < 1.

(4.1)

Finally, if k ∈ N and β ∈ (0, 1) with β 6= 1
p , we set

‖f‖W k+β,p(a,b;X) =
k∑

j=0

‖f (j)‖W β,p(a,b;X). (4.2)

Our interest in these spaces and norms depends on the following theorem the
proof of which will be given in Section 6.
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Theorem 4.1. Consider the problem

u′(t) = Au(t) + f(t) (t ∈ [a, b])

u(a) = u0

}
(4.3)

under assumption (h1) on A. Then the following conditions are necessary and
sufficient in order that the mild solution

u(t) = S(t− a)u0 +
∫ t

a

S(t− s)f(s) ds (4.4)

of problem (4.3) belongs to W 1+β,p(a, b; X) ∩W β,p(a, b; D) for 1 < p ≤ +∞
and β ∈ (0, 1) \ { 1

p}:
(i) f ∈ W β,p(a, b; X).
(ii) If 0 < β < 1

p , then u0 ∈ DA(1 + β − 1
p , p).

(iii) If 1
p < β < 1, then Au0 + f(a) ∈ DA(β − 1

p , p).

Moreover, if b − a ≤ T0 and β < 1
p , there exists a constant C(T0) > 0 inde-

pendent of a, b and f, u0 such that

‖u‖W 1+β,p(a,b;X) + ‖u‖W β,p(a,b;D)

≤ C(T0)
[
‖f‖W β,p(a,b;X) + ‖u0‖DA(1+β− 1

p ,p)

]
.

(4.5)

Finally, if b−a ≤ T0 and β > 1
p , there exists a constant C(T0) > 0 independent

of a, b and f, u0 such that

‖u‖W 1+β,p(a,b;X) + ‖u‖W β,p(a,b;D)

≤ C(T0)
[
‖f‖W β,p(a,b;X) + ‖u0‖D + ‖Au0 + f(a)‖DA(β− 1

p ,p)

]
.

(4.6)

Referring for the proof of the theorem to Section 6, we go on with a series
of technical lemmata.

Lemma 4.2. Let Y be a Banach space, and let p ∈ (1, +∞], β ∈ (0, 1) \
{ 1

p} and h ∈ W β,p(a, b;Y ). Then

‖h‖L1(a,b;Y ) ≤
{

C(b− a)β+ 1
p′ ‖h‖W β,p(a,b;Y ) if β < 1

p

C
[
(b− a)‖h(a)‖Y + (b− a)β+ 1

p′ [h]W β,p(a,b;Y )

]
if β > 1

p

(4.7)
where C > 0 is independent of a, b and h.

Proof. Assertion (4.7) follows considering first the case h(a) = 0, using
the homogeneity argument of Lemma 4.1, then being reduced to the previous
case by writing h = (h− h(a)) + h(a)
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Lemma 4.3. Let Y, W,Z be Banach spaces and let (·, ·) : Y ×W → Z
be a continuous and bilinear mapping. Further, let k ∈ W β,p(a, b,W ) and
h ∈ W γ,p(a, b; Y ) for some p > 1 and 0 < β ≤ γ < 1 with γ > 1

p . Then
(h, k) ∈ W β,p(a, b;Z). Moreover,

‖(h, k)‖W β,p(a,b;Z) ≤



C
[
‖h(a)‖Y + (b− a)γ− 1

p [h]W γ,p(a,b;Y )

]
‖k‖W β,p(a,b;W ) if β < 1

p +

C
[
‖h(a)‖Y ‖k‖W β,p(a,b;W ) + (b− a)γ−β

×[h]W γ,p(a,b;Y )

(‖k(a)‖W + (b− a)β− 1
p [k]W β,p(a,b;W )

)]
if β > 1

p

(4.9)
where C > 0 is a constant independent of a, b and h, k.

Proof. By Lemma 4.1, h is bounded with values in Y . So k → (h, k)
belongs to L(

Lp(a, b; W ), Lp(a, b; Z)
)
. It can also easily seen that the same

operator maps W γ,p(a, b; W ) into W γ,p(a, b; Z). In fact, if k ∈ W γ,p(a, b; W ),
then

∫ b

a

( ∫ t

a

‖(h(t), k(t))− (h(s), k(s))‖p
Z

(t− s)1+γp
ds

)
dt

≤ C

[ ∫ b

a

( ∫ t

a

‖(h(t)− h(s)‖p
Y

(t− s)1+γp
ds

)
‖k(t)‖p

W dt

+
∫ b

a

( ∫ t

a

‖h(s)‖p
Y

‖(k(t)− k(s)‖p
W

(t− s)1+γp
ds

)
dt

]

≤ C
[
‖h‖p

L∞(a,b;Y )[k]pW γ,p(a,b;W ) + ‖k‖p
L∞(a,b;W )[h]pW γ,p(a,b;Y )

]
.

By interpolation, adapting in a trivial way [14: Proposition 2.4], if k ∈
W β,p(a, b; W ), then we have (h, k) ∈ W β,p(a, b;Z).

It remains to show estimates (4.9). This follows considering first the case
h(a) = 0, using the homogeneity argument of Lemma 4.1, then being reduced
to the previous case by writing h = (h− h(a)) + h(a)

Lemma 4.4. Let Y and Z be Banach spaces and let H : Y → Z of class
C1. Assume for a certain R > 0, there exists L > 0 such that, for every
y0, y1 ∈ Y satisfying max{‖y0‖Y , ‖y1‖Y } ≤ R,

‖H ′(y0)−H ′(y1)‖L(Y,Z) ≤ L‖y0 − y1‖Y . (4.10)

Further, let p > 1, 1
p < γ < 1 and τ > 0, and let u ∈ W γ,p(a, b; Y ) be such

that ‖u‖L∞(a,b;Y ) ≤ R. Then H ◦ u ∈ W γ,p(a, b; Z) and

[H ◦ u]W γ,p(a,b;Z) ≤
(‖H ′(0)‖L(Y,Z) + RL

)
[u]W γ,p(a,b;Y ). (4.11)
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Moreover, if u1, u2 ∈ W γ,p(a, b; Y ) are such that max
{‖u1‖L∞(a,b;Y ), ‖u2‖L∞(a,b;Y )

}
≤ R, then

[
H ◦ u1 −H ◦ u2

]
W γ,p(a,b;Z)

≤ L

2
(
[u1]W γ,p(a,b;Y ) + [u2]W γ,p(a,b;Y )

)‖u1 − u2‖L∞(a,b;Y )

+
(‖H ′(0)‖L(Y,Z) + LR

)
[u1 − u2]W γ,p(a,b;Y ).

(4.12)

Proof. If ‖y‖Y ≤ R, one has

‖H ′(y)‖L(Y,Z) ≤ ‖H ′(0)‖L(Y,Z) + LR.

This implies that, if max{‖y1‖Y , ‖y2‖Y } ≤ R, then

‖H(y1)−H(y2)‖Z ≤
(‖H ′(0)‖L(Y,Z) + LR

)‖y1 − y2‖Y

and from this (4.10) follows immediately.

Now we prove (4.11). We restrict ourselves to the case p < +∞. We have,
if u1, u2 ∈ W γ,p(a, b; Y ) are such that max{‖u1‖L∞(a,b;Y ), ‖u2‖L∞(a,b;Y )} ≤ R,

( ∫ b

a

( ∫ t

a

∥∥H(u1(t))−H(u2(t))−H(u1(s)) + H(u2(s))
∥∥p

Z

(t− s)1+γp
ds

)
dt

) 1
p

=
( ∫ b

a

( ∫ t

a

(t− s)−1−γpdsdt

∥∥∥∥
∫ 1

0

[
H ′(u2(t) + θ(u1(t)− u2(t))

)
(u1(t)− u2(t))

−H ′(u2(s) + θ(u1(s)− u2(s))
)
(u1(s)− u2(s))

]
dθ

∥∥∥∥
p

Z

) 1
p

≤
∫ 1

0

( ∫ b

a

( ∫ t

a

(t− s)−1−γp
∥∥∥H ′(u2(t) + θ(u1(t)− u2(t))

)
(u1(t)− u2(t))

−H ′(u2(s) + θ(u1(s)− u2(s))
)
(u1(s)− u2(s))

∥∥∥
p

Z
ds

)
dt

) 1
p

dθ
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by the Minkowski inequality. Now, for every θ ∈ [0, 1],
( ∫ b

a

( ∫ t

a

(t− s)−1−γp
∥∥∥H ′(u2(t) + θ(u1(t)− u2(t))

)
(u1(t)− u2(t))

−H ′(u2(s) + θ(u1(s)− u2(s))
)
(u1(s)− u2(s))

∥∥∥
p

Z
ds

)
dt

) 1
p

≤
( ∫ b

a

( ∫ t

a

(t− s)−1−γp
∥∥∥[H ′(u2(t) + θ(u1(t)− u2(t))

)

−H ′(u2(s) + θ(u1(s)− u2(s))
)
(u1(t)− u2(t))

∥∥∥
p

Z
ds

)
dt

) 1
p

+
( ∫ b

a

( ∫ t

a

(t− s)−1−γp
∥∥∥H ′(u2(s) + θ(u1(s)− u2(s))

)

× (
u1(t)− u2(t)− u1(s) + u2(s)

)∥∥∥
p

Z
ds

)
dt

) 1
p

≤ L‖u1 − u2‖L∞(a,b;Y )

( ∫ b

a

( ∫ t

a

(t− s)−1−γp
∥∥(1− θ)(u2(t)− u2(s))

+ θ(u1(t)− u1(s))
∥∥p

Y
ds

)
dt

) 1
p

+
(‖H ′(0)‖L(Y,Z) + LR

)
[u1 − u2]W γ,p(a,b;Y ).

Integrating in θ, we get the conclusion

Lemma 4.5. Let X be a Banach space, p > 1, and let β, γ ∈ (0, 1) both
different from 1

p . Further, let v ∈ W β,p(a, b;X). Then
∥∥∥∥

∫ .

a

v(s) ds

∥∥∥∥
W γ,p(a,b;X)

≤
{

C(b− a)1+β−γ‖v‖W β,p(a,b;X) if β < 1
p

C(b− a)1+
1
p−γ

[‖v(a)‖+ (b− a)β− 1
p [v]W β,p(a,b;X)

]
if β > 1

p

where C > 0 is a constant independent of a, b and v.

Proof. Clearly,
∫ .

a
v(s) ds ∈ W 1+β,p(a, b; X) ⊆ W γ,p(a, b; X). The esti-

mates asserted can be obtained employing again the homogeneity arguments
of Lemma 4.1

We shall need the following generalization of [3: Theorem 3.1]:

Lemma 4.6. Let Y,W,Z be Banach spaces and (·, ·) : Y × W → Z
a continuous bilinear mapping. Further, for τ > 0 let h ∈ L1(0, τ ; Y ) and
k ∈ L1(∆τ ;W ) and set

z(t) =
∫ t

0

(
h(t− s), k(t, s)

)
ds (4.13)
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for t ∈ (0, τ). Finally, let p > 1 and 0 < β < 1 with β 6= 1
p , and in the case

β > 1
p assume k ∈ C(∆τ ; W ) and k(t, 0) = 0 for every t ∈ [0, τ ]. Then

‖z‖W β,p(0,τ ;Z) ≤ C‖h‖L1(0,τ ;Y ) sup
0<σ<τ

‖k(·+ σ, ·)‖W β,p(0,τ−σ;W )

where C > 0 is a constant independent of h, k, τ .

Proof. We consider here only the case p < +∞ and start by proving the
assertion assuming k(t, 0) ≡ 0 in the case β > 1

p . We have

( ∫ τ

0

( ∫ t

0

(t− s)−1−βp

×
∥∥∥∥

∫ t

0

(
h(σ), k(t, t− σ)

)
dσ −

∫ s

0

(
h(σ), k(s, s− σ)

)
dσ

∥∥∥∥
p

Z

ds

)
dt

) 1
p

≤
( ∫ τ

0

( ∫ t

0

(t− s)−1−βp

∥∥∥∥
∫ s

0

(
h(σ), k(t, t− σ)− k(s, s− σ)

)
dσ

∥∥∥∥
p

Z

ds

)
dt

) 1
p

+
( ∫ τ

0

( ∫ t

0

(t− s)−1−βp

∥∥∥∥
∫ t

s

(
h(σ), k(t, t− σ)

)
dσ

∥∥∥∥
p

Z

ds

)
dt

) 1
p

=: I1 + I2.

Using the Hölder inequality, I1 can be majorized as (the following constant C
being independent of h, k, τ)

I1 ≤ C‖h‖
1
p′
L1(0,τ ;Y )

( ∫ τ

0

( ∫ t

0

(t− s)−1−βp

×
( ∫ s

0

‖h(σ)‖Y

∥∥k(t, t− σ)− k(s, s− σ)
∥∥p

W
dσ

)
ds

)
dt

) 1
p

≤ C‖h‖L1(0,τ ;Y ) sup
0<σ<τ

[k(·+ σ, ·)]W β,p(0,τ−σ;W ).

In the same way,

I2 ≤ C1‖h‖
1
p′
L1(0,τ ;Y )

(∫ τ

0

(∫ t

0

(t− s)−1−βp

∫ t

s

‖h(σ)‖Y ‖k(t, t− σ))‖p
W dσ

)
ds

)
dt

) 1
p

≤ C2‖h‖
1
p′
L1(0,τ ;Y )

( ∫ τ

0

( ∫ τ−σ

0

t−βp‖k(t + σ, t)‖p
W dt

)
‖h(σ)‖Y dσ

) 1
p

.

So we have

[z]W β,p(0,τ,Z) ≤ C‖h‖L1(0,τ ;Y ) sup
0<σ<τ

‖k(·+ σ, ·)‖W β,p(0,τ−σ;W )
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where C > 0 is a constant independent of τ . To conclude the proof, we assume
β < 1

p and estimate

( ∫ τ

0

‖t−βz(t)‖pdt

) 1
p

≤ ‖h‖
1
p′
L1(0,τ ;Y )

( ∫ τ

0

t−βp

( ∫ t

0

‖h(s)‖Y ‖k(t, t− s)‖p
W ds

)
dt

) 1
p

= ‖h‖
1
p′
L1(0,τ ;Y )

( ∫ τ

0

( ∫ τ

s

t−βp‖k(t, t− s)‖p
W dt

)
‖h(s)‖Y ds

) 1
p

≤ ‖h‖L1(0,τ ;Y ) sup
0<σ<τ

‖k(·+ σ, ·)‖W β,p(0,τ−σ;W ).

The proof is complete

Lemma 4.7. Let D and X be Banach spaces, with D continuously em-
bedded into X, and let A ∈ L(D, X) satisfying condition (h1). Further, let
h ∈ W β,p(a, b) (p > 1, β ∈ (0, 1) \ { 1

p}) with h(a) = 0 if β > 1
p and y0 ∈ D,

and set

z(t) =
∫ t

a

S(t− s)h(s)y0ds.

Then
‖z‖W β,p(a,b;D) ≤ η(b− a)‖h‖W β,p(a,b)‖y0‖

with limτ→0 η(τ) = 0.

Proof. By Theorem 4.1,

‖z‖W β,p(0,τ ;D) ≤ C(1)‖h‖W β,p(0,τ)‖y0‖

if, for example, τ ≤ 1. To get the conclusion, it suffices to consider the case
y0 ∈ D; the general case will follow with a density argument. Therefore,
we assume y0 ∈ D. It is well known (and easy to show) that the part of A
in D satisfies again condition (h1). So, applying again Theorem 4.1 with D
replacing X, we obtain, for τ ≤ 1,

‖z′‖W β,p(0,τ ;D) ≤ C(1)‖h‖W β,p(0,τ)‖y0‖D.

Applying now Lemma 4.5 we get the conclusion

Given f ∈ W β,p(0, T ; X) (1 < p ≤ +∞ and 0 < β < 1 with β 6=
1
p ;T > 0) and τ ∈ (0, T ), we shall write simply ‖f‖W β,p(τ,T ;X) instead of
‖f|(τ,T )‖W β,p(τ,T ;X).
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Lemma 4.8. Let f ∈ W β,p(0, T ; X) (p ∈ (1, +∞] and β ∈ (0, 1) with
β 6= 1

p ; 0 < τ < T ≤ T0 < +∞) be such that f(t) = 0 for t ∈ (0, τ). Then
there exist constants C1, C2 > 0 independent of f, τ, T such that

‖f‖W β,p(τ,T ;X) ≤ C1‖f‖W β,p(0,T ;X) (4.14)

‖f‖W β,p(0,T ;X) ≤ C2‖f‖W β,p(τ,T ;X). (4.15)

Proof. It follows from the identity

[f ]p
W β,p(0,T ;X)

+ (βp)−1

∫ T

0

t−βp‖f(t)‖pdt

= [f ]p
W β,p(τ,T ;X)

+ (βp)−1

∫ T

τ

(t− τ)−βp‖f(t)‖pdt

(4.16)

and Proposition 4.1

5. Proofs of the main abstract results

We want to study system (2.7) under conditions (k1) - (k7) in Section 2.
Since the proofs are complicated we precede by steps, proving intermediate
lemmata. We are interested in the existence and the uniqueness of a solution
(u, h) of problem (2.7) belonging to

(W 2+β,p(0, τ ; X) ∩W 1+β,p(0, τ ;D))×W β,p(0, τ)

with p ∈ (1, +∞] and β ∈ (0, 1) \ { 1
p}, for some τ > 0.

Assume that, for some τ > 0,

(u, h) ∈ (W 2+β,p(0, τ ;X) ∩W 1+β,p(0, τ ;X))×W β,p(0, τ)

is a solution of system (2.7), for some p ∈ (1, +∞] and β ∈ (0, 1). We set, for
t ∈ [0, τ ],

A(t) = G′(u(t)) +
∫ t

0

h(t− s)d1F
(
u(t), u(s)

)
ds. (5.1)

Clearly, A(t) ∈ L(D, X) and A(0) = G′(u0) = A. If v := ∂tu, we set also

U(v, h)(t) =
∫ t

0

h(t− s)d2F
(
u0 + 1 ∗ v(t), u0 + 1 ∗ v(s)

)
v(s) ds (5.2)

χ(t) = Φ
(
F (u(t), u0)

)
. (5.3)

Observe that v ∈ W 1+β,p(0, τ ; X) ∩W β,p(0, τ ; D) and

v′(t) = A(t)v(t) + h(t)F (u(t), u0) + U(v, h)(t) + f ′(t)
(
t ∈ (0, τ)

)

v(0) = G(u0) + f(0)

}
. (5.4)

We start with certain simple necessary conditions concerning the data:
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Lemma 5.1. Under assumptions (k1) - (k7), the following conditions are
necessary in order that problem (2.7) has a solution

(u, h) ∈ (
W 2+β,p(0, τ ; X) ∩W 1+β,p(0, τ ; D)

)×W β,p(0, τ)

for some τ > 0 and some p > 1 and β ∈ (0, 1) \ { 1
p}:

(i) G(u0) + f(0) ∈
{

DA(1 + β − 1
p , p) if β < 1

p

D if β > 1
p .

(ii) g ∈ W 2+β,p(0, τ).

(iii) Φ(u0) = g(0) and Φ(G(u0) + f(0)) = g′(0).

Assume further that χ(0) 6= 0 and β > 1
p . Then the following further condition

holds:
(iv) A[G(u0) + f(0)] + f ′(0) +HF (u0, u0) ∈ DA(β − 1

p , p) with H defined
as in (2.8).

Proof. Assertion (ii) is obvious. Concerning assertion (i), we have al-
ready observed that, if v := ∂tu, then v lies in W 1+β,p(0, τ ; X)∩W β,p(0, τ ;D)
and solves (5.4). Therefore, assertion (i) follows from Theorem 4.1. Assertion
(iii) follows immediately from the previous considerations. Finally, if β > 1

p ,
we have

v′(0) = A[G(u0) + f(0)] + h(0)F (u0, u0) + f ′(0). (5.5)

It remains to determine h(0). Applying Φ to (5.5), we obtain

g′′(0) = Φ
[
A(G(u0) + f(0)) + f ′(0)

]
+ χ(0)h(0)

which implies
h(0) = H. (5.6)

Then the conclusion follows from Theorem 4.1

Remark 5.1. We observe explicitly the fact that, under the assumption
χ(0) 6= 0 depending only on u0, in the case β > 1

p , h(0) is uniquely determined
by (2.8).

Let now v ∈ W β,p(0, τ ;D) (τ > 0, p ∈ (1, +∞] and β ∈ (0, 1) with β 6= 1
p )

and h ∈ W β,p(0, τ), and set for a fixed u0 ∈ D

Av,h(t) = G′
(
u0+1∗v(t)

)
+

∫ t

0

h(t−s)d1F
(
u0+1∗v(t), u0+1∗v(s)

)
ds. (5.7)

The following three lemmata have in common the following assumptions,
which we write once and for all and indicate globally with (H):
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(H) There exists τ > 0 and R > 0 such that, if δ ∈ [0, τ), v, v1, v2 ∈
W β,p(0, τ ; D) and h, h1, h2 ∈ W β,p(0, τ) (1 < p ≤ +∞, β ∈ (0, 1) \
{ 1

p}), then

max





‖v‖W β,p(0,τ ;D), ‖v1‖W β,p(0,τ ;D), ‖v2‖W β,p(0,τ ;D),

‖v1‖W β,p(δ,τ ;D), ‖v2‖W β,p(δ,τ ;D), ‖h‖W β,p(0,τ),

‖h1‖W β,p(0,τ), ‖h2‖W β,p(0,τ), ‖h1‖W β,p(δ,τ), ‖h2‖W β,p(δ,τ)




≤ R.

Further, v1(t) = v2(t) and h1(t) = h2(t) if 0 < t < δ (this condition is
dropped if δ = 0).

Lemma 5.2. Under condition (H) we have:
(i) [Av,h −G′(u0)]v ∈ W β,p(0, τ ;X).
(ii) There exist M(R) > 0 and α > 0 independent of τ ∈ (0, τ0] such that∥∥[Av,h −G′(u0)]v

∥∥
W β,p(0,τ ;X)

≤ M(R)τα.

(iii)





∥∥∥
[
Av1,h1 −Av1,h1(δ)

]
v1 −

[
Av2,h2 −Av2,h2(δ)

]
v2

∥∥∥
W β,p(δ,τ ;X)

≤ M(R)(τ − δ)α
[
‖v1 − v2‖W β,p(δ,τ ;D) + ‖h1 − h2‖W β,p(δ,τ)

]
.

Proof. The mapping u0 + 1 ∗ v belongs to W 1+β,p(0, τ ; D). So, owing to
Lemma 4.4, t → G′(u0 + 1 ∗ v(t))−G′(u0) belongs to W γ,p

(
0, τ ;L(D, X)

)
for

every γ ∈ (0, 1). Therefore from Lemma 4.3 we have
[
G′(u0 + 1 ∗ v(t))−G′(u0)

]
v ∈ W β,p(0, τ ; X).

Fix now γ ∈ (β ∨ 1
p , 1). From Lemma 4.3 we get

∥∥[
G′(u0 + (1 ∗ v))−G′(u0)

]
v
∥∥

W β,p(0,τ ;X)

≤ CRτγ−β∨ 1
p
[
G′(u0 + (1 ∗ v))−G′(u0)

]
W γ,p(0,τ ;L(D,X))

with C > 0 independent of τ ≤ τ0 and R. Further, from Lemmata 4.1, 4.4
and 4.5 we have[

G′(u0 + (1 ∗ v))−G′(u0)
]
W γ,p(0,τ ;L(D,X))

≤ C(R)[1 ∗ v]W γ,p(0,τ ;D)

≤ C(R)τ1−γ+β∧ 1
p ‖v‖W β,p(0,τ ;D).

Next, we have
∫ t

0

h(t− s)d1F
(
u0 + 1 ∗ v(t), u0 + 1 ∗ v(s)

)
v(t) ds

= (1 ∗ h)(t)d1F
(
u0 + 1 ∗ v(t), u0

)
v(t)

+
∫ t

0

h(t− s)
[
d1F

(
u0 + 1 ∗ v(t), u0 + 1 ∗ v(s)

)

− d1F
(
u0 + 1 ∗ v(t), u0

)]
ds v(t).
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Considering the first summand, we have for a fixed γ > β ∨ 1
p

∥∥(1 ∗ h)d1F (u0 + 1 ∗ v, u0)v
∥∥

W β,p(0,τ ;X)

≤ Cτγ−β∨ 1
p [1 ∗ h]W γ,p(0,τ)

∥∥d1F (u0 + 1 ∗ v, u0)v
∥∥

W β,p(0,τ ;X)

(with C > 0 independent of τ, by Lemma 4.3)

≤ C(R)τ1−|β− 1
p |

∥∥d1F (u0 + 1 ∗ v, u0)
∥∥

W γ,p(0,τ ;L(D,X))

(by Lemmata 4.3 and 4.5)

≤ C(R)τ1−|β− 1
p |

(by Lemma 4.4).

Now we pass to estimate

I :=
∫ ·

0

h(·−s)
[
d1F

(
u0 +1∗v(·), u0 +1∗v(s)

)−d1F (u0 +1∗v(·), u0)
]
ds v(·).

Using Lemmata 4.2 - 4.6 we get

‖I‖W β,p(0,τ ;X) ≤ C(R)‖h‖L1(0,τ) sup
0<σ<τ

[
d1F (u0 + 1 ∗ v(·+ σ), u0 + 1 ∗ v)

− d1F (u0 + 1 ∗ v(·+ σ), u0)
]

W γ,p(0,τ−σ;L(D,X))

≤ C(R)τ1∧(β+ 1
p′ ) sup

0<σ<τ
[1 ∗ v(·+ σ)]W γ,p(0,τ−σ;D)

≤ C(R)τ1∧(β+ 1
p′ ).

So assertions (i) and (ii) are proved.
To prove assertion (iii), for simplicity we set

Aj(t) = Avj ,hj (t)

uj(t) = u0 + 1 ∗ vj(t)

Bj(t) =
∫ t

0
hj(t− s)d1F

(
uj(t), uj(s)

)
ds.

Then
∥∥∥
[
A1(·)−A1(δ)

]
v1(·)−

[
A2(·)−A2(δ)

]
v2(·)

∥∥∥
W β,p(δ,τ ;X)

≤
∥∥∥
[
G′(u1(·))−G′(u(δ))

]
v1(·)−

[
G′(u2(·))−G′(u(δ))

]
v2(·)

∥∥∥
W β,p(δ,τ ;X)

+
∥∥∥
[
B1(·)−B1(δ)

]
v1(·)−

[
B2(·)−B2(δ)

]
v2(·)

∥∥∥
W β,p(δ,τ ;X)

.
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With the previous arguments we get
∥∥∥
[
G′(u1(·))−G′(u(δ))]v1(·)−

[
G′(u2(·))−G′(u(δ))]v2(·)

∥∥∥
W β,p(δ,τ ;X)

≤ C(R)(τ − δ)α‖v1 − v2‖W β,p(δ,τ ;D)

for some α > 0. Next,
∥∥∥
[
B1(·)−B1(δ)

]
v1(·)−

[
B2(·)−B2(δ)

]
v2(·)

∥∥∥
W β,p(δ,τ ;X)

≤
∥∥[

B1(·)−B2(·)
]
v1(·)

∥∥
W β,p(δ,τ ;X)

+
∥∥[

B2(·)−B2(δ)
] [

v1(·)− v2(·)
]∥∥

W β,p(δ,τ ;X)

≤ C(τ − δ)γ−β∨ 1
p

{
R

[
B1(·)−B2(·)

]
W γ,p(δ,τ ;L(D,X))

+
[
B2(·)−B2(δ)

]
W γ,p(δ,τ ;L(D,X))

‖v1 − v2‖W β,p(δ,τ ;D)

}

for a fixed γ ∈ ( 1
p , 1) where we have used Lemma 4.3. Then, using Lemma 4.8

and the arguments of the proof of assertion (ii),
[
B1(·)−B2(·)

]
W γ,p(δ,τ ;L(D,X))

≤ C1

[
B1(·)−B2(·)

]
W γ,p(0,τ ;L(D,X))

≤ C2

[‖v1 − v2‖W β,p(0,τ ;D) + ‖h1 − h2‖W β,p(0,τ)

]

≤ C3

[‖v1 − v2‖W β,p(δ,τ ;D) + ‖h1 − h2‖W β,p(δ,τ)

]

applying again Lemma 4.8. Finally, from the first part of the proof,
[
B2(·)−B2(τ)

]
W γ,p(δ,τ ;L(D,X))

≤ C(R)

and assertion (iii) is also proved

Lemma 5.3. Under condition (H) we have:
(i) h(·)[F (u0 + 1 ∗ v(·), u0)− F (u0, u0)

] ∈ W β,p(0, τ ;X).
(ii) There exist M(R) > 0 and α > 0 independent of τ ∈ (0, τ0] such that

∥∥h(·)[F (
u0 + 1 ∗ v(·), u0

)− F (u0, u0)
]∥∥

W β,p(0,τ ;X)
≤ M(R)τα.

(iii)





∥∥∥h1(·)
[
F (u0 + 1 ∗ v1(·), u0)− F (u0 + 1 ∗ v1(δ), u0)

]

− h2(·)
[
F (u0 + 1 ∗ v2(·), u0)− F (u0 + 1 ∗ v2(δ), u0)

]∥∥∥
W β,p(δ,τ ;X)

≤ M(R)(τ − δ)α
[‖v1 − v2‖W β,p(δ,τ ;D) + ‖h1 − h2‖W β,p(δ,τ)

]
.

Proof. The proof follows the same arguments as in the proof of Lemma
5.2 and will not be worked out
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Lemma 5.4. Under condition (H) we have:
(i) U(v, h) ∈ W β,p(0, τ ; X).
(ii) There exist M(R) > 0 and α > 0 independent of τ ∈ (0, τ0] such that

‖U(v, h)‖W β,p(0,τ ;X) ≤ M(R)τα.

(iii)

{∥∥U(v1, h1)− U(v2, h2)
∥∥

W β,p(δ,τ ;X)

≤ M(R)(τ − δ)α
[‖v1 − v2‖W β,p(δ,τ ;D) + ‖h1 − h2‖W β,p(δ,τ)

]
.

Proof. We have
U(v, h)(t) = d2F

(
u0 + 1 ∗ v(t), u0

)
(h ∗ v)(t)

+
∫ t

0

h(t− s)
[
d2F

(
u0 + 1 ∗ v(t), u0 + 1 ∗ v(s)

)

− d1F
(
u0 + 1 ∗ v(t), u0

)]
v(s) ds.

By Lemmata 4.3 and 4.4,∥∥d2F (u0 + 1 ∗ v, u0)(h ∗ v)
∥∥

W β,p(0,τ ;X)
≤ C(R)‖h ∗ v‖W β,p(0,τ ;D).

If β < 1
p , then owing to Lemma 4.6

‖h ∗ v‖W β,p(0,τ ;D) ≤ C‖h‖L1(0,τ)‖v‖W β,p(0,τ ;D) ≤ C(R)τβ+ 1
p′

by Lemma 4.2. If contrary β > 1
p , then

‖h ∗ v‖W β,p(0,τ ;D) ≤ ‖h ∗ (v − v(0))‖W β,p(0,τ ;D) + ‖1 ∗ h‖W β,p(0,τ)‖v(0)‖D

≤ C(‖h‖L1(0,τ)[v]W β,p(0,τ ;D) + ‖v(0)‖D‖1 ∗ h‖W β,p(0,τ))

≤ C(R)τ1+ 1
p−β

owing to Lemmata 4.2, 4.5 and 4.6.
Next, we consider

I2 =
∫ .

0

h(·−s)
[
d2F

(
u0 +1∗v(·), u0 +1∗v(s)

)−d2F
(
u0 +1∗v(·), u0

)]
v(s) ds.

We have, by Lemmata 4.2 - 4.4 and 4.6, for a fixed γ ∈ (β, 1) with γ > 1
p ,

‖I2‖W β,p(0,τ ;X) ≤ C‖h‖L1(0,τ) sup
0<σ<τ

∥∥∥
[
d2F

(
u0 + 1 ∗ v(·+ σ), u0 + 1 ∗ v

)

− d2F
(
u0 + 1 ∗ v(·+ σ), u0

)]
v
∥∥∥

W β,p(0,τ−σ;X)

≤ C(R)τ1∧(β+ 1
p′ ) sup

0<σ<τ

[
d2F

(
u0 + 1 ∗ v(·+ σ), u0 + 1 ∗ v

)

− d2F
(
u0 + 1 ∗ v(·+ σ), u0

)]
W γ,p(0,τ−σ;L(D,X))

≤ C(R)τ1∧(β+ 1
p′ ).
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Finally we show assertion (iii). For simplicity we set uj(t) = u0 +1∗vj(t).
We have

U(v1, h1)− U(v2, h2) = U(v1, h1 − h2) +
[U(v1, h2)− U(v2, h2)

]
.

With the same method used in the proof of assertion (i) we get, employing
preliminarly Lemma 4.8,

‖U(v1, h1 − h2)‖W β,p(δ,τ ;X)

≤ C‖U(v1, h1 − h2)‖W β,p(0,τ ;X)

≤ C(R)(‖h1 − h2‖L1(δ,τ) + ‖1 ∗ (h1 − h2)‖W β,p(δ,τ))

≤ C(R)(τ − δ)1−|β−
1
p |‖h1 − h2‖W β,p(δ,τ).

Next we have
∥∥U(v1, h2)− U(v2, h2)

∥∥
W β,p(δ,τ ;X)

≤
∥∥∥∥

∫ .

0

h2(· − s)
[
d2F (u1(·), u1(s))− d2F (u2(·), u2(s))

]
v1(s) ds

∥∥∥∥
W β,p(δ,τ ;X)

+
∥∥∥∥

∫ .

0

h2(s)d2F
(
u2(·), u2(· − s)

)[
v1(· − s)− v2(· − s)

]
ds

∥∥∥∥
W β,p(δ,τ ;X)

In the case β < 1
p , the first summand can be majorized, for a fixed γ ∈ ( 1

p , 1),
with

C1

∥∥∥∥
∫ .

0

h2(· − s)
[
d2F

(
u1(·), u1(s)

)− d2F
(
u2(·), u2(s)

)]
v1(s) ds

∥∥∥∥
W β,p(0,τ ;X)

≤ C(R) sup
0<σ<τ

∥∥∥d2F
(
u1(·+ σ), u1(·)

)− d2F
(
u2(·+ σ), u2(·)

)∥∥∥
W γ,p(0,τ−σ;L(D,X))

≤ C(R) sup
0<σ<τ

∥∥u1(·+ σ)− u2(·+ σ)
∥∥

W γ,p(0,τ−σ;D)

≤ C(R)
[

sup
δ<σ<τ

‖u1(σ)− u2(σ)‖D + [u1 − u2]W γ,p(0,τ ;D)

]
.

By Lemmata 4.1 and 4.5,

sup
δ<σ<τ

‖u1(σ)− u2(σ)‖D ≤ C(τ − δ)γ− 1
p [u1 − u2]W γ,p(δ,τ ;D)

≤ C(τ − δ)1+β− 1
p ‖v1 − v2‖W β,p(δ,τ ;D)

and, from Lemmata 4.8 and 4.5,

[u1 − u2]W γ,p(0,τ ;D) ≤ C2[u1 − u2]W γ,p(δ,τ ;D)

≤ C(τ − δ)1+β−γ‖v1 − v2‖W β,p(δ,τ ;D).
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The case β > 1
p can be treated similarly, observing that

∥∥∥∥
∫ .

0

h2(· − s)
[
d2F (u1(·), u1(s))− d2F (u2(·), u2(s))

]
v1(s) ds

∥∥∥∥
W β,p(0,τ ;X)

≤
∥∥∥∥

∫ .

0

h2(· − s)
[
d2F (u1(·), u1(s))− d2F (u2(·), u2(s))

− d2F (u1(·), u0) + d2F (u2(·), u0)
]
v1(s) ds

∥∥∥∥
W β,p(0,τ ;X)

+
∥∥∥
[
d2F (u1(·), u0)− d2F (u1(·), u0)

] [
h2 ∗ (v1 − v1(0))

]∥∥∥
W β,p(0,τ ;X)

+
∥∥∥
[
d2F (u1(·), u0)− d2F (u1(·), u0)

]
(1 ∗ h2)v1(0)

∥∥∥
W β,p(0,τ ;X)

and choosing γ = β.
Finally, from Lemmata 4.8 and 4.6, if β < 1

p ,

∥∥∥∥
∫ .

0

h2(s)d2F
(
u2(·), u2(· − s)

)[
v1(· − s)− v2(· − s)

]
ds

∥∥∥∥
W β,p(δ,τ ;X)

≤ C1

∥∥∥∥
∫ .

0

h2(s)d2F
(
u2(·), u2(· − s)

)[
v1(· − s)− v2(· − s)

]
ds

∥∥∥∥
W β,p(0,τ ;X)

≤ C‖v1 − v2‖L1(δ,τ ;D) sup
0<σ<τ

∥∥h2(·)d2F
(
u2(·+ σ), u2(σ)

)∥∥
W β,p(0,τ−σ;L(D,X))

≤ C(R)(τ − δ)β+ 1
p′ ‖v1 − v2‖W β,p(δ,τ ;D).

The case β > 1
p can be treated with the same techniques, observing that

∫ t

0

h2(s)d2F
(
u2(t), u2(t− s)

)[
v1(t− s)− v2(t− s)

]
ds

=
∫ t

0

h2(s)
[
d2F

(
u2(t), u2(t− s)

)− d2F
(
u2(t), u2(t)

)] [
v1(t− s)− v2(t− s)

]
ds

+ d2F
(
u2(t), u2(t)

)[
h2 ∗ (v1 − v2)

]
(t).

Thus Lemma 5.4 is proved

We set now

R(v, h)(t) =
[
Av,h(t)−Av,h(0)

]
v(t)

+ h(t)
[
F (u0 + 1 ◦ v(t), u0)− F (u0, u0)

]

+ U(v, h)(t).

(5.8)
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Lemma 5.5. Let p ∈ (1, +∞] and β ∈ (0, 1) \ { 1
p}. Assume that condi-

tions (k1) - (k7) and, moreover, conditions (i) - (iii) of Lemma 5.1 together
with condition (iv) in the case β > 1

p hold. Indicate with {S(t)}t≥0 the semi-
group generated by A = G′(u0). Let τ > 0 and (u, h) a solution of problem
(2.7) belonging to

(
W 2+β,p(0, τ ; X) ∩W 1+β,p(0, τ ;D)

)×W β,p(0, τ)

for some τ > 0 and set v = ∂tu. Then (v, h) ∈ W β,p(0, τ ; D)×W β,p(0, τ) and
(v, h) solves the system

v(t) = S(t)[G(u0) + f(0)] +
∫ t

0

S(t− s)f ′(s) ds

+
∫ t

0

S(t− s)h(s)F (u0, u0) ds +
∫ t

0

S(t− s)R(v, h)(s) ds

h(t) = χ(0)−1
[
g′′(t)− Φ

(
Av(t) +R(v, h)(t) + f ′(t)

)]





(5.9)

with R defined in (5.8).
On the other hand, let (v, h) ∈ W β,p(0, τ ;D) × W β,p(0, τ) be a solution

of system (5.9) such that, if β > 1
p , h(0) = H, and set u = u0 + 1 ∗ v. Then

u ∈ W 2+β,p(0, τ ; X) ∩W 1+β,p(0, τ ; D) and (u, h) solves problem (2.7).

Proof. Let (u, h) be a solution of problem (2.7) belonging to
(
W 2+β,p(0, τ ; X) ∩W 1+β,p(0, τ ;D)

)×W β,p(0, τ)

for some τ > 0. Then v := ∂tu ∈ W 1+β,p(0, τ ;X)∩W β,p(0, τ ;D) and we have
already observed that v is a solution of problem (5.4). It follows immediately
from Theorem 4.1 that the first equation in system (5.9) is satisfied. The
second equation can be obtained applying Φ to both terms of (5.4) and using
the fact that Φ(v′(t)) = g′′(t).

On the other hand, let (v, h) ∈ W β,p(0, τ ;D) ×W β,p(0, τ) be a solution
of system (5.9) and define

g(t) = f ′(t) + h(t)F (u0, u0) +R(v, h)(t). (5.10)

Then g ∈ W β,p(0, τ ;X), owing to Lemmata 5.2 - 5.4. Owing to condition (i)
of Lemma 5.1 and condition (iv) in the case β > 1

p , applying Theorem 4.1 we
obtain that v belongs to W 1+β,p(0, τ ; X) ∩W β,p(0, τ ; D) and solves problem
(5.4). Then u ∈ W 2+β,p(0, τ ; X)∩W 1+β,p(0, τ ;D). The equation in (5.4) can
be written in the form

u′′(t) =
d

dt
(G(u(t)) +

∫ t

0

h(t− s)F (u(t), u(s)) ds + f(t)). (5.11)
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The condition u′(0) = v(0) = G(u0)+f(0) implies that the two first conditions
in problem (2.7) are satisfied. It remains to show that Φ ◦ u = g. From the
second equation in system (5.9) we have

g′′(t) = Φ
[
Av(t) + h(t)F (u0, u0) +R(v, h)(t) + f ′(t)

]

= Φ(v′(t)) = Φ(u′′(t)) = (Φ ◦ u)′′(t).

Then we get the conclusion from condition (iii) of Lemma 5.1

We are now in position to prove the main result of the paper. We define,
preliminarly,

v0(t) = S(t)[G(u0) + f(0)]

+
∫ t

0

S(t− s)f ′(s) ds

+Hp,β

∫ t

0

S(t− s)F (u0, u0) ds

(5.12)

with

Hp,β =

{
0 if 0 < β < 1

p

H if 1
p < β < 1

(5.13)

and
h0(t) = χ(0)−1

[
g′′(t)− Φ

(
Av0(t) + f ′(t)

)]
. (5.14)

Proof of Theorem 2.1. By Lemma 5.5 we can get solutions of pre-
scribed regularity of problem (2.7) looking for solutions in B(τ, R) of system
(5.9). We put

S(v, h)(t) =
∫ t

0

S(t− s)
[R(v, h)(s) + (h(s)−Hp,β)F (u0, u0)

]
ds, (5.15)

write system (5.9) in the form

v(t) = v0(t) + S(v, h)(t)

h(t) = h0(t)− χ(0)−1Φ
(
AS(v, h)(t) +R(v, h)(t)

)
}

(5.16)

and define

Γ(v, h) =
(
v0 + S(v, h), h0 − χ(0)−1Φ

(
AS(v, h) +R(v, h)

))
. (5.17)

Then, if (v, h) ∈ B(τ,R), owing to Lemmata 5.2 - 5.4 and Theorem 4.1,
Γ(v, h) ∈ W β,p(0, τ ; D)×W β,p(0, τ). Moreover, if β > 1

p , then

h0(0)− χ(0)−1Φ
(
AS(v, h)(0) +R(v, h)(0)

)
= H.
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Next, using Theorem 4.1, Lemmata 5.2 - 5.4 and 4.7, we have

‖S(v, h)‖W β,p(0,τ ;D) ≤ C(T )
[
M(R′)τα + η(τ)R′

]

with
R′ = R + max

{‖v0‖W β,p(0,T ;D), ‖h0‖W β,p(0,T )

}
. (5.18)

In the same way, for some α > 0,

∥∥χ(0)−1Φ
(
AS(v, h) +R(v, h)

)∥∥
W β,p(0,τ)

≤ |χ(0)|−1‖Φ‖X′
[
C(T )M(R′)τα + η(τ)R′

]
.

We deduce that, if τ is sufficiently small, then

Γ(B(τ, R)) ⊆ B(τ, R). (5.19)

With the same arguments one can show that there exists C(R) > 0 such that,
if (v1, h1) and (v2, h2) belong to B(τ,R), one has

max





∥∥S(v1, h1)− S(v2, h2)
∥∥

W β,p(0,τ ;D)

∥∥χ(0)−1Φ
(
AS(v1, h1) +R(v1, h1)−AS(v2, h2)−R(v2, h2)

)∥∥
W β,p(0,τ)





≤ C(R)(τα + η(τ))max
{‖v1 − v2‖W β,p(0,τ ;D), ‖h1 − h2‖W β,p(0,τ)

}
. (5.20)

The contraction mapping theorem gives the conclusion

Next, we give the

Proof of Theorem 2.2. Let (u2, h2) be another solution of problem
(2.7) belonging to

(
W 2+β,p(0, T ; X) ∩W 1+β,p(0, T ; X)

)×W β,p(0, T ).

To get the conclusion, we can show that, if δ ∈ [0, T ) is such that u1(t) = u2(t)
for all t ∈ [0, δ] and h1(t) = h2(t) almost everywhere in [0, δ], then there exists
τ ∈ (δ, T ] such that u1(t) = u2(t) for all t ∈ [0, τ ] and h1(t) = h2(t) almost
everywhere in [0, τ ].

Set v2 = ∂tu2 and A = Av1,h1(δ) = Av2,h2(δ), indicate with {S(t)}t≥0 the
semigroup generated by A in X and finally set

R = max

{
‖v1‖W β,p(0,T ;D), ‖v2‖W β,p(0,T ;D), ‖v1‖W β,p(δ,T ;D), ‖v2‖W β,p(δ,T ;D)

‖h1‖W β,p(0,T ), ‖h2‖W β,p(0,T ), ‖h1‖W β,p(δ,T ), ‖h2‖W β,p(δ,T )

}
.
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We have

(v1 − v2)′(t) = A(v1 − v2)(t)

+
{[

Av1,h1(t)−Av1,h1(δ)
]
v1(t)

− [
Av2,h2(t)−Av2,h2(δ)

]
v2(t)

}

+ [h1(t)− h2(t)]F (u1(δ), u0)

+
{

h1(t)
[
F (u1(t), u0)− F (u1(δ), u0)

]

− h2(t)
[
F (u2(t), u0)− F (u2(δ), u0)

]}

+ U(v1, h1)(t)− U(v2, h2)(t)
(
t ∈ (δ, T )

)

(v1 − v2)(δ) = 0





(5.21).

Using Theorem 4.1 and Lemmata 4.7, 5.2/(ii), 5.3/(iii) and 5.4/(iii), we deduce

‖v1 − v2‖W β,p(δ,τ ;D)

≤ C(R)η(τ − δ)
[‖v1 − v2‖W β,p(δ,τ ;D) + ‖h1 − h2‖W β,p(δ,τ)

] (5.22)

with limr→0 η(r) = 0. This estimate implies that, if τ − δ is sufficiently small,

‖v1 − v2‖W β,p(δ,τ ;D) ≤ C(R)η(τ − δ)‖h1 − h2‖W β,p(δ,τ). (5.23)

Observe now that

h1(t)− h2(t) = Φ
(
F (u1(δ), u0)

)−1
{

Φ
[
A

(
v2(t)− v1(t)

)

+
(
Av2,h2(t)−Av2,h2(δ)

)
v2(t)

− (
Av1,h1(t)−Av1,h1(δ)

)
v1(t)

+ h2(t)
(
F (u2(t), u0)− F (u2(δ), u0)

)

− h1(t)
(
F (u1(t), u0)− F (u1(δ), u0)

)

+ U(v2, h2)(t)− U(v1, h1)(t)
]}

(5.24)

implying

‖h1 − h2‖W β,p(δ,τ)

≤ C
(
‖v1 − v2‖W β,p(δ,τ ;D) + η(τ − δ)‖h1 − h2‖W β,p(δ,τ)

)
.

(5.25)

Clearly, (5.25) and (5.23) imply together that, if τ − δ is sufficiently small,
h1(t) = h2(t) almost everywhere in [0, τ ]. This fact and (5.23) together allow
to get the desired conclusion
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Proof of Corollary 2.1. By Theorem 2.1 there exists τ > 0 such that
problem (2.7) has a solution

(u, h) ∈ (
W 2+β,p(0, τ ;X) ∩W 1+β,p(0, τ ;D)

)×W β,p(0, τ).

If τ is sufficiently small, by continuity, all assumptions a) - c) of Theorem 2.2
are satisfied (setting (u1, h1) = (u, h)). So Theorem 2.2 implies the result

6. Appendix: Proof of Theorem 4.1

In this section will shall give a detailed proof of Theorem 4.1. Another proof
of this maximal regularity result (without estimate (4.6)) was obtained also
applying the extrapolation techniques in [6]. We shall always assume that A
is a linear operator in X satisfying assumption (h1) and we shall indicate with
{S(t)}t≥0 the semigroup (possibly not strongly continuous in 0) generated by
A.

We begin with some lemmata.

Lemma 6.1. Let 1 < p ≤ +∞ and for x ∈ X set v0(t) = S(t)x. Then:
a) If 0 < β < 1

p , then v ∈ W β,p(0, T ; X) for every x ∈ X and every T > 0.

b) If 1
p < β < 1 and T > 0, then v0 ∈ W β,p(0, T ;X) if and only if

x ∈ DA(β − 1
p , p).

Proof. Statement a) is proved in [5: Section 4/Theorem 7]. In [5: Section
4/Theorem 8] it is shown that, if x ∈ DA(β − 1

p , p) with β > 1
p and p < +∞,

then v0 ∈ W β,p(0, T ; X). To prove the inverse statement, observe that by
Proposition 4.1, if v0 ∈ W β,p(0, T ;X) for some β ∈ ( 1

p , 1), then

∫ T

0

t−βp‖S(t)x− x‖pdt < +∞.

This is another characterization of DA(β − 1
p , p) (see [17: Proposition 2.2.4]).

This argument is valid also in the case p = +∞. Finally, in the case p = +∞,
if x ∈ DA(β,∞), then

‖v0(t)− v0(s)‖ =
∥∥∥∥

∫ t

s

Av0(σ) dσ

∥∥∥∥

≤ C1

∫ t

s

σβ−1dσ ‖x‖DA(β,∞)

≤ C2(t− s)β‖x‖DA(β,∞)

for 0 ≤ s < t ≤ T
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Lemma 6.2. Let 1 < p ≤ +∞ and set

v0(t) = S(t)x (6.1)

for x ∈ X. Then:
a) If 0 < β < 1

p and T > 0, then v0 ∈ W 1+β,p(0, T ; X) ∩W β,p(0, T ; D) if
and only if x ∈ DA(1 + β − 1

p , p).

b) If 1
p < β < 1 and T > 0, then v0 ∈ W 1+β,p(0, T ; X) ∩W β,p(0, T ; D) if

and only if x ∈ D and Ax ∈ DA(β − 1
p , p).

Proof. Observe that, as v′0(t) = Av0(t), v0 ∈ W 1+β,p(0, T ; X) if and
only if v0 ∈ W β,p(0, T ; D). Consider first the case β > 1

p . Then, if v0 ∈
W β,p(0, T ;D), v0 is continuous with values in D. This implies x ∈ D. More-
over, t → S(t)Ax = AS(t)x belongs to W β,p(0, T ; X). Owing to Lemma 6.1,
this can happen if and only if Ax ∈ DA(β − 1

p , p).

Consider next the case β < 1
p . If x ∈ DA(1 + β − 1

p , p), then v0 ∈
W 1+β,p(0, T ; X) owing to [5: Section 4/ Theorem 10]. On the other hand, if
v0 ∈ W β,p(0, T ;D), by Proposition 4.1 one has

∫ T

0

t−βp‖AS(t)x‖pdt < +∞

which implies x ∈ DA(1 + β − 1
p , p)

Proof of Theorem 4.1. It is clearly not restrictive to consider the case
a = 0 and b = T with T > 0. We start by showing that conditions (i) - (iii)
are necessary and sufficient in order to get a solution u ∈ W 1+β,p(0, T ; X) ∩
W β,p(0, T ;D).

It is clear that (i) is a necessary condition. Set

v1(t) =
∫ t

0

S(t− s)f(s) ds. (6.2)

Then, owing to [5: Theorem 24] and [17: Theorem 4.3.1(III)], if f ∈ W β,p(0, T ;X)
and either β < 1

p or 1
p < β and f(0) = 0, then v1 ∈ W 1+β,p(0, T ; X) ∩

W β,p(0, T ;D). So, if β < 1
p and f ∈ W β,p(0, T ; X), then u ∈ W 1+β,p(0, T ; X)∩

W β,p(0, T ;D) if and only if v0 ∈ W 1+β,p(0, T ; X) ∩W β,p(0, T ; D). Therefore
in this case we get the conclusion from Lemma 6.2.

Consider now the case β > 1
p . As W β,p(0, T ; D) ⊆ C([0, T ];D), it is

necessary that u0 ∈ D. We have

u(t) = S(t)u0 +
∫ t

0

S(t− s)f(0) ds +
∫ t

0

S(t− s)[f(s)− f(0)] ds. (6.3)
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Owing to the quoted results in [5, 17], if f ∈ W β,p(0, T ; X), then the last
summand in (6.3) belongs to W 1+β,p(0, T ;X) ∩W β,p(0, T ;D). For t ∈ (0, T )
we have

A

(
S(t)u0 +

∫ t

0

S(t− s)f(0) ds

)
= S(t)

(
Au0 + f(0)

)− f(0)

so that, owing to Lemma 6.1, the sum of the two first summands in (6.3)
belongs to W β,p(0, T ;D) if and only if Au0 + f(0) ∈ DA(β − 1

p , p).

It remains only to consider estimates (4.25) - (4.26). Consider the operator
TA with T ∈ (0, T0]. Then

{
λ ∈ C : |λ| ≥ T0R0 and |Argλ| ≤ π

2

}
⊆ ρ(TA).

Moreover, if |λ| ≥ T0R0 and |Argλ| ≤ π
2 , then

‖(λ− TA)−1‖L(X) ≤ M |λ|−1.

This means that there exists C > 0 independent of T ∈ (0, T0] such that, if v
solves the problem

v′(t) = TAv(t) + g(t) (t ∈ [0, 1])

v(0) = 0

}
(6.4)

with g ∈ W β,p(0, 1; X) and g(0) = 0 in the case β > 1
p , then

‖v‖W β,p(0,1;X) + T‖Av‖W β,p(0,1;X) ≤ C‖g‖W β,p(0,1;X). (6.5)

Consider first the case u0 = 0 and, if β > 1
p , f(0) = 0. Then v(s) = u(Ts) (s ∈

[0, 1]) is the solution of the problem

v′(s) = TAv(s) + Tf(Ts) (s ∈ [0, 1])

v(0) = 0

}
. (6.6)

It follows

‖u‖W β,p(0,T ;D) = T
1
p−β‖v‖W β,p(0,1;D)

≤ C(T0)T
1
p−β−1

[‖v‖W β,p(0,1;X) + T‖Av‖W β,p(0,1;X)

]

≤ C1(T0)T
1
p−β‖f(T ·)‖W β,p(0,1;X)

= C1(T0)‖f‖W β,p(0,T ;X).
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Now we consider the general case. We start from the case β < 1
p . Recalling

notations (6.1) - (6.2) we have

‖u‖W β,p(0,T ;D) ≤ ‖v0‖W β,p(0,T ;D) + ‖v1‖W β,p(0,T ;D)

≤ ‖v0‖W β,p(0,T0;D) + C1(T0)‖f‖W β,p(0,T ;X)

≤ C(T0)
[‖u0‖DA(β+1− 1

p ,p) + ‖f‖W β,p(0,T ;X)

]

applying Lemma 6.2.

Now we pass to the case 1
p < β < 1 and set

v2(t) = v0(t) +
∫ t

0

S(t− s)f(0) ds.

Then

‖u‖W β,p(0,T ;D) ≤ ‖v2‖W β,p(0,T0;D) + C1(T0)‖f − f(0)‖W β,p(0,T ;X)

≤ C2(T0)
[
‖u0‖D + ‖f(0)‖+ ‖Au0 + f(0)‖DA(β− 1

p ) + [f ]W β,p(0,T ;X)

]

= C2(T0)
[
‖u0‖D + ‖Au0 + f(0)‖DA(β− 1

p ) + ‖f‖W β,p(0,T ;X)

]
.

With this the proof is complete
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